File: PolyTrie.cpp

package info (click to toggle)
latte-int 1.7.6%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 38,260 kB
  • sloc: cpp: 32,231; sh: 4,413; makefile: 811; perl: 300
file content (614 lines) | stat: -rw-r--r-- 16,459 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
#include "PolyTrie.h"
#include <stdio.h>
#include <sstream>

#define PT_DEBUG 0

//Loads a string by parsing it as a sum of monomials
//monomial sum: c_{1}*(x_{1}^e_{1}...x_{varCount}^e_{varCount}) + ...
//nested lists: [[c_{1}, [e_{1}, e_{2}, ..., e_{varCount}]], .. ]
void loadMonomials(monomialSum &monomials, const string &line)
{
	monomials.termCount = 0;
	MonomialLoadConsumer<RationalNTL>* myLoader = new MonomialLoadConsumer<
			RationalNTL> ();
	myLoader->setMonomialSum(monomials);
	parseMonomials(myLoader, line);
	delete myLoader;
}

void parseMonomials(MonomialConsumer<RationalNTL>* consumer, const string &line)
{
	int varCount = 0;
	for (int i = 0; line[i] != ']'; i++)
	{
		varCount += (line[i] == ',');
	}
	if (varCount < 1)
	{
		cout << "line: `" << line << "'" << endl;
		cout << "There are " << varCount << " variables, bailing." << endl;
		return;
	}
	consumer->setDimension(varCount);

	int termIndex, lastPos, expIndex, flag;
	termIndex = lastPos = flag = 0; //0 means we expect coefficient, 1 means we expect exponent vector

	int *exponents = new int[varCount];
	RationalNTL coefficient;

	for (size_t i = 1; i < line.length() - 1; i++) //ignore outermost square brackets
	{
		if (line[i] == '[')
		{
			switch (flag)
			{
				case 0: //coefficient
					lastPos = i + 1;
					for (; line[i] != ','; i++)
						;
					coefficient = RationalNTL(
							line.substr(lastPos, i - lastPos).c_str());
					flag = 1;
					break;
				case 1: //exponent vector
					expIndex = 0;
					for (i++; line[i] != ']'; i++)
					{
						if (line[i] != ' ')
						{
							lastPos = i;
							for (; line[i] != ',' && line[i] != ']'; i++)
								;
							exponents[expIndex++] = atoi(line.substr(lastPos, i
									- lastPos).c_str());
						}
					}
					consumer->ConsumeMonomial(coefficient, exponents);
					flag = 0;
					break;
				default: //error
					cout << "Flag is " << flag << ", bailing." << endl;
					return;
			}
		}
	}

	delete[] exponents;
}

//watch the magic happen
void insertMonomial(const RationalNTL& coefficient, int* exponents,
		monomialSum& monomials)
{
	BurstTrie<RationalNTL, int>* curTrie;

	if ( coefficient == 0)
		return;

	if (monomials.termCount == 0) //need to construct the first burst trie (sorted on the first variable) and first container 
	{
		if (PT_DEBUG)
		{
			cout << "Creating trie" << endl;
		}
		monomials.myMonomials = new BurstTrie<RationalNTL, int> ();
		curTrie = monomials.myMonomials;
	} else
	{
		curTrie = monomials.myMonomials;
	}

	curTrie->insertTerm(coefficient, exponents, 0, monomials.varCount, -1);

	monomials.termCount++;
}

//Prints a nested list representation of our sum of monomials
//monomial sum: c_{1}*(x_{1}^e_{1}...x_{varCount}^e_{varCount}) + ...
//nested lists: [[c_{1}, [e_{1}, e_{2}, ..., e_{varCount}]], .. ]
string printMonomials(const monomialSum &myPoly)
{
	BTrieIterator<RationalNTL, int>* it =
			new BTrieIterator<RationalNTL, int> ();
	term<RationalNTL, int>* temp;
	it->setTrie(myPoly.myMonomials, myPoly.varCount);
	it->begin();
	int i = 0;
	stringstream output(stringstream::in | stringstream::out);
	temp = it->nextTerm();
	do
	{
		if (output.str() != "")
		{
			output << ", ";
		}
		output << "[" << temp->coef << ", [";
		for (int j = 0; j < temp->length; j++)
		{
			output << temp->exps[j];
			if (j + 1 < temp->length)
			{
				output << ", ";
			}
		}
		output << "]]";
		temp = it->nextTerm();
	} while (temp);
	delete it;
	return "[" + output.str() + "]";
}

