1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
#include <iostream>
#include <NTL/mat_ZZ.h>
#include <NTL/vec_vec_ZZ.h>
#include <fstream>
#include "matrix_ops.h"
#include "config.h"
#include "NTL_to_LiDIA.h"
#include "lidia-include.h"
#include "latte_ntl.h"
using namespace LiDIA;
using namespace std;
/// NTL_CLIENT
/// NTL_io_matrix_decl(ZZ,vec_ZZ,vec_vec_ZZ,mat_ZZ)
int main(int argc, char *argv[])
{
int rdim, cdim, loops, mySeed;
int val;
double nTime, lTime;
double oldTime;
cout << "Testing Ilio Smith normal form algorithm..." << endl;
nTime = lTime = 0;
if (argc < 3)
{
//cout << "Usage: ilio numRuns dim [seed]" << endl;
//return 1;
//assume testing
loops = 1;
rdim = cdim = 11;
}
else
{
loops = atoi(argv[1]);
rdim = cdim = atoi(argv[2]);
}
if (argc == 4) { mySeed = atoi(argv[3]); } else { mySeed = time(NULL); }
mat_ZZ M, L, R, X;
vec_ZZ snf;
snf.SetLength(rdim);
srand ( mySeed );
for (int iter = 0; iter < loops; iter++)
{
M = ident_mat_ZZ(rdim);
L = ident_mat_ZZ(rdim);
R = ident_mat_ZZ(rdim);
X = ident_mat_ZZ(rdim);
snf[0] = to_ZZ(1);
for (int i = 0; i < rdim; i++)
{
for (int j = 0; j < i; j++)
{
R[j][i] = to_ZZ(rand() % 1000);
L[i][j] = to_ZZ(rand() % 1000);
}
if (i > 0) { snf[i] = snf[i-1] * to_ZZ(rand() % 9 + 1); M[i][i] = snf[i]; }
}
M = L*M;
M = M*R;
ident(L, rdim);
ident(R, rdim);
oldTime = GetTime();
SmithNormalFormLidia(M, L, R);
lTime += (GetTime() - oldTime);
ident(L, rdim);
ident(R, rdim);
oldTime = GetTime();
X = SmithNormalFormIlio(M, L, R);
nTime += (GetTime() - oldTime);
ZZ g;
for (int i = 0; i < rdim; ++ i) {
for (int j = i + 1; j < rdim; ++ j) {
if (IsOne(snf[i])) break;
else if (IsZero(snf[j])) continue;
else if (IsZero(snf[i])) {
std::swap (snf[i], snf[j]);
}
else {
ZZ x, y, myNeg;
vec_ZZ tmp1;
tmp1.SetLength(rdim);
XGCD (g, y, x, snf[j], snf[i]);
snf[j] = snf[j] / g;
snf[j] = snf[j] * snf[i];
snf[i] = g;
}
}
}
M = L * M;
M = M * R;
for (int i = 0; i < rdim; i++)
{
if (M[i][i] != X[i][i]) { cerr << "Wrong diagonal values - " << M[i][i] << "=/=" << X[i][i] << endl; return 0; }
}
if (M != X)
{
cerr << "Incorrect transform matrices." << endl;
cerr << "M is: " << endl;
for (int i = 0; i < rdim; i++)
{
for (int j = 0; j < rdim; j++)
{
cerr << M[i][j] << " ";
}
cerr << endl;
}
cerr << "X is: " << endl;
for (int i = 0; i < rdim; i++)
{
for (int j = 0; j < rdim; j++)
{
cerr << X[i][j] << " ";
}
cerr << endl;
}
M.kill(); L.kill(); R.kill(); X.kill(); snf.kill();
return 1;
}
if (abs(determinant(L)) != 1 || abs(determinant(R)) != 1)
{
cerr << "Wrong determinant, " << determinant(L) << " or " << determinant(R) << endl;
M.kill(); L.kill(); R.kill(); X.kill(); snf.kill();
return 1;
}
}
cout << "LiDIA total of " << lTime << "s. compared to NTL total of " << nTime << "s." << endl;
M.kill(); L.kill(); R.kill(); X.kill(); snf.kill();
return 0;
}
|