1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
/* dual.cpp -- Dualize polyhedral cones
Copyright 2002 Raymond Hemmecke, Ruriko Yoshida
Copyright 2006, 2007 Matthias Koeppe
This file is part of LattE.
LattE is free software; you can redistribute it and/or modify it
under the terms of the version 2 of the GNU General Public License
as published by the Free Software Foundation.
LattE is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with LattE; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
#include <cassert>
#include <climits>
#include "config.h"
#include "cone.h"
#include "print.h"
#include "ramon.h"
#include "rational.h"
#include "vertices/cdd.h"
#include "barvinok/dec.h"
#include "convert.h"
#include <list>
#include "latte_system.h"
#include "latte_relocatable.h"
#ifdef HAVE_FORTYTWO_LIB
#include "DualizationWith4ti2.h"
#endif
using namespace std;
BarvinokParameters::DualizationType
dualization_type_from_name(const char *name)
{
if (strcmp(name, "cdd") == 0) return BarvinokParameters::DualizationWithCdd;
else if (strcmp(name, "4ti2") == 0) return BarvinokParameters::DualizationWith4ti2;
else {
cerr << "Unknown dualization type name: " << name << endl;
exit(1);
}
}
bool
parse_standard_dualization_option(const char *arg,
BarvinokParameters *params)
{
if (strncmp(arg, "--dualization=", 14) == 0) {
params->dualization = dualization_type_from_name(arg + 14);
}
else return false;
return true;
}
void
show_standard_dualization_option(ostream &stream)
{
stream << " --dualization={cdd,4ti2}" << endl;
}
static void dualizeCone_with_cdd(listCone *tmp, int numOfVars)
{
char cddInFileName[PATH_MAX];
string tmpString;
int i,j,tmpInt,len,numOfVertices;
ZZ x,y;
rationalVector *w;
listVector *rays, *rays2, *facets, *endFacets;
assert(tmp->subspace_generators == NULL);
rays=tmp->rays;
rays2=rays;
len=lengthListVector(rays);
strcpy(cddInFileName,"latte_cdd.ine");
ofstream out(cddInFileName);
if(!out){
cerr << "Cannot open output file in dualizeCones." << endl;
exit(1);
}
out << "H-representation\n";
out << "begin\n";
out << lengthListVector(rays) << " " << numOfVars+1 << "integer" << endl;
while (rays) {
out << "0 ";
for (i=0; i<(numOfVars); i++) out << -(rays->first)[i] << " ";
out << endl;
rays=rays->rest;
}
out << "end\n";
out.close();
/* printf("Computing facets with cdd..."); */
system_with_error_check(shell_quote(relocated_pathname(CDD_PATH)) + " latte_cdd.ine > latte_cdd.out");
/* printf("done.\n"); */
strcpy(cddInFileName,"latte_cdd.ext");
ifstream in(cddInFileName);
if(!in){
cerr << "Cannot open input file in dualizeCones." << endl;
exit(1);
}
while (tmpString!="begin") getline(in,tmpString);
in >> numOfVertices >> tmpInt >> tmpString;
facets=createListVector(createVector(numOfVars));
endFacets=facets;
for (i=0; i<numOfVertices; i++) {
w=createRationalVector(numOfVars);
for (j=0; j<numOfVars+1; j++) {
x=0;
y=0;
ReadCDD(in,x,y);
if (j>0) {
w->set_entry(j-1, x, y, true /* avoid recomputation of
integer scale */);
}
}
w=normalizeRationalVector(w,numOfVars);
endFacets->rest=createListVector(w->numerators());
delete w;
endFacets=endFacets->rest;
}
in.close();
#if 0
system_with_error_check("rm -f latte_cdd.*");
#endif
tmp->facets=tmp->rays;
tmp->rays=facets->rest;
delete facets; // only delete the dummy head
}
void computeDetAndFacetsOfSimplicialCone(listCone *cone, int numOfVars);
void dualizeCone(listCone *tmp, int numOfVars, BarvinokParameters *params)
{
if ((tmp->rays != NULL && tmp->facets != NULL)
/* Both rays and facets are already computed,
so just swap. */
|| (tmp->rays == NULL && tmp->facets != NULL)
/* Facets are already computed, so just swap, so we have a ray
representation. */) {
swap(tmp->determinant, tmp->dual_determinant);
swap(tmp->rays, tmp->facets);
swap(tmp->subspace_generators, tmp->equalities);
}
else if (lengthListVector(tmp->rays) == params->Number_of_Variables) {
/* We assume full-dimensional cones, so this must be a simplicial
cone. */
computeDetAndFacetsOfSimplicialCone(tmp, params->Number_of_Variables);
swap(tmp->determinant, tmp->dual_determinant);
swap(tmp->rays, tmp->facets);
swap(tmp->subspace_generators, tmp->equalities);
}
else {
switch (params->dualization) {
case BarvinokParameters::DualizationWithCdd:
dualizeCone_with_cdd(tmp, params->Number_of_Variables);
break;
case BarvinokParameters::DualizationWith4ti2:
#ifdef HAVE_FORTYTWO_LIB
dualizeCone_with_4ti2(tmp, params->Number_of_Variables);
#else
cerr << "DualizationWith4ti2 not compiled in, sorry."
