1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
#include "newIntegration.h"
#include "iterators.h"
#include <NTL/vec_ZZ.h>
#include <NTL/ZZ.h>
#include <NTL/mat_ZZ.h>
#include <iostream>
#include "print.h"
using namespace std;
NTL_CLIENT
//this function deletes space from a given string
void delSpace(string &line)
{
for (size_t i = 0; i < line.length(); i++)
{
while ((i < line.length()) && (line.at(i) == 32))
{
line.erase(i, 1);
}
}
}//delSpace
//this function converts a given string into a simlexZZ mySimplex
//for example, string [[0,0],[1,1],[7,8]] is converted to a two-dimensional vector of ZZs.
void convertToSimplex(simplexZZ &mySimplex, string line)
{
delSpace(line);
int index, i, t, j, c;
string temp, subtemp;
t = 2;
mySimplex.d = 1;
t = line.find("[", t) + 1;
t = line.find("[", t) + 1;
temp = line.substr(t, line.find("]", t) - t);
for (i = 0; i < temp.length(); i++)
mySimplex.d += (temp.at(i) == ',');
c = 0;
for (i = 0; i < line.length(); i++)
c += (line.at(i) == ']');
if (c - 2 != mySimplex.d)
{
cout << "The d-simplex should have d+1 vertices. Please check." << endl;
exit(1);
};
(mySimplex.s).SetLength(mySimplex.d + 1);
index = 1;
for (i = 0; i <= mySimplex.d; i++)
{
temp = line.substr(index, line.find("]", index) - index + 1);
c = 0;
for (j = 0; j < temp.length(); j++)
c += (temp.at(j) == ',');
if (c != mySimplex.d - 1)
{
cout << "Each vertex should have d coordinates. Please check."
<< endl;
exit(1);
};
(mySimplex.s[i]).SetLength(mySimplex.d);
t = 1;
for (j = 0; j < mySimplex.d - 1; j++)
{
subtemp = temp.substr(t, temp.find(",", t) - t);
t = temp.find(",", t) + 1;
mySimplex.s[i][j] = to_ZZ(subtemp.c_str());
};
subtemp = temp.substr(t, temp.find(",", t) - t + 1);
t = temp.find(",", t);
mySimplex.s[i][mySimplex.d - 1] = to_ZZ(subtemp.c_str());
index = line.find("]", index) + 2;
};
mat_ZZ matt;
matt.SetDims(mySimplex.d, mySimplex.d);
for (i = 1; i <= mySimplex.d; i++)
matt[i - 1] = mySimplex.s[i] - mySimplex.s[0];
mySimplex.v = determinant(matt);
if (mySimplex.v < 0)
mySimplex.v = -mySimplex.v;
}
;
/**
* Integrate a simplex over a linear form.
*
* @parm a, b: ouput parameters, we return a/b += integration answer.
* @parm l: a linear form.
* @parm mySimplex: integer simplex
* @parm m: the power the linear form is raised to
* @parm coe: the coefficient of a linear form
* @parm de: is the extra factor in the formulae that we we multiply the result by
*
* ASSUMES the polytope has dimension less than 1000.
*
* Paper Citation: @ARTICLE
* {2008arXiv0809.2083B,
* author = {{Baldoni}, V. and {Berline}, N. and {De Loera}, J. and {K{\"o}ppe}, M. and
* {Vergne}, M.},
* title = "{How to Integrate a Polynomial over a Simplex}",
* journal = {ArXiv e-prints},
*archivePrefix = "arXiv",
* eprint = {0809.2083},
*primaryClass = "math.MG",
* keywords = {Mathematics - Metric Geometry, Computer Science - Computational Complexity, Computer Science - Symbolic Computation},
* year = 2008,
* month = sep,
* adsurl = {http://adsabs.harvard.edu/abs/2008arXiv0809.2083B},
* adsnote = {Provided by the SAO/NASA Astrophysics Data System}
* }
*
*BACKGROUND MATH 1: \int_\Delta l^m \d m' = d!\vol(\Delta, \d m')\frac{m!}{(m+d)!}
* \Big(\sum_{i=1}^{d+1}
* \frac{ <l, s_i >^{M+d}}
* {\prod_{j\neq i} <l, s_i- s_j >}
* \Big),
* Where \Delta is a regular integer-vertex simplex, d is the dimension, l is a linear form, s_i are the verties.
