1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
|
/* Residue.cpp -- Polynomial substitution and residue calculations
Copyright 2002-2004 Jesus A. De Loera, David Haws, Raymond
Hemmecke, Peter Huggins, Jeremy Tauzer, Ruriko Yoshida
Copyright 2006 Matthias Koeppe
This file is part of LattE.
LattE is free software; you can redistribute it and/or modify it
under the terms of the version 2 of the GNU General Public License
as published by the Free Software Foundation.
LattE is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with LattE; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <cassert>
#include <time.h>
#include <list>
#include <vector>
#include "config.h"
#include "cone.h"
#include "ramon.h"
#include "latte_ntl_integer.h"
using namespace std;
/* From here, Rudy edited ----------------------------------------- */
/* ----------------------------------------------------------------- */
ZZ
Residue(listCone* cones, int numOfVars)
{
int numOfTerms;
listVector *tmp;
listCone *C, * cones1;
int dim, noGsPerC,noCones; //noGsPerC is number of generators per cone
clock_t t,sc=0,sc2=0;
// strcpy(outFileName,fileName);
// strcat(outFileName,".residue");
/* ofstream out(outFileName);
if (!out) {
printf("Error opening output file for writing in printResidueFile!");
exit(1);
}
if (cones==0) out << "No cones in list.\n"; */
numOfTerms=0;
C=cones;
while (C) {
numOfTerms=numOfTerms+lengthListVector(C->latticePoints);
C=C->rest;
}
/* out << numOfVars << " " << lengthListVector(cones->rays) << " " <<
numOfTerms << "\n\n"; */
dim=numOfVars;
noGsPerC=lengthListVector(cones->rays);
noCones=numOfTerms;
int i,j; // index or loop vars
long int k, m;//n=0,p; // extra vars to use as needed
long int p, n;
int E[noCones]; // E is the vector of epsilons, each 1 or -1
long int totalNoGs=noGsPerC*noCones; //total no. of generators,ie,rowdim of B
vector<list<Integer> > A(noCones); // A is the numerator vectors
// long int B[totalNoGs][dim]; // B is the denominator vectors
// cerr<<"tNG: "<<totalNoGs<<endl;
class denom {
public:
Integer *D;
denom * next;
denom(int noGPC){
D = new Integer [noGPC];
}
};
Integer tmp_A;
denom * B=new denom(noGsPerC*dim);
denom * Bitr=B;
listVector* basis, *listtmp1, *listtmp2;
listCone *listtmp3;
cones1 = cones;
i = 0;
while (cones1) {
tmp=cones1->latticePoints;
/* The code is not prepared for non-unimodular cones (segfault) --
check this out later! --mkoeppe */
assert(tmp != NULL && tmp->rest == NULL);
while (tmp) {
E[i] = cones1->coefficient;
// printVectorToFileWithoutBrackets(out,tmp->first,numOfVars);
for (j=0; j<(numOfVars); j++) {
tmp_A = tmp->first[j]; A[i].push_back(tmp_A);
//cerr << tmp_A << " ";
}
//cerr << endl;
// printListVectorToFileWithoutBrackets(out,cones->rays,numOfVars);
basis = cones1->rays;
while(basis) {
//printVectorToFileWithoutBrackets(out,basis->first,numOfVars);
for (j=0; j<noGsPerC; j++) {
for(k = 0; k <dim; k++){
Bitr->D[j*dim+k] = basis->first[k];
}
listtmp1 = basis;
basis = basis->rest;
delete listtmp1;
}
Bitr->next=new denom(noGsPerC*dim);
Bitr=Bitr->next;
// i++;
}
// out << endl;
listtmp2 = tmp;
tmp=tmp->rest; i++;
delete listtmp2;
}
listtmp3 = cones1;
cones1 = cones1->rest;
delete listtmp3;
}
// out << endl;
i = 0;
/* denom * Bitr=B;
for(i=0;i<noCones;i++) {
input>>E[i];
for(j=0;j<dim;j++) {input>>tmp_A; A[i].push_back(tmp_A);}
for(j=0;j<noGsPerC;j++)
{
for(k=0;k<dim;k++) input>>Bitr->D[j*dim+k];
}
Bitr->next=new denom(noGsPerC*dim);
Bitr=Bitr->next;
}
input.close(); */
/* Bitr=B;
Bitr=Bitr->next;
cerr<<"B[1]: ";
for(i=0;i<noGsPerC;i++) {cerr<<endl;
for(j=0;j<dim;j++) cerr<<Bitr->D[i*dim+j]<<" ";
}
return ; */
// cerr<<".done"<<endl<<"Number of cones: "<<noCones<<endl;cin.get();
// <<"Number of generators in total: "<<totalNoGs<<endl
// <<endl<<"Now start calculations and stopwatch."<<endl;
t=clock();
// cerr<<" Clock at start reads "<<t<<"."<<endl;
//------------------------------------------------------------------------------
//---FIND LAMBDA AND DENOMINATOR EXPONENTS: We want to make substitution
//---x_i -> t^lambda[i] to leave everything in terms of just 1 variable (t). We
//---can only do this if no term in the denominator becomes 0. Since a factor
//---in the denominator of a Brion series is of the form 1-x^(row j of B), where
//---the exponent is multivariate, we must ensure that lambda dotted with any
//---row of B does not yield zero.
