File: newIntegration.cpp

package info (click to toggle)
latte-int 1.7.6%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 38,260 kB
  • sloc: cpp: 32,231; sh: 4,413; makefile: 811; perl: 300
file content (530 lines) | stat: -rw-r--r-- 17,384 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
#include "newIntegration.h"
#include "iterators.h"
#include <NTL/vec_ZZ.h>
#include <NTL/ZZ.h>
#include <NTL/mat_ZZ.h>
#include <iostream>
#include "print.h"

using namespace std;

NTL_CLIENT

//this function deletes space from a given string
void delSpace(string &line)
{
	for (size_t i = 0; i < line.length(); i++)
	{
		while ((i < line.length()) && (line.at(i) == 32))
		{
			line.erase(i, 1);
		}
	}
}//delSpace


//this function converts a given string into a simlexZZ mySimplex
//for example, string [[0,0],[1,1],[7,8]] is converted to a two-dimensional vector of ZZs.
void convertToSimplex(simplexZZ &mySimplex, string line)
{
	delSpace(line);
	int index, i, t, j, c;
	string temp, subtemp;
	t = 2;
	mySimplex.d = 1;
	t = line.find("[", t) + 1;
	t = line.find("[", t) + 1;
	temp = line.substr(t, line.find("]", t) - t);
	for (i = 0; i < temp.length(); i++)
		mySimplex.d += (temp.at(i) == ',');
	c = 0;
	for (i = 0; i < line.length(); i++)
		c += (line.at(i) == ']');
	if (c - 2 != mySimplex.d)
	{
		cout << "The d-simplex should have d+1 vertices. Please check." << endl;
		exit(1);
	};
	(mySimplex.s).SetLength(mySimplex.d + 1);
	index = 1;
	for (i = 0; i <= mySimplex.d; i++)
	{
		temp = line.substr(index, line.find("]", index) - index + 1);
		c = 0;
		for (j = 0; j < temp.length(); j++)
			c += (temp.at(j) == ',');
		if (c != mySimplex.d - 1)
		{
			cout << "Each vertex should have d coordinates. Please check."
					<< endl;
			exit(1);
		};
		(mySimplex.s[i]).SetLength(mySimplex.d);
		t = 1;
		for (j = 0; j < mySimplex.d - 1; j++)
		{
			subtemp = temp.substr(t, temp.find(",", t) - t);
			t = temp.find(",", t) + 1;
			mySimplex.s[i][j] = to_ZZ(subtemp.c_str());
		};
		subtemp = temp.substr(t, temp.find(",", t) - t + 1);
		t = temp.find(",", t);
		mySimplex.s[i][mySimplex.d - 1] = to_ZZ(subtemp.c_str());
		index = line.find("]", index) + 2;
	};
	mat_ZZ matt;
	matt.SetDims(mySimplex.d, mySimplex.d);
	for (i = 1; i <= mySimplex.d; i++)
		matt[i - 1] = mySimplex.s[i] - mySimplex.s[0];
	mySimplex.v = determinant(matt);
	if (mySimplex.v < 0)
		mySimplex.v = -mySimplex.v;
}
;