//Deallocates space and nullifies internal pointers and counters
void destroyMonomials(monomialSum &myPoly)
{
	delete myPoly.myMonomials;
	myPoly.myMonomials = NULL;
	myPoly.termCount = myPoly.varCount = 0;
}

// -------------------------------------------------------------------------

void loadLinForms(linFormSum &forms, const string line)
{
	forms.termCount = 0;
	FormLoadConsumer<RationalNTL>* myLoader =
			new FormLoadConsumer<RationalNTL> ();
	myLoader->setFormSum(forms);
	parseLinForms(myLoader, line);
	delete myLoader;
}
//Loads a string by parsing it as a sum of linear forms
//linear form: (c_{1} / d_{1}!)[(p_{1}*x_{1} + ... p_{varCount}*x_{varCount})^d_{1}] + ...
//nested list: [[c_{1}, [d_{1}, [p_{1}, p_{2}, ..., p_{varCount}]], .. ]
void parseLinForms(FormSumConsumer<RationalNTL>* consumer, const string& line)
{
	int termIndex = 0;
	int lastPos = 0;
	int varCount = 0;
	int k;
	int flag = 0; //0 means we expect coefficient, 1 means we expect degree, 2 means we expect coefficient vector

	//cout << "parseLinForms: line = " << line.c_str() << endl;
	for (int i = 0; line[i] != ']'; i++)
	{
		varCount += (line[i] == ',');
	}
	//varCount is now the number of commas in a linear form - there is 1 less variable;
	varCount--;
	if (varCount < 1)
	{
		cout << "line: `" << line << "'" << endl;
		cout << "There are " << varCount << " variables, bailing." << endl;
		return;
	}
	consumer->setDimension(varCount);

	vec_ZZ coefs;
	coefs.SetLength(varCount);
	int degree;
	RationalNTL coefficient;

	for (size_t i = 1; i < line.length() - 1; i++) //ignore outermost square brackets
	{
		if (line[i] == '[')
		{
			ZZ degreeFactorial;
			switch (flag)
			{
				case 0: //coefficient
					lastPos = i + 1;
					for (; line[i] != ','; i++)
						;
					coefficient = RationalNTL(
							(line.substr(lastPos, i - lastPos).c_str()));
					flag = 1;
					break;
				case 1: //degree
					lastPos = i + 1;
					for (; line[i] != ','; i++)
						;
					degree = atoi(line.substr(lastPos, i - lastPos).c_str());
					flag = 2;
					break;
				case 2: //coefficient vector
					k = 0;
					for (i++; line[i] != ']'; i++)
					{
						if (line[i] != ' ')
						{
							lastPos = i;
							for (; line[i] != ',' && line[i] != ']'; i++)
								;

							coefs[k++] = to_ZZ(
									line.substr(lastPos, i - lastPos).c_str());

						}
					}
					degreeFactorial = 1;
					for (int j = 1; j <= degree; j++)
					{
						degreeFactorial *= j;
						//coefficient *= j;
					} //in linFormSum, coefficient is assumed to be divided by the factorial of the form degree
					coefficient *= degreeFactorial;
					consumer->ConsumeLinForm(coefficient, degree, coefs);
					flag = 0;
					break;
				default: //error
					cout << "Flag is " << flag << ", bailing." << endl;
					return;
			}
		}
	}
}