//--- To search for a feasible lambda, first I run through lambdas with entries
//---in {-1,0,1,2} by increasing lexicographical order. When I reach a row of B
//---(row tracked by var. 'halt') which yields 0 when dotted with lambda, I need
//---to change an entry of lambda corresponding to a nonzero entry in the halting
//---vector, which may let me skip some lambdas.
//------------------------------------------------------------------------------
// cerr<<"Getting lambda..."<<endl;
//cerr<<"k is "<<k;cin.get();
//VARS:
//Integer k;
Integer tmp_lambda;
vector<Integer> lambda(dim);
vector<Integer> dlambda(dim); // dlambda tracks change in 2 successive test-lambdas
//for(i=0;i<dim;i++) lambda[i]=0; // lambda starts at 0
vector<Integer> dotProducts(totalNoGs); // ith entry tracks lambda dot row i of B
// dotProducts and dlambda used to try to improve calculational efficiency
long int halt, haltCone;
halt = 0;
haltCone=-1; // will track the index where the dot product is 0
k=0; //cerr<<"k is "<<k;// loop control var
// Also, n tracks the lowest index where lambda changed (dlambda[n] not zero).
// cerr << totalNoGs << endl;
//--------LOOP 1: try up to 5000 lambdas with entries in {-1,0,1,2}
//cerr<<"k is "<<k;cin.get();
while(k<5000) {
//cerr << k << " ";cin.get();
//--FIRST check if lambda works.
Bitr=B;
for(i=0;i<haltCone;i++) {
for(j=0;j<noGsPerC;j++) {
m=i*noGsPerC+j;
for(p=n;p<dim;p++) dotProducts[m]+= dlambda[p] * Bitr->D[j*dim+p];
if(dotProducts[m]==0) {haltCone=i; halt=j; j=noGsPerC; i=noCones+2;}
}
if(i<noCones) Bitr=Bitr->next;
}
for(;i<noCones;i++) { // keep checking if not yet halted
for(j=0;j<noGsPerC;j++) {
m=i*noGsPerC+j;
dotProducts[m]=0;
for(p=0;p<dim;p++) dotProducts[m] += lambda[p] * Bitr->D[j*dim+p];
if(dotProducts[m]==0) {haltCone=i; halt=j; j=noGsPerC; i=noCones+2;}
}
if(i<noCones) Bitr=Bitr->next;
}
if(i==noCones) { // found lambda
k=200000; }
else {
//--SECOND find next lambda.
m= (Bitr->D[halt*dim+dim-1] ==0 ? 0 : 1);
n=dim-1;
while(n>=1 && (lambda[n]==2 || m==0)) {
n--;
if(Bitr->D[halt*dim+n] !=0) m++;
}
if(lambda[n]==2 || k==4999) {// failed: no lambda with -1,0,1,2 entries found
k=60000; }
else { // now I set n and up entries of lambda and dlambda
lambda[n] ++;
dlambda[n]=1;
for(j=n+1;j<dim;j++) {
dlambda[j]=-1-lambda[j];
lambda[j]=-1;
}
} // end if/else
} // end if/else
k++;
} // end while
// cerr << totalNoGs << endl;
// for(j = 0; j < totalNoGs; j++) cerr << dotProducts[j] << " ";
// cerr << endl;
//--IN CASE no lambda found yet...
// srand(time(0)); //This algorithm not used... it picks a random lambda.
// while(k<-10300) {
// k++;
// n=(k-9960)/10;
// for(j=0;j<dim;j++) lambda[j]=rand()% n - n/2;
// for(i=0;i<totalNoGs;i++) {
// dotProducts[i]=0;
// for(j=0;j<dim;j++) dotProducts[i]+=lambda[j]*B[i][j];
// if(dotProducts[i]==0) i=totalNoGs+2;
// }
// if(i==totalNoGs) k=200000;
// } cerr<<"k: "<<k<<endl<<"clk: "<<clock()<<endl;
//-------LOOP 2: in case no lambda found yet, try bigger lambda entries...
int d=0; // d runs through odds... it gets added to a single entry of lambda
// each time through the loop, to fix the problem generator.
//if(k<15000) {for(i=0;i<dim;i++) lambda[i]=-1;} if running random algorithm
//halt=0; if running random algorithm
while(k<150000) {
d++;
//FIRST find new lambda.