/**
 * Integrate a simplex over a linear form.
 *
 * @parm a, b: ouput parameters, we return a/b += integration answer.
 * @parm l: a linear form.
 * @parm mySimplex: integer simplex
 * @parm m: the power the linear form is raised to
 * @parm coe: the coefficient of a linear form
 * @parm de: is the extra factor in the formulae that we we multiply the result by
 *
 * ASSUMES the polytope has dimension less than 1000.
 *
 * Paper Citation: @ARTICLE
 * {2008arXiv0809.2083B,
 *  author = {{Baldoni}, V. and {Berline}, N. and {De Loera}, J. and {K{\"o}ppe}, M. and
 *	{Vergne}, M.},
 *    title = "{How to Integrate a Polynomial over a Simplex}",
 *  journal = {ArXiv e-prints},
 *archivePrefix = "arXiv",
 *   eprint = {0809.2083},
 *primaryClass = "math.MG",
 * keywords = {Mathematics - Metric Geometry, Computer Science - Computational Complexity, Computer Science - Symbolic Computation},
 *     year = 2008,
 *    month = sep,
 *   adsurl = {http://adsabs.harvard.edu/abs/2008arXiv0809.2083B},
 *  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
 * }
 *
 *BACKGROUND MATH 1: \int_\Delta l^m \d m' = d!\vol(\Delta, \d m')\frac{m!}{(m+d)!}
 *                            \Big(\sum_{i=1}^{d+1}
 *                                  \frac{ <l, s_i >^{M+d}}
 *                                       {\prod_{j\neq i} <l, s_i- s_j >}
 *                            \Big),
 * Where \Delta is a regular integer-vertex simplex, d is the dimension, l is a linear form, s_i are the verties.
 *
 *BACKGROUND MATH 2:
 *  \int_{\Delta} l^m  \d m' = d!\vol(\Delta, \d m') \frac{m!}{(m+d)!}
 *                             \sum_{k\in K} \Res_{z=0}
 *                                  \frac{(z + <l, s_k>)^{m+d}}
 *                                       {\z^{m_k} {\prod_{i\in K, i \neq k} {(z + <l, s_k - s_i> )}^{m_i}} }
 * as above and if the simplex is not regular, and where $K\subseteq\{1,\dots,d+1\}$ is an index set of the different poles
 * $t= 1/\langle \l ,s_k\rangle$, and for $k\in K$ let $m_k$ denote the order of the pole, i.e.,
 *   $m_k = sizeof the set { i \in \{1,\dots,d+1\} : <l ,s_i> = <l ,s_k> }.
 *
 * Implementation:
 * Instead of finding d!\vol(\Delta, \d m') directly, we just find the volume of the parallelepiped of the simplex.
 * The data structure also assumes the m! is part of the linear form's coefficient.
 */
void update(ZZ &a, ZZ &b, vec_ZZ l, simplexZZ mySimplex, int m, RationalNTL coe, ZZ de)
{

	ZZ sum, lcm, total, g, tem;
	int i, j;
	vec_ZZ inner_Pro; //inner_Pro[i] = <l, s_i>
	vec_ZZ sum_Nu, sum_De; // (sum_Nu/sum_De)[i] = <l, s_i>^d/ (\prod_{j \neq i} <l, s_i - s_j>)
	inner_Pro.SetLength(mySimplex.d + 1);
	sum_Nu.SetLength(mySimplex.d + 1);
	sum_De.SetLength(mySimplex.d + 1);
	total = 0;
	lcm = 1;
	bool repeat[1000]; //put this on the stack, do not waste the time requesting memory from the heap because this function is called many, many, many times.
					 //Why is this bool (vs int): if there are no repeats in the <l, s_i> terms, the simplex is regular on l and we compute the integral as in the first case of the theory.
					 // Otherwise we will have to compute the residue. It is in the residue-function where we worry about the multiplicity of things.
	for (i = 0; i <= mySimplex.d; i++)
	{
		sum = 0;
		for (j = 0; j < mySimplex.d; j++)
			sum = sum + l[j] * mySimplex.s[i][j];

		inner_Pro[i] = sum; // inner_Pro_i= <l, s_i>
		repeat[i] = 0;
		for (j = 0; j < i; j++)
			if (inner_Pro[j] == inner_Pro[i])
			{
				repeat[i] = 1;
				break;
			};//record repetitions
	};//stores inner product for use

	for (i = 0; i <= mySimplex.d; i++)
		if (!repeat[i])
		{
			sum_Nu[i] = 1;
			//cout << "update: l= " << l;
			//cout << "update: v=";

			//for(int index = 0; index <= mySimplex.d; ++index) cout << mySimplex.s[index] << ", ";
			//cout << endl;
			//cout << "update::l^dim+m=" << inner_Pro[i] << "^" << mySimplex.d << "+" << m;
			for (j = 0; j < m + mySimplex.d; j++)
				sum_Nu[i] = sum_Nu[i] * inner_Pro[i]; // sum_Nu_i = inner_pro ^ (m + d)
			//cout << "=" << sum_Nu[i] << endl;
			sum_De[i] = 1;
			for (j = 0; j <= mySimplex.d; j++)
				if (i != j)
					sum_De[i] = sum_De[i] * (inner_Pro[i] - inner_Pro[j]);  //sum_de_i	 = \prod _{i != j} <l, s_i - s_j>
			if ((sum_Nu[i] < 0) && (sum_De[i] < 0))
			{
				sum_Nu[i] = -sum_Nu[i];
				sum_De[i] = -sum_De[i];
			};
			if (sum_De[i] == 0)
			{
				vec_ZZ ProDiff;
				ProDiff.SetLength(mySimplex.d + 1);
				for (j = 0; j <= mySimplex.d; j++)
					ProDiff[j] = inner_Pro[i] - inner_Pro[j];