// Attempts to find a linear form in formSum with same degree and coefficients as those passed in
// if found, the linear form coefficient in formSum is incremented by coef
// if not found, a new linear form term is added and formSum's termCount is incremented
// if formSum is empty, this sets formSum's lHead and cHead variables
void insertLinForm(const RationalNTL& coef, int degree, const vec_ZZ& coeffs,
		linFormSum& formSum) //sort on degree first or last?
{
	BurstTrie<RationalNTL, ZZ> *curTrie;
	//cout << "inserting into linear form with " << formSum.varCount << " variables" << endl;

	if (coef == 0)
		return;

	if (formSum.termCount == 0) //need to construct the first burst trie (sorted on the first variable) and first container 
	{
		formSum.myForms = new BurstTrie<RationalNTL, ZZ> ();
		curTrie = formSum.myForms;
	} else
	{
		curTrie = formSum.myForms;
	}

	ZZ* exps = new ZZ[formSum.varCount];
	for (int i = 0; i < formSum.varCount; i++)
	{
		exps[i] = coeffs[i];
	}
	curTrie->insertTerm(coef, exps, 0, formSum.varCount, degree);

	delete[] exps;
	formSum.termCount++;
}

//Prints a nested list representation of our sum of linear forms
//linear form: (c_{1} / d_{1}!)[(p_{1}*x_{1} + ... p_{varCount}*x_{varCount})^d_{1}] + ...
//nested list: [[c_{1}, [d_{1}, [p_{1}, p_{2}, ..., p_{varCount}]], .. ]
string printLinForms(const linFormSum &myForm)
{
	BTrieIterator<RationalNTL, ZZ>* it = new BTrieIterator<RationalNTL, ZZ> ();
	term<RationalNTL, ZZ>* temp;
	it->setTrie(myForm.myForms, myForm.varCount);
	it->begin();

	stringstream output(stringstream::in | stringstream::out);
	temp = it->nextTerm();
	do
	{
		if (output.str() != "")
		{
			output << ", ";
		}
		output << "[" << temp->coef << ", [" << temp->degree << ", [";
		for (int j = 0; j < temp->length; j++)
		{
			output << temp->exps[j];
			if (j + 1 < temp->length)
			{
				output << ", ";
			}
		}
		output << "]]]";
		temp = it->nextTerm();
	} while (temp);
	delete it;
	return "[" + output.str() + "]";
}

//Deallocates space and nullifies internal pointers and counters
void destroyLinForms(linFormSum &myPoly)
{
	if (myPoly.myForms)
		delete myPoly.myForms;
	myPoly.myForms = NULL;
	myPoly.termCount = myPoly.varCount = 0;
}

// -------------------------------------------------------------------------

void loadLinFormProducts(linFormProductSum &forms, const string line)
{
	forms.varCount = 0;
	FormProductLoadConsumer<RationalNTL>* myLoader =
			new FormProductLoadConsumer<RationalNTL> ();
	myLoader->setFormProductSum(forms);
	parseLinFormProducts(myLoader, line);
	delete myLoader;
}
//Loads a string by parsing it as a sum of linear forms
//linear form: a * (c^b * f^e * h^g) + ...
//nested list: [ [a, [[b, [c]], [e, [f]], [g, [h]]]], ... ]
void parseLinFormProducts(FormProductLoadConsumer<RationalNTL>* consumer, const string& line)
{
	int termIndex = 0;
	int lastPos = 0;
	int varCount = 0;
	int k;
	int flag = 0; //0 means we expect coefficient, 1 means we expect degree, 2 means we expect coefficient vector

	//cout << "parseLinForms: line = " << line.c_str() << endl;
	for (int i = 0; line[i] != ']'; i++)
	{
		varCount += (line[i] == ',');
	}
	//varCount is now the number of commas in a linear form - there is 1 less variable;
	varCount--;
	if (varCount < 1)
	{
		cout << "line: `" << line << "'" << endl;
		cout << "There are " << varCount << " variables, error." << endl;
		exit(1);
	}
	consumer->setDimension(varCount);

	vec_ZZ coefs;
	coefs.SetLength(varCount);
	int degree;
	RationalNTL coefficient;