/* n=0;
while(Bitr->D[halt*dim+n]==0) n++;
d+=2;
lambda[n]+=d; */
for(int s = 0; s < dim; s++){
lambda[s] = rand() % 1000;
if((rand() % 2) == 1) lambda[s] = - lambda[s];
else ;
}
//SECOND check if lambda works
Bitr=B;
/* for(i=0;i<haltCone;i++) {
for(j=0;j<noGsPerC;j++) {
m=i*noGsPerC+j;
dotProducts[m]+=d*Bitr->D[j*dim+n];
if (dotProducts[m]==0) {haltCone=i; halt=j; j=noGsPerC; i=noCones+2;}
}
if(i<noCones) Bitr=Bitr->next;
} */
for(i = 0;i<noCones;i++) {
for(j=0;j<noGsPerC;j++) {
m=i*noGsPerC+j;
dotProducts[m]=0;
for(p=0;p<dim;p++) dotProducts[m]+=lambda[p]*Bitr->D[j*dim+p];
if(dotProducts[m]==0) {haltCone=i; halt=j; j=noGsPerC;
i=noCones+2;}
}
if(i<noCones) Bitr=Bitr->next;
}
if(i==noCones) k=200000;
}
// cerr<<"lambda: "; cin.get();
// for(i=0;i<dim;i++) cerr<<lambda[i]<<" ";
// cerr<<endl<<" Clock at checkpoint 2: "<<clock()<<endl;
//cin.get();
// cerr<<"denominator: ";
// for(i=0;i<noGsPerC*noCones;i++) cerr<<dotProducts[i]<<" ";
// cerr<<i <<endl;
// return 0;
//----------------------------------------------------------------------------
//---CALCULATE NUMERATOR EXPONENTS of t under substitution x[i]->t^lambda[i].
//---After getting initial exponents, I translate so as to try to minimize
//---numerator exponents (and promote efficientcy).
//----------------------------------------------------------------------------
/****************************************************************************
Rudy's comment:
This is a process to simplify a univariable rational function.
For example, if I have a rational function f(K(v)) = t/(1-t^-1)(1-t^-2),
then, the following loop simplifies as f(K(v)) = t^4 /(1-t)(1-t^2).
*****************************************************************************/
// cerr<<"Getting numerator...";
Integer translation, kk;
vector<Integer> numExps(noCones);
int tmp_k = k;
kk = tmp_k;
// Get dot product and add negative denominator exponents for each cone.
for(i=0;i<noCones;i++) {
numExps[i]=0;
for(j=0;j<dim;j++){ numExps[i]+=lambda[j]*A[i].front(); A[i].pop_front(); }
for(j=0;j<noGsPerC;j++) {
kk=dotProducts[noGsPerC*i+j];
if(kk<0) {dotProducts[noGsPerC*i+j]=-kk; numExps[i]+=-kk; E[i]*= -1;}
}
}
// cerr<<"numexps: ";cin.get();
// for(i=0;i<noCones;i++) cerr<<numExps[i]<<" ";
// cerr<<endl;
// return 0;
// Now I Calculate into j the least translation possible for numExps...
/*************************************************************************
Rudy's comment:
This step simplifies numerators (smaller numerators).
In this process, he tries to get zeros in numerators as many as possible.
For example, if we have the list of exponents for numerators for a list of
cones, 4 4 3 5 3 6, then translation is 4 and after translating,
these become 0 0 -1 2 -1 2 which are much smaller. But, if we have a list
of numerators -1 4 1, then a translation is 1 and the result becomes
0 5 2. If we have an element 1 or -1, then a translation becomes just 1.
This step factors out t^c for some constant c. It does not affest
the result b/c at the end we substitute t = 1 (b/c t^c = 1 for all c).
For example, if we have -1 4 1 means we have numerators t^(-1) + t^4 + t.
So, at this step we get t^(-1)(1 + t^5 + t^2). At the end, we substitute
t = 1, so t^(-1) becomes 1.
**************************************************************************/
j=10000;
int tmp_j = 0;
for(i=0;i<dim;i++) {
if(lambda[i]==1 || lambda[i]==-1) {
i=dim+2; }
else {
if(lambda[i]<j && lambda[i]>0) {
conv(tmp_j, lambda[i]); j=tmp_j; }
else {
if(-lambda[i]<j && lambda[i]<0) {
conv(tmp_j,lambda[i]); j=-tmp_j; }//j=-lambda[i];
}
}
}
if(i>dim) j=1;
// Translate numExps.
for(i=0;i<noCones;i+=100) translation+=numExps[i];
translation/=1+noCones/100;
translation-=translation%j;
for(i=0;i<noCones;i++) numExps[i]-=translation;
// cerr<<"translation: "<<translation<<" numexps: ";
// for(i=0;i<noCones;i++) cerr<<numExps[i]<<" ";
// cerr<<endl;
// return 0;
// cerr<<".done"<<endl<<" clock at checkpoint 3: "<<clock()<<endl;
//-------------------------------------------------------------------------------
//---CALCULATE AND SUM UP CONSTANT COEFFICIENTS IN SERIES EXPANSIONS ABOUT T=1---
//---For each cone, which has form t^numExps[i]/prod(1-t^dotProducts[i*noGsPerC+j])
//---we need to get its contribution to the number of lattice pts--
//---this contribution is its constant coefficient in its expansion about t=1,
//---so I make substitution t->s+1 and calculate coefficient noGsPerC of
//---t^numExps[i]/prod((1-(1+s)^dotProducts[i*noGsPerC+j])/s).