*
*BACKGROUND MATH 2:
* \int_{\Delta} l^m \d m' = d!\vol(\Delta, \d m') \frac{m!}{(m+d)!}
* \sum_{k\in K} \Res_{z=0}
* \frac{(z + <l, s_k>)^{m+d}}
* {\z^{m_k} {\prod_{i\in K, i \neq k} {(z + <l, s_k - s_i> )}^{m_i}} }
* as above and if the simplex is not regular, and where $K\subseteq\{1,\dots,d+1\}$ is an index set of the different poles
* $t= 1/\langle \l ,s_k\rangle$, and for $k\in K$ let $m_k$ denote the order of the pole, i.e.,
* $m_k = sizeof the set { i \in \{1,\dots,d+1\} : <l ,s_i> = <l ,s_k> }.
*
* Implementation:
* Instead of finding d!\vol(\Delta, \d m') directly, we just find the volume of the parallelepiped of the simplex.
* The data structure also assumes the m! is part of the linear form's coefficient.
*/
void update(ZZ &a, ZZ &b, vec_ZZ l, simplexZZ mySimplex, int m, RationalNTL coe, ZZ de)
{
ZZ sum, lcm, total, g, tem;
int i, j;
vec_ZZ inner_Pro; //inner_Pro[i] = <l, s_i>
vec_ZZ sum_Nu, sum_De; // (sum_Nu/sum_De)[i] = <l, s_i>^d/ (\prod_{j \neq i} <l, s_i - s_j>)
inner_Pro.SetLength(mySimplex.d + 1);
sum_Nu.SetLength(mySimplex.d + 1);
sum_De.SetLength(mySimplex.d + 1);
total = 0;
lcm = 1;
bool repeat[1000]; //put this on the stack, do not waste the time requesting memory from the heap because this function is called many, many, many times.
//Why is this bool (vs int): if there are no repeats in the <l, s_i> terms, the simplex is regular on l and we compute the integral as in the first case of the theory.
// Otherwise we will have to compute the residue. It is in the residue-function where we worry about the multiplicity of things.
for (i = 0; i <= mySimplex.d; i++)
{
sum = 0;
for (j = 0; j < mySimplex.d; j++)
sum = sum + l[j] * mySimplex.s[i][j];
inner_Pro[i] = sum; // inner_Pro_i= <l, s_i>
repeat[i] = 0;
for (j = 0; j < i; j++)
if (inner_Pro[j] == inner_Pro[i])
{
repeat[i] = 1;
break;
};//record repetitions
};//stores inner product for use
for (i = 0; i <= mySimplex.d; i++)
if (!repeat[i])
{
sum_Nu[i] = 1;
//cout << "update: l= " << l;
//cout << "update: v=";
//for(int index = 0; index <= mySimplex.d; ++index) cout << mySimplex.s[index] << ", ";
//cout << endl;
//cout << "update::l^dim+m=" << inner_Pro[i] << "^" << mySimplex.d << "+" << m;
for (j = 0; j < m + mySimplex.d; j++)
sum_Nu[i] = sum_Nu[i] * inner_Pro[i]; // sum_Nu_i = inner_pro ^ (m + d)
//cout << "=" << sum_Nu[i] << endl;
sum_De[i] = 1;
for (j = 0; j <= mySimplex.d; j++)
if (i != j)
sum_De[i] = sum_De[i] * (inner_Pro[i] - inner_Pro[j]); //sum_de_i = \prod _{i != j} <l, s_i - s_j>
if ((sum_Nu[i] < 0) && (sum_De[i] < 0))
{
sum_Nu[i] = -sum_Nu[i];
sum_De[i] = -sum_De[i];
};
if (sum_De[i] == 0)
{
vec_ZZ ProDiff;
ProDiff.SetLength(mySimplex.d + 1);
for (j = 0; j <= mySimplex.d; j++)
ProDiff[j] = inner_Pro[i] - inner_Pro[j];
computeResidue(mySimplex.d, m, ProDiff, inner_Pro[i],
sum_Nu[i], sum_De[i]);
}
if (sum_De[i] != 0)
{
lcm = lcm * sum_De[i] / (GCD(lcm, sum_De[i]));
};
//cout << "update:i= " << i << "num/dem= " << RationalNTL(sum_Nu[i], sum_De[i]) << endl;
//cout << "update:i= " << i << "num/dem= " << sum_Nu[i]<< " / "<< sum_De[i] << endl;
