File: PolyRep.cpp

package info (click to toggle)
latte-int 1.7.6%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 38,260 kB
  • sloc: cpp: 32,231; sh: 4,413; makefile: 811; perl: 300
file content (405 lines) | stat: -rw-r--r-- 10,892 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#include "PolyRep.h"
#include <stdio.h>
#include <sstream>

//Loads a string by parsing it as a sum of monomials
//monomial sum: c_{1}*(x_{1}^e_{1}...x_{varCount}^e_{varCount}) + ...
//nested lists: [[c_{1}, [e_{1}, e_{2}, ..., e_{varCount}]], .. ]

void _loadMonomials(_monomialSum &monomials, const string &line)
{
	monomials.termCount = 0;
	_MonomialLoadConsumer<RationalNTL>* myLoader = new _MonomialLoadConsumer<
			RationalNTL> ();
	myLoader->setMonomialSum(monomials);
	_parseMonomials(myLoader, line);
}

void _parseMonomials(_MonomialConsumer<RationalNTL>* consumer,
		const string &line)
{
	int varCount = 0;
	for (int i = 0; line[i] != ']'; i++)
	{
		varCount += (line[i] == ',');
	}
	if (varCount < 1)
	{
		cout << "There are " << varCount << " variables, bailing." << endl;
		return;
	}
	consumer->setDimension(varCount);

	int termIndex, lastPos, expIndex, flag;
	termIndex = lastPos = flag = 0; //0 means we expect coefficient, 1 means we expect exponent vector

	int *exponents = new int[varCount];
	RationalNTL coefficient;

	for (size_t i = 1; i < line.length() - 1; i++) //ignore outermost square brackets
	{
		if (line[i] == '[')
		{
			switch (flag)
			{
				case 0: //coefficient
					lastPos = i + 1;
					for (; line[i] != ','; i++)
						;
					coefficient = RationalNTL(line.substr(lastPos, i - lastPos).c_str());
					flag = 1;
					break;
				case 1: //exponent vector
					expIndex = 0;
					for (i++; line[i] != ']'; i++)
					{
						if (line[i] != ' ')
						{
							lastPos = i;
							for (; line[i] != ',' && line[i] != ']'; i++)
								;
							exponents[expIndex++] = atoi(line.substr(lastPos, i
									- lastPos).c_str());
						}
					}
					consumer->ConsumeMonomial(coefficient, exponents);
					flag = 0;
					break;
				default: //error
					cout << "Flag is " << flag << ", bailing." << endl;
					return;
			}
		}
	}

	delete[] exponents;
}

//Prints a nested list representation of our sum of monomials
//monomial sum: c_{1}*(x_{1}^e_{1}...x_{varCount}^e_{varCount}) + ...
//nested lists: [[c_{1}, [e_{1}, e_{2}, ..., e_{varCount}]], .. ]
string _printMonomials(const _monomialSum &myPoly)
{
	stringstream output(stringstream::in | stringstream::out);
	output << "[";
	eBlock* expTmp = myPoly.eHead;
	cBlock<RationalNTL>* coeffTmp = myPoly.cHead;
	int termCount = 0;
	do
	{
		for (int i = 0; i < BLOCK_SIZE && termCount < myPoly.termCount; i++)
		{
			output << "[" << coeffTmp->data[i] << ",[";
			for (int j = (i * myPoly.varCount); j < ((i + 1) * myPoly.varCount); j++)
			{
				output << expTmp->data[j];
				if (j + 1 < ((i + 1) * myPoly.varCount))
				{
					output << ",";
				}
			}
			output << "]]";
			if (termCount + 1 < myPoly.termCount)
			{
				output << ",";
			}
			termCount++;
		}
		coeffTmp = coeffTmp->next;
		expTmp = expTmp->next;
	} while (coeffTmp != NULL);
	output << "]";
	return output.str();
}

//Deallocates space and nullifies internal pointers and counters
void _destroyMonomials(_monomialSum &myPoly)
{
	eBlock* expTmp = myPoly.eHead;
	cBlock<RationalNTL>* coeffTmp = myPoly.cHead;
	eBlock* oldExp = NULL;
	cBlock<RationalNTL>* oldCoeff = NULL;
	do
	{
		oldExp = expTmp;
		oldCoeff = coeffTmp;
		expTmp = expTmp->next;
		coeffTmp = coeffTmp->next;
		free(oldExp);
		free(oldCoeff);
	} while (coeffTmp != NULL);
	myPoly.eHead = NULL;
	myPoly.cHead = NULL;
	myPoly.termCount = myPoly.varCount = 0;
}