//---This involves expanding numerator and denominator and dividing. I need
//---only track up to coefficient noGsPerC in s in these expansions and division,
//---so calculation time is of the order noGsPerC^3, bounded above by dim^3,
//---for each cone.
//---(Division is by play on the recursion q[k]=(n[k]-d[k]q[0]-...-d[1]q[k-1])/d[0]
//---where q is quotient, n is numerator, d is denominator.)
//-------------------------------------------------------------------------------
// cerr<<"Getting contributions in the big loop..." << endl;
//VARS
long int tenPow=10; // To be used in getting extra digits of precision
for(i=noCones;i>0;i/=10) tenPow*=10; // We will necessarily get enough precision.
ZZ tempSum,temp,temp2,temp3;
vector<ZZ> tempVec(1+noGsPerC);
//for(i=0;i<=noGsPerC;i++) mpz_init(tempVec[i]);
/*mpz_init(temp);
mpz_init(temp2);
mpz_init(temp3);
mpz_init(tempSum); */
/***************************************************************************
Rudy's comment:
These arrays cause crash for latte..... Example: 3x3x4_1.equ.residue.
So, I changed to single arrays instead of double arrays. We do not
to have double arrays anyway b/c we conpute the coeffecient of the
constant term at each time and add it to a variable. So, it's never
really used double array anyway. It was wasting memory....
***************************************************************************/
vector<ZZ> N(1+noGsPerC);
vector<ZZ> D(1+noGsPerC);
ZZ noLatticePts, nn;
//mpz_init(noLatticePts);
//mpz_set_str(noLatticePts,"0",10);
/***************************************************************************
Rudy's comment:
Now, expanding each rational function and getting the coefficient of
the constant term.....
****************************************************************************/
//BIG LOOP
for(i=0;i<noCones;i++) {
for(int t = 0;t <= noGsPerC; t++) {N[t]=0; D[t]=0;}
/***************************************************************************
Rudy's comment:
This is the first step. It seems that this step substitute t -> s + 1.
Also, in this step, his code expands denominator for each cone.
So, I think D[i][j] stores the coefficients of a polynomial of
each denominator.
For example, if we have a rational function for the ith cone such that
1/(1 - t)*( 1 - t^2), then after substitution, we have
1/s^2(s + 2) = 1/s^3 + 2 * s^2. SO, D[i][0] = 2, D[i][1] = 1,
and D[i][2] = 0. It seems that D[i][0] is the coefficient of s^noGsPerC
and in this example, noGsPerC = 2. Since polynomial in each denominator
starts from noGsPerC, the degree of polynomial in the denominator is
noGsPerC + 1 at most. Thus, we allocate each denominator for each cone
noGsPerC * mpz_t.
****************************************************************************/
//MULTIPLY OUT DENOMINATOR
sc=sc-clock();
nn=dotProducts[i*noGsPerC];
D[0]=nn; // get initial values for D
for(j=1;j<=noGsPerC;j++) {
temp=D[j-1]*(nn-j);
D[j]=temp/(j+1);
}
for(j=noGsPerC*i+1;j<noGsPerC*(i+1);j++) { // multiply each factor into D
nn=dotProducts[j];
tempVec[0]=nn; // First expand this denom. factor into tempVec
for(k=1;k<=noGsPerC;k++) { // k is what exp of t
temp=tempVec[k-1]*(nn-k);
tempVec[k]=temp/(k+1);
}
for(k=noGsPerC;k>=0;k--) { // And then multimply by D; put product in D.
tempSum=0;
for(m=0;m<=k;m++) tempSum=tempSum+(D[m]*tempVec[k-m]);
D[k]=tempSum;
}
}sc=sc+clock();
/***************************************************************************
Rudy's comment:
The second step starts from here. The second step simplifies that
if the exponent of numerator is negative, nultiply by (1+s)^(-numExps[i])
and expand the denominator.
If positive, expand the numerator. For example, if we have a rational
function for the ith cone t^2/s^2. Then, N[i][0] = 1, N[i][1] = 2, and
N[i][3] = 1. However, If we have t^5/(2*s^2 + s^3),
then, N[i][0] = 1, N[i][1] = 5, N[i][2] = 10. I think we just don't need
coefficients for the higher degree than noGsPerC b/c we just need the
coefficient of the noGsPerC term. SO, all we need is the coefficients
of the first three terms.