//cout << "update:i= " << i << "num/dem= " << sum_Nu[i]/GCD(sum_Nu[i],sum_De[i])<< " / "<< sum_De[i]/GCD(sum_Nu[i],sum_De[i]) << endl;
//cout << RationalNTL(coe.getNumerator()*mySimplex.v*sum_Nu[i],de*coe.getDenominator()*sum_De[i]) << endl;
};
for (i = 0; i <= mySimplex.d; i++)
if ((!repeat[i]) && (sum_De[i] != 0))
{
total += sum_Nu[i] * (lcm / sum_De[i]);
}
lcm = lcm * de * coe.getDenominator();
total = total * mySimplex.v * coe.getNumerator();
//cout << "update: total/lcm = " << RationalNTL(total,lcm) << endl;
if (a == 0)
{
a = total;
b = lcm;
} //return a/b = total/lcm * coe
else if ((lcm != 0) && (b != 0))
{
// a/b = a/b + total/lcm
tem = b * lcm / GCD(b, lcm); //find LCM of b and lcm.
a = a * tem / b + total * tem / lcm;
b = tem;
} //return a/b := a/b + total/lcm.
g = GCD(a, b);
if (g != 0)
{
a = a / g;
b = b / g;
}
}//update
//This function computes a given fraction a/b, the integral of the linear form forms, over the simplex mySimplex
void integrateLinFormSum(ZZ& numerator, ZZ& denominator,
PolyIterator<RationalNTL, ZZ>* it, const simplexZZ &mySimplex)
{
ZZ v, de, counter, tem; //, coe;
RationalNTL coe;
int i, j, index, k, m;
vec_ZZ l;
//if (forms.varCount!=mySimplex.d) {cout<<"The dimensions of the polynomial and simplex don't match. Please check!"<<forms.varCount<<"<>"<<mySimplex.d<<endl;exit(1);};
l.SetLength(mySimplex.d);
numerator = 0;
denominator = 0;
it->begin();
term<RationalNTL, ZZ>* temp;
while ((temp = it->nextTerm()) != 0)
{
coe = temp->coef;
m = temp->degree; //obtain coefficient, power
l.SetLength(temp->length); //obtain exponent vector
for (j = 0; j < temp->length; j++)
{
l[j] = temp->exps[j];
}
de = 1;
for (i = 1; i <= mySimplex.d + m; i++)
{
de = de * i;
} //de is (d+m)!. Note this is different from the factor in the paper because in our storage of a linear form, any coefficient is automatically adjusted by m!
update(numerator, denominator, l, mySimplex, m, coe, de);//We are ready to compute the integral of one linear form over the simplex
}
delete temp;
if (denominator < 0)
{
denominator *= to_ZZ(-1);
numerator *= to_ZZ(-1);
}
}//integrateLinFormSum
/* computes the integral of a product of powers of linear forms over a simplex
* @input it: iterator to the linear forms.
* @input mySimplex: a simplex
* @input productCount: the number of products in the linear form.
* @return RationalNTL: the integral over the simplex.
*
* Math: integral(over simplex) <l_1, x>^m_1 ... <l_d, x>^m_D =
*
* abs(det(matrix formed by the rays))* M!/(d+|M|)!
* --------------------------------------------------------------------------
* product(over j)(1 - <l_1, s_j>t_1 - <l_2, s_j>t_2 - ... - <l_D, s_j>t_D )
* \ \_these are numbers (tVector)
* \_the t are symbolic.
*
* where we want the coefficient of t_1^m_1 ... t_D^m_D in the polynomial
* expansion of the RHS,
*
* and where s_j is a vertex,
* l_i is a linear form
* D is any number of products
* M is the power vector
* M! = m_1! m_2! ... m_D!
* |M| = m_1 + m_2 + ... + m_D.
*
* Note that we cannot divide by zero, so don't worry.