				computeResidue(mySimplex.d, m, ProDiff, inner_Pro[i],
						sum_Nu[i], sum_De[i]);
			}
			if (sum_De[i] != 0)
			{
				lcm = lcm * sum_De[i] / (GCD(lcm, sum_De[i]));
			};
			//cout << "update:i= " << i << "num/dem= " << RationalNTL(sum_Nu[i], sum_De[i]) << endl;
			//cout << "update:i= " << i << "num/dem= " << sum_Nu[i]<< " / "<< sum_De[i] << endl;
			//cout << "update:i= " << i << "num/dem= " << sum_Nu[i]/GCD(sum_Nu[i],sum_De[i])<< " / "<< sum_De[i]/GCD(sum_Nu[i],sum_De[i]) << endl;
			//cout << RationalNTL(coe.getNumerator()*mySimplex.v*sum_Nu[i],de*coe.getDenominator()*sum_De[i]) << endl;

		};

	for (i = 0; i <= mySimplex.d; i++)
		if ((!repeat[i]) && (sum_De[i] != 0))
		{
			total += sum_Nu[i] * (lcm / sum_De[i]);
		}


	lcm = lcm * de * coe.getDenominator();
	total = total * mySimplex.v * coe.getNumerator();

	//cout << "update: total/lcm = " << RationalNTL(total,lcm) << endl;
	if (a == 0)
	{
		a = total;
		b = lcm;
	} //return a/b = total/lcm * coe
	else if ((lcm != 0) && (b != 0))
	{
		// a/b = a/b + total/lcm
		tem = b * lcm / GCD(b, lcm); //find LCM of b and lcm.
		a = a * tem / b + total * tem / lcm;
		b = tem;

	} //return a/b := a/b + total/lcm.
	g = GCD(a, b);
	if (g != 0)
	{
		a = a / g;
		b = b / g;
	}
}//update



//This function computes a given fraction a/b, the integral of the linear form forms, over the simplex mySimplex
void integrateLinFormSum(ZZ& numerator, ZZ& denominator,
		PolyIterator<RationalNTL, ZZ>* it, const simplexZZ &mySimplex)
{
	ZZ v, de, counter, tem; //, coe;
	RationalNTL coe;
	int i, j, index, k, m;
	vec_ZZ l;
	//if (forms.varCount!=mySimplex.d) {cout<<"The dimensions of the polynomial and simplex don't match. Please check!"<<forms.varCount<<"<>"<<mySimplex.d<<endl;exit(1);};
	l.SetLength(mySimplex.d);
	numerator = 0;
	denominator = 0;
	it->begin();
	term<RationalNTL, ZZ>* temp;
	while ((temp = it->nextTerm()) != 0)
	{
		coe = temp->coef;
		m = temp->degree; //obtain coefficient, power
		l.SetLength(temp->length); //obtain exponent vector
		for (j = 0; j < temp->length; j++)
		{
			l[j] = temp->exps[j];
		}
		de = 1;
		for (i = 1; i <= mySimplex.d + m; i++)
		{
			de = de * i;
		} //de is (d+m)!. Note this is different from the factor in the paper because in our storage of a linear form, any coefficient is automatically adjusted by m!
		update(numerator, denominator, l, mySimplex, m, coe, de);//We are ready to compute the integral of one linear form over the simplex
	}
	delete temp;
	if (denominator < 0)
	{
		denominator *= to_ZZ(-1);
		numerator *= to_ZZ(-1);
	}
}//integrateLinFormSum