****************************************************************************/
//MULTIPLY (1+s)^abs(numExps[i]) INTO NUMERATOR OR DENOMINATOR
sc2=sc2-clock();
nn=numExps[i];
N[0]=1;
if(nn<0) { // Case: numExps[i]<0, so multiply denominator by (1+s)^(-numExps[i])
nn=-nn;
tempVec[0]=1; // put (1+s)^n into tempVec
for(j=1;j<=noGsPerC;j++) {
temp=tempVec[j-1]*(nn+1-j);
tempVec[j]=temp/j;
}
for(k=noGsPerC;k>=0;k--) { // multiply tempVec into D
tempSum=0;
for(m=0;m<=k;m++) tempSum=tempSum+(D[m]*tempVec[k-m]);
D[k]=tempSum;
}
}
else { // Case numExps[i]>0; multiply out the numerator
for(j=1;j<=noGsPerC;j++) {
temp=N[j-1]*(nn+1-j);
N[j]=temp/j;
}
}
/***************************************************************************
Rudy's comment:
The third step starts from here. I think he stores all information into
tempVec. I think this is not a good idea..... I do not understand the
comment below too.... tempVec[j] stores the coefficient of the noGsPerc
term for each cone. So, at the end, we add up.....
****************************************************************************/
//DIVISION: I track D[i][j]*D[i][0]^(j-1), N[i][j]*D[i][0]^j, and
//--[jth coef. of quotient]*D[i][0]^(j+1), in row i of D, row i of N, and
//--tempVec respectively, in order to preserve integer arithmetic.
temp=1; // track D[i][0]^(j-1) below
tempVec[0]=N[0];
for(j=1;j<=noGsPerC;j++) { // j is power of original D[i][0] we are on
temp2=temp;
temp=temp*D[0];
tempVec[j]=N[j]*temp;
D[j]=D[j]*temp2;
for(m=1;m<=j;m++) tempVec[j]=tempVec[j]-(tempVec[j-m]*D[m]);
}
j--;
temp=temp*D[0];
tempVec[j]=tempVec[j]*tenPow*E[i];
tempVec[j]=tempVec[j]/temp;
//ADD CONTRIBUTION
noLatticePts=noLatticePts+tempVec[j]; sc2=sc2+clock();
// cerr<<" contrib: "<<mpz_get_str(NULL,10,tempVec[j])<<endl;
} // end this long contribution loop
//-----------------------------------------------------------------------------
//--------------------FINISH UP AND DISPLAY RESULTS----------------------------
//-----------------------------------------------------------------------------
//REFINE (take abs and round) noLatticePts.
noLatticePts=abs(noLatticePts); // case noGsPerC is odd (denom. factors)
// cerr<<".done"<<endl<<endl<<"tenPow: "<<tenPow<<endl;
// <<"noLatticePts before division: "<<mpz_get_str(NULL,10,noLatticePts)<<endl;
noLatticePts=noLatticePts+tenPow/2;
noLatticePts=noLatticePts/tenPow;
ofstream out("numOfLatticePoints");
out << noLatticePts << endl;
//OUTPUT TIMES AND RESULT
// cerr<<"denominator subclock: "<<sc<<endl<<"numerator subclock: "<<sc2<<endl
// <<"clocks per second: "<<CLOCKS_PER_SEC<<endl<<endl;
// cerr<<"TIME FOR CALCULATION (in seconds): "<<(clock()-t)/CLOCKS_PER_SEC<<".";
i=((clock()-t)%CLOCKS_PER_SEC)*100/CLOCKS_PER_SEC;
// if(i<10) cerr<<"0";
// cerr<<i<<endl;
// cerr<<endl<<" **** THE NUMBER OF LATTICE POINTS IS: "<< noLatticePts <<" ****"<<endl<<endl;
return noLatticePts;
}
/* ----------------------------------------------------------------- */
int
Residue_Single_Cone(listCone* cones, int numOfVars,
const vec_ZZ &Random_Lambda,
ZZ *Total_Lattice_Points, ZZ *Ten_Power)
{
listCone *C, * cones1;
int dim, noGsPerC,noCones; //noGsPerC is number of generators per cone
clock_t t,sc=0,sc2=0;
// strcpy(outFileName,fileName);
// strcat(outFileName,".residue");
/* ofstream out(outFileName);
if (!out) {
printf("Error opening output file for writing in printResidueFile!");
exit(1);
}
if (cones==0) out << "No cones in list.\n"; */
// Here we implicitly decompose each cone of index k into k "cones"
// with just one lattice point. --mkoeppe, Fri Mar 31 23:37:30 PST 2006
noCones = 0;
C=cones;
while (C) {
noCones += lengthListVector(cones->latticePoints);
C=C->rest;
}
dim=numOfVars;
noGsPerC=lengthListVector(cones->rays);
int i,j; // index or loop vars
long int k, m; //n=0,p; // extra vars to use as needed
vector<int> E(noCones); // E is the vector of epsilons, each 1 or -1