*
* To find such an expansion, we use a Tayler expansion on each
* 1/(1 +a_1t_1 + ... +a_Dt_D ) up to degree M for each such product. We then
* multiply all these polynomials together (ignoring degrees larger than M)
* and then we find the coefficient of t^M. (Again, M is a vector of powers)
*
* Taylor Expansion about zero (x is a vector)
* f(x) = 1/(1-a_1x_1 + ... + a_d x_d)
* = sum_{n \in \Z^d_{>= 0}} x^n / n! * d^{n|} f(x) (0,0,...0)
* ------------------
* dx_1^{n_1}...dx_d^{n_d}
* = sum_{n \in \Z^d_{>= 0}} x^n / n! * (-1)(-2)...(-1 * |n|) (1 - 0)^{-|n|-1} a_1^{n_1} ... a_d^{n_d}
* = sum_{n \in \Z^d_{>= 0}} x^n (-1)^|n| (|n| choose n_1, ..., n_d) a_1^{n_1} ... a_d^{n_d}
* where (|n| choose n_1, ..., n_d) is a multinomial coefficient.
*
* See the paper: "How to Integrate a Polynomial over a Simplex" by V. BALDONI, N. BERLINE, J. A. DE LOERA, M. VERGNE.
*/
RationalNTL integrateLinFormProducts(PolyIterator<RationalNTL, ZZ>* it, const simplexZZ &mySimplex, const int productCount)
{
//cout << "integrateLinFormProducts called" << endl;
int * M; //the power vector.
ZZ lenM; // |M|
RationalNTL coef; //temp. coefficient.
RationalNTL answer;
ZZ monomialCount; //number of power vectors less than M component wise.
monomialCount = 1;
coef = 1;
M = new int[productCount];
it->begin();
term<RationalNTL, ZZ>* temp;
int i = 0;
while ((temp = it->nextTerm()) != 0)
{
M[i] = temp->degree; //save the power
++i;
lenM += temp->degree; //add the power
coef *= temp->coef; // M1! M2! ... MD! * (coefficents ^ powers)
monomialCount *= (temp->degree+1); //monomialCount = number of monomials (m1, ..., md) <= (deg1, ..., degD).
}
if ( i != productCount)
THROW_LATTE_MSG(LattException::ue_BadPolynomialLinFormInput, 1, "count of terms differ");
ZZ factorialDim = to_ZZ(1); // = (|M|+d)!
for (ZZ j = to_ZZ(2); j <= lenM + mySimplex.d; ++j)
{
factorialDim *= j;
}
// 1/factorialDim = 1 / (|M| + d)!
answer = coef * mySimplex.v;
answer.div(factorialDim);
//now, answer = [vol(simplex)*d!] M! / (|M|+d)!.
//ok, now we just need to find the coeff of M in the polynomial expansion.
vec_ZZ tVector; //the coefficent vector of ( 1- a_1t_1 - ... - a_Dt_D) (we don't save the leading 1)
int* counter; //current power n
tVector.SetLength(productCount);
counter = new int[productCount];
int* minDegree = new int[productCount];
monomialSum polynomialProduct;
polynomialProduct.termCount = 0;
polynomialProduct.varCount = productCount;
for(int i = 0; i < productCount; ++i)
minDegree[i] = 0;
//insert 1.
insertMonomial(RationalNTL(1,1), minDegree, polynomialProduct);
//for every 1/(1 + stuff) term in the denominator.
for(int i = 0; i < mySimplex.d +1; ++i)
{
it->begin();
int j = 0;
while ((temp = it->nextTerm()) != 0)
{
tVector[j] = 0;
for (int len = 0; len < temp->length; ++len)
{
tVector[j] += mySimplex.s[i][len] * temp->exps[len];
}//dot l and vertex i
tVector[j] *= -1;
++j;
}//while. build the t-vector.
//now tVector is in the form [-<l_1, s_i>, ..., -<l_D, s_i>]
//expand tVecotr into a polynomial series.
monomialSum thePolynomial;
thePolynomial.termCount = 0;
thePolynomial.varCount = productCount;
for(j = 0; j < productCount; ++j)
counter[j] = 0;
insertMonomial(RationalNTL(1,1), counter, thePolynomial);
//for every monomial less than or equal to M.
for(ZZ currentMonomialCount = to_ZZ(0); currentMonomialCount < monomialCount-1 /*-1 because we already added 1x^0*/; ++currentMonomialCount)
{
counter[0] += 1;
for (int myIndex = 0; counter[myIndex] > M[myIndex]; myIndex++)
{
counter[myIndex] = 0;
counter[myIndex + 1] += 1;
}//add one and do a carry if you have to.