void _loadLinForms(_linFormSum &forms, const string line)
{
	forms.termCount = 0;
	_FormLoadConsumer<RationalNTL>* myLoader = new _FormLoadConsumer<
			RationalNTL> ();
	myLoader->setFormSum(forms);
	_parseLinForms(myLoader, line);
}
//Loads a string by parsing it as a sum of linear forms
//linear form: (c_{1} / d_{1}!)[(p_{1}*x_{1} + ... p_{varCount}*x_{varCount})^d_{1}] + ...
//nested list: [[c_{1}, [d_{1}, [p_{1}, p_{2}, ..., p_{varCount}]], .. ]
void _parseLinForms(_FormSumConsumer<RationalNTL>* consumer, const string& line)
{
	int termIndex = 0;
	int lastPos = 0;
	int varCount = 0;
	int k;
	int flag = 0; //0 means we expect coefficient, 1 means we expect degree, 2 means we expect coefficient vector

	for (int i = 0; line[i] != ']'; i++)
	{
		varCount += (line[i] == ',');
	}
	//varCount is now the number of commas in a linear form - there is 1 less variable;
	varCount--;
	if (varCount < 1)
	{
		cout << "There are " << varCount << " variables, bailing." << endl;
		return;
	}
	consumer->setDimension(varCount);

	vec_ZZ coefs;
	coefs.SetLength(varCount);
	int degree;
	RationalNTL coefficient;

	for (size_t i = 1; i < line.length() - 1; i++) //ignore outermost square brackets
	{
		if (line[i] == '[')
		{
			int degreeFactorial;
			switch (flag)
			{
				case 0: //coefficient
					lastPos = i + 1;
					for (; line[i] != ','; i++)
						;
					coefficient = RationalNTL(line.substr(lastPos, i - lastPos).c_str());
					flag = 1;
					break;
				case 1: //degree
					lastPos = i + 1;
					for (; line[i] != ','; i++)
						;
					degree = atoi(line.substr(lastPos, i - lastPos).c_str());
					flag = 2;
					break;
				case 2: //coefficient vector
					k = 0;
					for (i++; line[i] != ']'; i++)
					{
						if (line[i] != ' ')
						{
							lastPos = i;
							for (; line[i] != ',' && line[i] != ']'; i++)
								;
							coefs[k++] = to_ZZ(
									line.substr(lastPos, i - lastPos).c_str());
						}
					}
					degreeFactorial = 1;
					for (int j = 1; j <= degree; j++)
					{
						degreeFactorial *= j;
						//coefficient *= j;
					} //in _linFormSum, coefficient is assumed to be divided by the factorial of the form degree
					coefficient *= to_ZZ(degreeFactorial);
					consumer->ConsumeLinForm(coefficient, degree, coefs);
					flag = 0;
					break;
				default: //error
					cout << "Flag is " << flag << ", bailing." << endl;
					return;
			}
		}
	}
}

//Prints a nested list representation of our sum of linear forms
//linear form: (c_{1} / d_{1}!)[(p_{1}*x_{1} + ... p_{varCount}*x_{varCount})^d_{1}] + ...
//nested list: [[c_{1}, [d_{1}, [p_{1}, p_{2}, ..., p_{varCount}]], .. ]
string _printLinForms(const _linFormSum &myForm)
{
	stringstream output(stringstream::in | stringstream::out);
	output << "[";
	lBlock* formTmp = myForm.lHead;
	cBlock<RationalNTL>* coeffTmp = myForm.cHead;
	for (int i = 0; i < myForm.termCount; i++)
	{
		if (i > 0 && i % BLOCK_SIZE == 0)
		{
			formTmp = formTmp->next;
			coeffTmp = coeffTmp->next;
		}

		output << "[" << coeffTmp->data[i % BLOCK_SIZE] << ", ["
				<< formTmp->degree[i % BLOCK_SIZE] << ", [";
		for (int j = 0; j < myForm.varCount; j++)
		{
			output << formTmp->data[i % BLOCK_SIZE][j];
			if (j + 1 < myForm.varCount)
			{
				output << ", ";
			}
		}
		output << "]]]";
		if (i + 1 < myForm.termCount)
		{
			output << ", ";
		}
	}
	output << "]";
	return output.str();
}

//Deallocates space and nullifies internal pointers and counters
void _destroyLinForms(_linFormSum &myPoly)
{
	lBlock* expTmp = myPoly.lHead;
	cBlock<RationalNTL>* coeffTmp = myPoly.cHead;
	lBlock* oldExp = NULL;
	cBlock<RationalNTL>* oldCoeff = NULL;
	int termCount = 0;
	do
	{
		oldExp = expTmp;
		oldCoeff = coeffTmp;
		expTmp = expTmp->next;
		coeffTmp = coeffTmp->next;
		free(oldExp);
		free(oldCoeff);
	} while (coeffTmp != NULL);
	myPoly.lHead = NULL;
	myPoly.cHead = NULL;
	myPoly.termCount = myPoly.varCount = 0;
}