vector<list<Integer> > A(noCones); // A is the numerator vectors
Integer tmp_A;
int result = 1;
long int totalNoGs=noGsPerC*noCones; //total no. of generators,ie,rowdim of B
vector<Integer> dotProducts(totalNoGs);
listVector* basis;
listCone *listtmp3;
cones1 = cones;
i = 0;
while (cones1) {
listVector *tmp = cones1->latticePoints;
while (tmp) {
E[i] = cones1->coefficient;
for (j=0; j<(numOfVars); j++) {
tmp_A = tmp->first[j];
A[i].push_back(tmp_A);
}
for (j=0, basis = cones1->rays; j<noGsPerC; j++, basis = basis->rest) {
dotProducts[i*noGsPerC + j] = 0;
for(k = 0; k < dim; k++) {
dotProducts[i*noGsPerC + j] += basis->first[k] * Random_Lambda[k];
}
// if the dot product is zero in the denominator, then barf
if(dotProducts[i*noGsPerC + j] == 0)
result = -1;
}
assert(basis == NULL);
tmp=tmp->rest;
i++;
}
listtmp3 = cones1;
cones1 = cones1->rest;
freeCone(listtmp3);
}
assert(i == noCones);
if(result == -1)
return result;
i = 0;
/* denom * Bitr=B;
for(i=0;i<noCones;i++) {
input>>E[i];
for(j=0;j<dim;j++) {input>>tmp_A; A[i].push_back(tmp_A);}
for(j=0;j<noGsPerC;j++)
{
for(k=0;k<dim;k++) input>>Bitr->D[j*dim+k];
}
Bitr->next=new denom(noGsPerC*dim);
Bitr=Bitr->next;
}
input.close(); */
/* Bitr=B;
Bitr=Bitr->next;
cerr<<"B[1]: ";
for(i=0;i<noGsPerC;i++) {cerr<<endl;
for(j=0;j<dim;j++) cerr<<Bitr->D[i*dim+j]<<" ";
}
return ; */
// cerr<<".done"<<endl<<"Number of cones: "<<noCones<<endl;cin.get();
// <<"Number of generators in total: "<<totalNoGs<<endl
// <<endl<<"Now start calculations and stopwatch."<<endl;
t=clock();
// cerr<<" Clock at start reads "<<t<<"."<<endl;
//----------------------------------------------------------------------------
//---CALCULATE NUMERATOR EXPONENTS of t under substitution x[i]->t^lambda[i].
//---After getting initial exponents, I translate so as to try to minimize
//---numerator exponents (and promote efficientcy).
//----------------------------------------------------------------------------
/****************************************************************************
Rudy's comment:
This is a process to simplify a univariable rational function.
For example, if I have a rational function f(K(v)) = t/(1-t^-1)(1-t^-2),
then, the following loop simplifies as f(K(v)) = t^4 /(1-t)(1-t^2).
*****************************************************************************/
// cerr<<"Getting numerator...";
Integer translation, kk;
vector<Integer> numExps(noCones);
int tmp_k = k;
kk = tmp_k;
// Get dot product and add negative denominator exponents for each cone.
for(i=0;i<noCones;i++) {
numExps[i]=0;
for(j=0;j<dim;j++){ numExps[i]+=Random_Lambda[j]*A[i].front(); A[i].pop_front(); }
for(j=0;j<noGsPerC;j++) {
kk=dotProducts[noGsPerC*i+j];
if(kk<0) {dotProducts[noGsPerC*i+j]=-kk; numExps[i]+=-kk; E[i]*= -1;}
}
}
// cerr<<"numexps: ";cin.get();
// for(i=0;i<noCones;i++) cerr<<numExps[i]<<" ";
// cerr<<endl;
// return 0;
// Now I Calculate into j the least translation possible for numExps...
/*************************************************************************
Rudy's comment:
This step simplifies numerators (smaller numerators).
In this process, he tries to get zeros in numerators as many as possible.
For example, if we have the list of exponents for numerators for a list of
cones, 4 4 3 5 3 6, then translation is 4 and after translating,
these become 0 0 -1 2 -1 2 which are much smaller. But, if we have a list
of numerators -1 4 1, then a translation is 1 and the result becomes
0 5 2. If we have an element 1 or -1, then a translation becomes just 1.
This step factors out t^c for some constant c. It does not affest
the result b/c at the end we substitute t = 1 (b/c t^c = 1 for all c).
For example, if we have -1 4 1 means we have numerators t^(-1) + t^4 + t.
So, at this step we get t^(-1)(1 + t^5 + t^2). At the end, we substitute
t = 1, so t^(-1) becomes 1.