//insert the polynomial in counter.
RationalNTL c(1,1);
int lenC = 0; // = |n|
for(int k = 0; k < productCount; ++k)
lenC += counter[k];
int lenC_copy = lenC;
for(int k = 0; k < productCount; ++k)
{
c *= AChooseB(lenC, counter[k]);
c *= power(tVector[k], counter[k]);
lenC -= counter[k];
}// find (|n| choose n_1, ..., n_d) and a^n
if ( lenC_copy % 2 == 1)
c.changeSign(); // (-1)^|n|
//cout << "going to insert polynomail term" << endl;
//cout << " c=" << c << " exp= ";
//for(int k = 0; k < productCount; ++k)
// cout << counter[k] << ", " ;
//cout << endl;
insertMonomial(c, counter, thePolynomial);
//cout << "end going to insert polynomail term" << endl;
}//make the polynomial.
//cout << "\n\ndoing poly multiplication" << endl;
BTrieIterator<RationalNTL, int>* it3 = new BTrieIterator<RationalNTL, int> ();
BTrieIterator<RationalNTL, int>* it2 = new BTrieIterator<RationalNTL, int> ();
it3->setTrie(thePolynomial.myMonomials, thePolynomial.varCount);
it2->setTrie(polynomialProduct.myMonomials, polynomialProduct.varCount);
monomialSum tempProducts;
tempProducts.varCount = productCount;
multiply<RationalNTL> (it3, it2, tempProducts, minDegree, M);
destroyMonomials(thePolynomial);
destroyMonomials(polynomialProduct);
delete it3;
delete it2;
polynomialProduct.myMonomials = tempProducts.myMonomials;
polynomialProduct.termCount = tempProducts.termCount;
polynomialProduct.varCount = tempProducts.varCount;
//cout << "end poly multiplication" << endl;
}//for every simplex vertex
//now find the coeff of M.
BTrieIterator<RationalNTL, int>* finalPoly = new BTrieIterator<RationalNTL, int> ();
finalPoly->setTrie(polynomialProduct.myMonomials, polynomialProduct.varCount);
finalPoly->begin();
term<RationalNTL, int>* storedTerm;
bool found;
while ((storedTerm = finalPoly->nextTerm()) != 0)
{
found = true;
for(int i = 0; i < productCount; ++i)
if ( storedTerm->exps[i] != M[i])
{
found = false;
break;
}
if (found == true )
{
answer.mult(storedTerm->coef);
break;
}//found coeff. of highest term.
}//while
assert(found == true);
return answer;
}//integrateLinFormProducts
void integrateMonomialSum(ZZ &a, ZZ &b, monomialSum &monomials,
const simplexZZ &mySimplex)//integrate a polynomial stored as a Burst Trie
{
linFormSum forms;
forms.termCount = 0;
forms.varCount = monomials.varCount;
BTrieIterator<RationalNTL, int>* it = new BTrieIterator<RationalNTL, int> ();
it->setTrie(monomials.myMonomials, monomials.varCount);
decompose(it, forms); //decomposition
delete it;
BTrieIterator<RationalNTL, ZZ>* it2 = new BTrieIterator<RationalNTL, ZZ> ();
it2->setTrie(forms.myForms, forms.varCount);
integrateLinFormSum(a, b, it2, mySimplex);
}
void _integrateMonomialSum(ZZ &a, ZZ &b, _monomialSum &monomials,
const simplexZZ &mySimplex)
{
_linFormSum forms;
forms.termCount = 0;
forms.varCount = monomials.varCount;
for (int i = 0; i < monomials.termCount; i++)
_decompose(monomials, forms, i);
LBlockIterator<RationalNTL>* it_ = new LBlockIterator<RationalNTL> ();
it_->setLists(forms.lHead, forms.cHead, forms.varCount, forms.termCount);
integrateLinFormSum(a, b, it_, mySimplex);
}
|