/* computes the integral of a product of powers of linear forms over a  simplex
 * @input it: iterator to the linear forms.
 * @input mySimplex: a simplex
 * @input productCount: the number of products in the linear form.
 * @return RationalNTL: the integral over the simplex.
 *
 * Math: integral(over simplex) <l_1, x>^m_1 ... <l_d, x>^m_D =
 *
 *               abs(det(matrix formed by the rays))* M!/(d+|M|)!
 *  --------------------------------------------------------------------------
 *  product(over j)(1 - <l_1, s_j>t_1 - <l_2, s_j>t_2 - ... - <l_D, s_j>t_D )
 *                                 \          \_these are numbers (tVector)
 *                                  \_the t are symbolic.
 *
 *  where we want the coefficient of t_1^m_1 ... t_D^m_D in the polynomial
 *  expansion of the RHS,
 *
 * and where s_j is a vertex,
 *       l_i is a linear form
 *       D is any number of products
 *       M is the power vector
 *       M! = m_1! m_2! ... m_D!
 *       |M| = m_1 + m_2 + ... + m_D.
 *
 * Note that we cannot divide by zero, so don't worry.
 *
 * To find such an expansion, we use a Tayler expansion on each
 * 1/(1 +a_1t_1 + ... +a_Dt_D ) up to degree M for each such product. We then
 * multiply all these polynomials together (ignoring degrees larger than M)
 * and then we find the coefficient of t^M. (Again, M is a vector of powers)
 *
 * Taylor Expansion about zero (x is a vector)
 * f(x) = 1/(1-a_1x_1 + ... + a_d x_d)
 *      = sum_{n \in \Z^d_{>= 0}}  x^n / n! * d^{n|} f(x)     (0,0,...0)
 *                                         ------------------
 *                                        dx_1^{n_1}...dx_d^{n_d}
 *      = sum_{n \in \Z^d_{>= 0}}  x^n / n! * (-1)(-2)...(-1 * |n|) (1 - 0)^{-|n|-1} a_1^{n_1} ... a_d^{n_d}
 *      = sum_{n \in \Z^d_{>= 0}}  x^n (-1)^|n|  (|n| choose n_1, ..., n_d) a_1^{n_1} ... a_d^{n_d}
 *      where (|n| choose n_1, ..., n_d) is a multinomial coefficient.
 *
 * See the paper: "How to Integrate a Polynomial over a Simplex" by  V. BALDONI, N. BERLINE, J. A. DE LOERA, M. VERGNE.
 */
RationalNTL integrateLinFormProducts(PolyIterator<RationalNTL, ZZ>* it, const simplexZZ &mySimplex, const int productCount)
{
	//cout << "integrateLinFormProducts called" << endl;
	int * M; //the power vector.
	ZZ lenM; // |M|
	RationalNTL coef; //temp. coefficient.
	RationalNTL answer;
	ZZ monomialCount; //number of power vectors less than M component wise.

	monomialCount = 1;
	coef = 1;

	M = new int[productCount];
	it->begin();
	term<RationalNTL, ZZ>* temp;
	int i = 0;
	while ((temp = it->nextTerm()) != 0)
	{
		M[i] = temp->degree; //save the power
		++i;
		lenM += temp->degree; //add the power

		coef *= temp->coef; // M1! M2! ... MD! * (coefficents ^ powers)

		monomialCount *= (temp->degree+1); //monomialCount = number of monomials (m1, ..., md) <= (deg1, ..., degD).
	}
	if ( i != productCount)
		THROW_LATTE_MSG(LattException::ue_BadPolynomialLinFormInput, 1, "count of terms differ");

	ZZ factorialDim = to_ZZ(1); // = (|M|+d)!
	for (ZZ j = to_ZZ(2); j <=  lenM + mySimplex.d; ++j)
	{
		factorialDim *= j;
	}

	// 1/factorialDim = 1 / (|M| + d)!

	answer = coef * mySimplex.v;
	answer.div(factorialDim);

	//now, answer = [vol(simplex)*d!] M! / (|M|+d)!.


	//ok, now we just need to find the coeff of M in the polynomial expansion.


	vec_ZZ tVector; //the coefficent vector of ( 1- a_1t_1 - ... - a_Dt_D) (we don't save the leading 1)
	int* counter; //current power n
	tVector.SetLength(productCount);
	counter = new int[productCount];
	int* minDegree = new int[productCount];

	monomialSum polynomialProduct;
	polynomialProduct.termCount = 0;
	polynomialProduct.varCount = productCount;

	for(int i = 0; i < productCount; ++i)
		minDegree[i] = 0;

	//insert 1.
	insertMonomial(RationalNTL(1,1), minDegree, polynomialProduct);



	//for every 1/(1 + stuff) term in the denominator.
	for(int i = 0; i < mySimplex.d +1; ++i)
	{
		it->begin();
		int j = 0;
		while ((temp = it->nextTerm()) != 0)
		{
			tVector[j] = 0;
			for (int len = 0; len < temp->length; ++len)
			{
				tVector[j] += mySimplex.s[i][len] * temp->exps[len];
			}//dot l  and vertex i
			tVector[j] *= -1;

			++j;
		}//while. build the t-vector.