	int productIndex = 0;
	for (int i = 1; i < line.length() - 1; i++) //ignore outermost square brackets
	{
		if (line[i] == '[')
		{
			ZZ degreeFactorial;
			switch (flag)
			{
				case 0: //coefficient
					lastPos = i + 1;
					for (; line[i] != ','; i++)
						;
					coefficient = RationalNTL(
							(line.substr(lastPos, i - lastPos).c_str()));
					flag = 1;
					break;
				case 1: //start of a product of linear forms [[p, [l]], ...],
					productIndex = consumer->initializeNewProduct();
					//cout << "new index:" << productIndex << endl;
					flag = 2;
					break;
				case 2: //start of a power of linear form [p, [l]]
					lastPos = i + 1;
					for (; line[i] != ','; i++)
						;
					degree = atoi(line.substr(lastPos, i - lastPos).c_str());
					flag = 3;
					break;
				case 3: //coefficient vector
					k = 0;
					for (i++; line[i] != ']'; i++)
					{
						if (line[i] != ' ')
						{
							lastPos = i;
							for (; line[i] != ',' && line[i] != ']'; i++)
								;

							coefs[k++] = to_ZZ(
									line.substr(lastPos, i - lastPos).c_str());

						}
					}//end of exponent vector.

					//cout << "inserting " << coefficient << " ";
					//for(int w = 0; w < coefs.length(); ++w)
					//	cout << coefs[w] << ", ";
					//cout << "into " << productIndex << endl;
					consumer->ConsumeLinForm(productIndex, coefficient, degree, coefs);
					coefficient = 1; //the other coefficients in this product are 1.

					for(; line[i] != ']'; ++i); //end of linear form list: [[p, [l]] ]
					//for(; line[i] != ']'; ++i); //end of linear form list: [[[p, [l]] ]
					//check to see if there are any more products.
					while(true)
					{
						++i;
						if ( line[i] == ',')
						{
							flag = 2; //read next power of linear form into the current product.
							break;
						}
						else if ( line[i] == ']')
						{
							flag = 0; //new product
							break;
						}
					}
					break;
				default: //error
					cout << "Flag is " << flag << ", error." << endl;
					exit(1);
			}
		}
	}
}




//Deallocates space and nullifies internal pointers and counters
void destroyLinFormProducts(linFormProductSum &myProd)
{
	for(int i = 0; i < myProd.myFormProducts.size(); ++i)
	{
		destroyLinForms(myProd.myFormProducts[i]);
	}
	myProd.myFormProducts.clear();
}


/**
 * Unlike printLinForms(), this function is more for debugging.
 */
string printLinFormProducts(const linFormProductSum &plf)
{
	stringstream out;
	for(int i = 0; i < plf.myFormProducts.size(); ++i)
	{
		cout << i << " started" << endl;
		cout << printLinForms(plf[i]).c_str() << endl;
		out << "Term " << i << " " << printLinForms(plf[i]) << "\n";
		cout << i << " finished" << endl;
	}
	return out.str();
}


// -------------------------------------------------------------------------

//INPUT: monomial specified by myPoly.coefficientBlocks[mIndex / BLOCK_SIZE].data[mIndex % BLOCK_SIZE]
//	and myPoly.exponentBlocks[mIndex / BLOCK_SIZE].data[mIndex % BLOCK_SIZE]
//OUTPUT: lForm now also contains the linear decomposition of this monomial 
//	note: all linear form coefficients assumed to be divided by their respective |M|!, and the form is assumed to be of power M
void decompose(BTrieIterator<RationalNTL, int>* it, linFormSum &lForm)
{
	//cout << "decomposing " << lForm.varCount << " variables" << endl;
	term<RationalNTL, int>* temp;
	//BTrieIterator<ZZ, int>* it = new BTrieIterator<ZZ, int>();


	//it->setTrie(myPoly.myMonomials, myPoly.varCount);
	it->begin();

	//cout << "in decompost()::\n";
	temp = it->nextTerm();

	do
	{
		//cout << "monomial " << temp->coef;
		//for(int i = 0; i < temp->length; ++i)
		//	cout << temp->exps[i];
		//cout << "\n";
		decompose(temp, lForm);
		temp = it->nextTerm();
	} while (temp);