<< endl;
exit(1);
#endif
break;
default:
cerr << "Unknown DualizationType" << endl;
exit(1);
}
}
}
void
dualizeCones(listCone *cones, int numOfVars, BarvinokParameters *params)
{
params->dualize_time.start();
int numOfConesDualized,numOfAllCones;
listCone *tmp;
cerr << "Dualizing all cones...";
cerr.flush();
numOfConesDualized=0;
numOfAllCones=lengthListCone(cones);
tmp=cones;
while (tmp) {
dualizeCone(tmp, numOfVars, params);
tmp=tmp->rest;
numOfConesDualized++;
if (numOfConesDualized==500*(numOfConesDualized/500)) {
cerr << numOfConesDualized << " / " << numOfAllCones << " done.\n";
}
}
cerr << "All cones are now dualized." << endl;
//removeListVector(cones->facets);
params->dualize_time.stop();
cerr << params->dualize_time;
}
/* ----------------------------------------------------------------- */
void computeDetAndFacetsOfSimplicialCone(listCone *cone, int numOfVars)
{
int i;
listVector *rays;
mat_ZZ Mat, Inverse;
assert(cone->facets == NULL);
assert(lengthListVector(cone->rays) == numOfVars);
Mat.SetDims(numOfVars, numOfVars);
rays=cone->rays;
for(i = 0; i < numOfVars; i++) {
Mat[i] = rays->first;
rays = rays -> rest;
}
ZZ det;
// computes d = det A and solves X*A = I*d if d != 0.
// thus X = det A * A^{-1}, det X = (det A)^{n-1}.
inv(det, Inverse, Mat);
assert(det != 0);
cone->determinant = det;
if (det < 0) {
// Fix the sign.
Inverse = -Inverse;
}
Inverse = - transpose(Inverse);
cone->dual_determinant
= determinant(Inverse); // FIXME: Easier to compute
cone->facet_divisors.SetLength(numOfVars);
cone->facets
= transformArrayBigVectorToListVector(Inverse,
numOfVars, numOfVars);
listVector *facet;
for (i = 0, facet = cone->facets; i<numOfVars;
i++, facet = facet->rest) {
/* Cancel GCD: */
ZZ gcd;
int j;
for (j = 0; j<numOfVars; j++)
gcd = GCD(gcd, facet->first[j]);
if (gcd != 0 && gcd != 1) {
for (j = 0; j<numOfVars; j++)
facet->first[j] /= gcd;
cone->dual_determinant /= gcd;
}
ZZ remainder;
DivRem(cone->facet_divisors[i], remainder, abs(cone->determinant), gcd);
assert(IsZero(remainder));
}
}
/* ----------------------------------------------------------------- */
void computeTightInequalitiesOfCones(listCone *cones,
listVector *inequalities,
int numOfVars)
{
listCone *cone;
for (cone = cones; cone; cone = cone->rest) {
if (cone->facets == NULL) {
listVector *inequality;
listVector *tight_inequalities = NULL;
ZZ vertex_scale_factor;
vec_ZZ scaled_vertex
= scaleRationalVectorToInteger(cone->vertex->vertex, numOfVars,
vertex_scale_factor);
for (inequality = inequalities; inequality; inequality = inequality->rest) {
int i;
ZZ sp;
vec_ZZ &ineq = inequality->first;
sp = vertex_scale_factor * ineq[0];
for (i = 0; i<numOfVars; i++)
sp += scaled_vertex[i] * ineq[i + 1];
if (IsZero(sp)) {
vec_ZZ vec;
vec.SetLength(numOfVars);
for (i = 0; i<numOfVars; i++)
vec[i] = -ineq[i+1];
tight_inequalities = new listVector(vec,
tight_inequalities);
}
}
cone->facets = tight_inequalities;
}
}
}
|