		//now tVector is in the form [-<l_1, s_i>, ..., -<l_D, s_i>]
		//expand tVecotr into a polynomial series.


		monomialSum thePolynomial;
		thePolynomial.termCount = 0;
		thePolynomial.varCount = productCount;

		for(j = 0; j < productCount; ++j)
			counter[j] = 0;

		insertMonomial(RationalNTL(1,1), counter, thePolynomial);

		//for every monomial less than or equal to M.
		for(ZZ currentMonomialCount = to_ZZ(0); currentMonomialCount < monomialCount-1 /*-1 because we already added 1x^0*/; ++currentMonomialCount)
		{
			counter[0] += 1;
			for (int myIndex = 0; counter[myIndex] > M[myIndex]; myIndex++)
			{
				counter[myIndex] = 0;
				counter[myIndex + 1] += 1;
			}//add one and do a carry if you have to.

			//insert the polynomial in counter.

			RationalNTL c(1,1);
			int lenC = 0; // = |n|
			for(int k = 0; k < productCount; ++k)
				lenC += counter[k];

			int lenC_copy = lenC;

			for(int k = 0; k < productCount; ++k)
			{
				c *= AChooseB(lenC, counter[k]);
				c *= power(tVector[k], counter[k]);
				lenC -= counter[k];
			}// find (|n| choose n_1, ..., n_d) and a^n

			if ( lenC_copy % 2 == 1)
				c.changeSign(); // (-1)^|n|

			//cout << "going to insert polynomail term" << endl;
			//cout << " c=" << c << " exp= ";
			//for(int k = 0; k < productCount; ++k)
			//	cout << counter[k] << ", " ;
			//cout << endl;
			insertMonomial(c, counter, thePolynomial);
			//cout << "end going to insert polynomail term" << endl;

		}//make the polynomial.

		//cout << "\n\ndoing poly multiplication" << endl;
		BTrieIterator<RationalNTL, int>* it3 = new BTrieIterator<RationalNTL, int> ();
		BTrieIterator<RationalNTL, int>* it2 = new BTrieIterator<RationalNTL, int> ();
		it3->setTrie(thePolynomial.myMonomials, thePolynomial.varCount);
		it2->setTrie(polynomialProduct.myMonomials, polynomialProduct.varCount);

		monomialSum tempProducts;
		tempProducts.varCount = productCount;
		multiply<RationalNTL> (it3, it2, tempProducts, minDegree, M);
		destroyMonomials(thePolynomial);
		destroyMonomials(polynomialProduct);
		delete it3;
		delete it2;

		polynomialProduct.myMonomials = tempProducts.myMonomials;
		polynomialProduct.termCount = tempProducts.termCount;
		polynomialProduct.varCount =  tempProducts.varCount;
		//cout << "end poly multiplication" << endl;
	}//for every simplex vertex

	//now find the coeff of M.

	BTrieIterator<RationalNTL, int>* finalPoly = new BTrieIterator<RationalNTL, int> ();
	finalPoly->setTrie(polynomialProduct.myMonomials, polynomialProduct.varCount);
	finalPoly->begin();
	term<RationalNTL, int>* storedTerm;
	bool found;
	while ((storedTerm = finalPoly->nextTerm()) != 0)
	{
		found = true;
		for(int i = 0; i < productCount; ++i)
			if ( storedTerm->exps[i] != M[i])
			{
				found = false;
				break;
			}

		if (found == true )
		{
			answer.mult(storedTerm->coef);
			break;
		}//found coeff. of highest term.
	}//while
	assert(found == true);

	return answer;
}//integrateLinFormProducts

void integrateMonomialSum(ZZ &a, ZZ &b, monomialSum &monomials,
		const simplexZZ &mySimplex)//integrate a polynomial stored as a Burst Trie
{
	linFormSum forms;
	forms.termCount = 0;
	forms.varCount = monomials.varCount;
	BTrieIterator<RationalNTL, int>* it = new BTrieIterator<RationalNTL, int> ();
	it->setTrie(monomials.myMonomials, monomials.varCount);
	decompose(it, forms); //decomposition
	delete it;
	BTrieIterator<RationalNTL, ZZ>* it2 = new BTrieIterator<RationalNTL, ZZ> ();
	it2->setTrie(forms.myForms, forms.varCount);
	integrateLinFormSum(a, b, it2, mySimplex);
}


void _integrateMonomialSum(ZZ &a, ZZ &b, _monomialSum &monomials,
		const simplexZZ &mySimplex)
{
	_linFormSum forms;
	forms.termCount = 0;
	forms.varCount = monomials.varCount;
	for (int i = 0; i < monomials.termCount; i++)
		_decompose(monomials, forms, i);
	LBlockIterator<RationalNTL>* it_ = new LBlockIterator<RationalNTL> ();
	it_->setLists(forms.lHead, forms.cHead, forms.varCount, forms.termCount);
	integrateLinFormSum(a, b, it_, mySimplex);
}