	//delete myPoly.myMonomials;
}

void decompose(term<RationalNTL, int>* myTerm, linFormSum &lForm)
{
	vec_ZZ myExps;
	myExps.SetLength(lForm.varCount);

	//April 27. 2011 Brandon: I don't think this if is ever true. If I insert [[[1,[0,0]]], I get a monomial of length 2 still.
	//This or the "string to polynomial" function is not  correct. I think we can delete this if statement.
	if (myTerm->length == 0) //constant
	{
		for (int j = 0; j < lForm.varCount; j++)
		{
			myExps[j] = 0;
		}
		insertLinForm(myTerm->coef, 0, myExps, lForm);
		return;
	}


	ZZ formsCount = to_ZZ(myTerm->exps[0] + 1); //first exponent
	int totalDegree = myTerm->exps[0];
	for (int i = 1; i < myTerm->length; i++)
	{
		formsCount *= myTerm->exps[i] + 1;
		totalDegree += myTerm->exps[i];
	}
	formsCount--;

	//If this is zero, then the term is a constant [c,[0,0,0,0...0]]
	if ( formsCount == 0)
	{
		for (int j = 0; j < lForm.varCount; j++)
		{
			myExps[j] = 0;
		}
		insertLinForm(myTerm->coef, 0, myExps, lForm);
		return;
	}//if formsCount

	//cout << "At most " << formsCount << " linear forms will be required for this decomposition." << endl;
	//cout << "Total degree is " << totalDegree << endl;

	int* p = new int[lForm.varCount];
	int* counter = new int[lForm.varCount];
	ZZ* binomCoeffs = new ZZ[lForm.varCount]; //for calculating the product of binomial coefficients for each linear form

	RationalNTL temp;
	int g;
	int myIndex;
	for (int i = 0; i < lForm.varCount; i++)
	{
		counter[i] = 0;
		binomCoeffs[i] = to_ZZ(1);
	}
	for (ZZ i = to_ZZ(1); i <= formsCount; i++)
	{
		//cout << "i is " << i << endl;
		counter[0] += 1;
		for (myIndex = 0; counter[myIndex] > myTerm->exps[myIndex]; myIndex++)
		{
			counter[myIndex] = 0;
			binomCoeffs[myIndex] = to_ZZ(1);
			counter[myIndex + 1] += 1;
		}
		binomCoeffs[myIndex] *= myTerm->exps[myIndex] - counter[myIndex] + 1; // [n choose k] = [n choose (k - 1) ] * (n - k + 1)/k
		binomCoeffs[myIndex] /= counter[myIndex];
		//cout << "counter is: " << counter << endl;

		//find gcd of all elements and calculate the product of binomial coefficients for the linear form
		g = counter[0];
		int parity = totalDegree - counter[0];
		p[0] = counter[0];
		temp = binomCoeffs[0];
		if (lForm.varCount > 1)
		{
			for (int k = 1; k < lForm.varCount; k++)
			{
				p[k] = counter[k];
				g = GCD(g, p[k]);
				parity -= p[k];
				temp *= binomCoeffs[k];
			}
		}

		//calculate coefficient
		temp *= myTerm->coef;
		if ((parity % 2) == 1)
		{
			temp *= to_ZZ(-1);
		} // -1 ^ [|M| - (p[0] + p[1] + ... p[n])], checks for odd parity using modulo 2

		if (g != 1)
		{
			for (int k = 0; k < lForm.varCount; k++)
			{
				p[k] /= g;
			}
			temp *= power_ZZ(g, totalDegree);
		}
		//cout << "coefficient is " << temp << endl;
		for (int i = 0; i < lForm.varCount; i++)
		{
			myExps[i] = p[i];
		}
		insertLinForm(temp, totalDegree, myExps, lForm);
	}
	delete[] p;
	delete[] counter;
	delete[] binomCoeffs;
}