**************************************************************************/
/*
j=10000;
int tmp_j = 0;
for(i=0;i<dim;i++) {
if(Random_Lambda[i]==1 || Random_Lambda[i]==-1) {
i=dim+2; }
else {
if(Random_Lambda[i]<j && Random_Lambda[i]>0) {
conv(tmp_j, Random_Lambda[i]); j=tmp_j; }
else {
if(-Random_Lambda[i]<j && Random_Lambda[i]<0) {
conv(tmp_j,Random_Lambda[i]); j=-tmp_j; }//j=-[i];
}
}
}
if(i>dim) j=1;
*/
// Translate numExps.
/*for(i=0;i<noCones;i+=100) translation+=numExps[i];
translation/=1+noCones/100;
translation-=translation%j;
for(i=0;i<noCones;i++) numExps[i]-=translation;
*/
// cerr<<"translation: "<<translation<<" numexps: ";
// for(i=0;i<noCones;i++) cerr<<numExps[i]<<" ";
// cerr<<endl;
// return 0;
// cerr<<".done"<<endl<<" clock at checkpoint 3: "<<clock()<<endl;
//-------------------------------------------------------------------------------
//---CALCULATE AND SUM UP CONSTANT COEFFICIENTS IN SERIES EXPANSIONS ABOUT T=1---
//---For each cone, which has form t^numExps[i]/prod(1-t^dotProducts[i*noGsPerC+j])
//---we need to get its contribution to the number of lattice pts--
//---this contribution is its constant coefficient in its expansion about t=1,
//---so I make substitution t->s+1 and calculate coefficient noGsPerC of
//---t^numExps[i]/prod((1-(1+s)^dotProducts[i*noGsPerC+j])/s).
//---This involves expanding numerator and denominator and dividing. I need
//---only track up to coefficient noGsPerC in s in these expansions and division,
//---so calculation time is of the order noGsPerC^3, bounded above by dim^3,
//---for each cone.
//---(Division is by play on the recursion q[k]=(n[k]-d[k]q[0]-...-d[1]q[k-1])/d[0]
//---where q is quotient, n is numerator, d is denominator.)
//-------------------------------------------------------------------------------
// cerr<<"Getting contributions in the big loop..." << endl;
//VARS
//long int tenPow=10; // To be used in getting extra digits of precision
//for(i=noCones;i>0;i/=10) tenPow*=10; // We will necessarily get enough precision.
ZZ tempSum,temp,temp2,temp3;
vector<ZZ> tempVec(1+noGsPerC);
//for(i=0;i<=noGsPerC;i++) mpz_init(tempVec[i]);
/*mpz_init(temp);
mpz_init(temp2);
mpz_init(temp3);
mpz_init(tempSum); */
/***************************************************************************
Rudy's comment:
These arrays cause crash for latte..... Example: 3x3x4_1.equ.residue.
So, I changed to single arrays instead of double arrays. We do not
to have double arrays anyway b/c we conpute the coeffecient of the
constant term at each time and add it to a variable. So, it's never
really used double array anyway. It was wasting memory....
***************************************************************************/
vector<ZZ> N(1+noGsPerC);
vector<ZZ> D(1+noGsPerC);
ZZ noLatticePts, nn;
noLatticePts = 0;
//mpz_init(noLatticePts);
//mpz_set_str(noLatticePts,"0",10);
/***************************************************************************
Rudy's comment:
Now, expanding each rational function and getting the coefficient of
the constant term.....
****************************************************************************/
//BIG LOOP
for(i=0;i<noCones;i++) {
for(int t = 0;t <= noGsPerC; t++) {N[t]=0; D[t]=0;}
/***************************************************************************
Rudy's comment:
This is the first step. It seems that this step substitute t -> s + 1.
Also, in this step, his code expands denominator for each cone.
So, I think D[i][j] stores the coefficients of a polynomial of
each denominator.
For example, if we have a rational function for the ith cone such that
1/(1 - t)*( 1 - t^2), then after substitution, we have
1/s^2(s + 2) = 1/s^3 + 2 * s^2. SO, D[i][0] = 2, D[i][1] = 1,
and D[i][2] = 0. It seems that D[i][0] is the coefficient of s^noGsPerC
and in this example, noGsPerC = 2. Since polynomial in each denominator
starts from noGsPerC, the degree of polynomial in the denominator is
noGsPerC + 1 at most. Thus, we allocate each denominator for each cone
noGsPerC * mpz_t.