//INPUT: monomial specified by myPoly.coefficientBlocks[mIndex / BLOCK_SIZE].data[mIndex % BLOCK_SIZE]
//	and myPoly.exponentBlocks[mIndex / BLOCK_SIZE].data[mIndex % BLOCK_SIZE]
//OUTPUT: lForm now also contains the linear decomposition of this monomial 
//	note: all linear form coefficients assumed to be divided by their respective |M|!, and the form is assumed to be of power M
void _decompose(_monomialSum &myPoly, _linFormSum &lForm, int mIndex)
{
	eBlock* expTmp = myPoly.eHead;
	cBlock<RationalNTL>* coeffTmp = myPoly.cHead;
	for (int i = 0; i < (mIndex / BLOCK_SIZE); i++)
	{
		expTmp = expTmp->next;
		coeffTmp = coeffTmp->next;
	}

	bool constantTerm = true;
	for (int i = (mIndex * myPoly.varCount); i < ((mIndex + 1)
			* myPoly.varCount); i++)
	{
		if (expTmp->data[i] != 0)
		{
			constantTerm = false;
			break;
		}
	}
	vec_ZZ myExps;
	myExps.SetLength(lForm.varCount);
	if (constantTerm) //exponents are all 0, this is a constant term - linear form is already known
	{
		for (int j = 0; j < lForm.varCount; j++)
		{
			myExps[j] = 0;
		}
		_insertLinForm<RationalNTL> (coeffTmp->data[mIndex % BLOCK_SIZE], 0, myExps,
				lForm);
		return;
	}

	ZZ formsCount = to_ZZ(expTmp->data[(mIndex % BLOCK_SIZE) * myPoly.varCount]
			+ 1);
	int totalDegree = expTmp->data[(mIndex % BLOCK_SIZE) * myPoly.varCount];
	for (int i = 1; i < myPoly.varCount; i++)
	{
		formsCount *= expTmp->data[(mIndex % BLOCK_SIZE) * myPoly.varCount + i]
				+ 1;
		totalDegree
				+= expTmp->data[(mIndex % BLOCK_SIZE) * myPoly.varCount + i];
	}
	formsCount--;
	//cout << "At most " << formsCount << " linear forms will be required for this decomposition." << endl;
	//cout << "Total degree is " << totalDegree << endl;

	int* p = new int[myPoly.varCount];
	int* counter = new int[myPoly.varCount];
	ZZ* binomCoeffs = new ZZ[myPoly.varCount]; //for calculating the product of binomial coefficients for each linear form

	RationalNTL temp;
	int g;
	bool found;
	int myIndex;
	for (int i = 0; i < myPoly.varCount; i++)
	{
		counter[i] = 0;
		binomCoeffs[i] = to_ZZ(1);
	}
	for (ZZ i = to_ZZ(1); i <= formsCount; i++)
	{
		//cout << "i is " << i << endl;
		counter[0] += 1;
		for (myIndex = 0; counter[myIndex] > expTmp->data[(mIndex % BLOCK_SIZE)
				* myPoly.varCount + myIndex]; myIndex++)
		{
			counter[myIndex] = 0;
			binomCoeffs[myIndex] = to_ZZ(1);
			counter[myIndex + 1] += 1;
		}
		binomCoeffs[myIndex] *= expTmp->data[(mIndex % BLOCK_SIZE)
				* myPoly.varCount + myIndex] - counter[myIndex] + 1; // [n choose k] = [n choose (k - 1) ] * (n - k + 1)/k
		binomCoeffs[myIndex] /= counter[myIndex];
		//cout << "counter is: " << counter << endl;

		//find gcd of all elements and calculate the product of binomial coefficients for the linear form
		g = counter[0];
		int parity = totalDegree - counter[0];
		p[0] = counter[0];
		temp = binomCoeffs[0];
		if (myPoly.varCount > 1)
		{
			for (int k = 1; k < myPoly.varCount; k++)
			{
				p[k] = counter[k];
				g = GCD(g, p[k]);
				parity -= p[k];
				temp *= binomCoeffs[k];
			}
		}

		//calculate coefficient
		temp *= coeffTmp->data[mIndex % BLOCK_SIZE];
		if ((parity % 2) == 1)
		{
			temp *= to_ZZ(-1);
		} // -1 ^ [|M| - (p[0] + p[1] + ... p[n])], checks for odd parity using modulo 2

		if (g != 1)
		{
			for (int k = 0; k < myPoly.varCount; k++)
			{
				p[k] /= g;
			}
			temp *= power_ZZ(g, totalDegree);
		}
		//cout << "coefficient is " << temp << endl;
		for (int i = 0; i < myPoly.varCount; i++)
		{
			myExps[i] = p[i];
		}
		_insertLinForm<RationalNTL> (temp, totalDegree, myExps, lForm);
	}
	delete[] p;
	delete[] counter;
	delete[] binomCoeffs;
}