****************************************************************************/
//MULTIPLY OUT DENOMINATOR
sc=sc-clock();
nn=dotProducts[i*noGsPerC];
D[0]=nn; // get initial values for D
for(j=1;j<=noGsPerC;j++) {
temp=D[j-1]*(nn-j);
D[j]=temp/(j+1);
}
for(j=noGsPerC*i+1;j<noGsPerC*(i+1);j++) { // multiply each factor into D
nn=dotProducts[j];
tempVec[0]=nn; // First expand this denom. factor into tempVec
for(k=1;k<=noGsPerC;k++) { // k is what exp of t
temp=tempVec[k-1]*(nn-k);
tempVec[k]=temp/(k+1);
}
for(k=noGsPerC;k>=0;k--) { // And then multimply by D; put product in D.
tempSum=0;
for(m=0;m<=k;m++) tempSum=tempSum+(D[m]*tempVec[k-m]);
D[k]=tempSum;
}
}sc=sc+clock();
/***************************************************************************
Rudy's comment:
The second step starts from here. The second step simplifies that
if the exponent of numerator is negative, nultiply by (1+s)^(-numExps[i])
and expand the denominator.
If positive, expand the numerator. For example, if we have a rational
function for the ith cone t^2/s^2. Then, N[i][0] = 1, N[i][1] = 2, and
N[i][3] = 1. However, If we have t^5/(2*s^2 + s^3),
then, N[i][0] = 1, N[i][1] = 5, N[i][2] = 10. I think we just don't need
coefficients for the higher degree than noGsPerC b/c we just need the
coefficient of the noGsPerC term. SO, all we need is the coefficients
of the first three terms.
****************************************************************************/
//MULTIPLY (1+s)^abs(numExps[i]) INTO NUMERATOR OR DENOMINATOR
sc2=sc2-clock();
nn=numExps[i];
N[0]=1;
if(nn<0) { // Case: numExps[i]<0, so multiply denominator by (1+s)^(-numExps[i])
nn=-nn;
tempVec[0]=1; // put (1+s)^n into tempVec
for(j=1;j<=noGsPerC;j++) {
temp=tempVec[j-1]*(nn+1-j);
tempVec[j]=temp/j;
}
for(k=noGsPerC;k>=0;k--) { // multiply tempVec into D
tempSum=0;
for(m=0;m<=k;m++) tempSum=tempSum+(D[m]*tempVec[k-m]);
D[k]=tempSum;
}
}
else { // Case numExps[i]>0; multiply out the numerator
for(j=1;j<=noGsPerC;j++) {
temp=N[j-1]*(nn+1-j);
N[j]=temp/j;
}
}
/***************************************************************************
Rudy's comment:
The third step starts from here. I think he stores all information into
tempVec. I think this is not a good idea..... I do not understand the
comment below too.... tempVec[j] stores the coefficient of the noGsPerc
term for each cone. So, at the end, we add up.....
****************************************************************************/
//DIVISION: I track D[i][j]*D[i][0]^(j-1), N[i][j]*D[i][0]^j, and
//--[jth coef. of quotient]*D[i][0]^(j+1), in row i of D, row i of N, and
//--tempVec respectively, in order to preserve integer arithmetic.
temp=1; // track D[i][0]^(j-1) below
tempVec[0]=N[0];
for(j=1;j<=noGsPerC;j++) { // j is power of original D[i][0] we are on
temp2=temp;
temp=temp*D[0];
tempVec[j]=N[j]*temp;
D[j]=D[j]*temp2;
for(m=1;m<=j;m++) tempVec[j]=tempVec[j]-(tempVec[j-m]*D[m]);
}
j--;
temp=temp*D[0];
tempVec[j]=tempVec[j]*(*Ten_Power)*E[i];
tempVec[j]=tempVec[j]/temp;
//ADD CONTRIBUTION
noLatticePts=noLatticePts+tempVec[j]; sc2=sc2+clock();
// cerr<<" contrib: "<<mpz_get_str(NULL,10,tempVec[j])<<endl;
} // end this long contribution loop
//-----------------------------------------------------------------------------
//--------------------FINISH UP AND DISPLAY RESULTS----------------------------
//-----------------------------------------------------------------------------
//REFINE (take abs and round) noLatticePts.
//noLatticePts=abs(noLatticePts); // case noGsPerC is odd (denom. factors)
// cerr<<".done"<<endl<<endl<<"tenPow: "<<tenPow<<endl;
// <<"noLatticePts before division: "<<mpz_get_str(NULL,10,noLatticePts)<<endl;
//noLatticePts=noLatticePts+tenPow/2;
//noLatticePts=noLatticePts/tenPow;
// cerr << "Residue_Single_Cone: " <<
*Total_Lattice_Points += noLatticePts;
//OUTPUT TIMES AND RESULT
// cerr<<"denominator subclock: "<<sc<<endl<<"numerator subclock: "<<sc2<<endl
// <<"clocks per second: "<<CLOCKS_PER_SEC<<endl<<endl;
// cerr<<"TIME FOR CALCULATION (in seconds): "<<(clock()-t)/CLOCKS_PER_SEC<<".";
i=((clock()-t)%CLOCKS_PER_SEC)*100/CLOCKS_PER_SEC;
// if(i<10) cerr<<"0";
// cerr<<i<<endl;
return 1;
}
/* ----------------------------------------------------------------- */
|