1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
#include <NTL/vec_ZZ.h>
#include <NTL/ZZ.h>
#include "PolyTrie.h"
#include "multiply.h"
#include "valuation/Perturbation.h"
ZZ Power_ZZ(ZZ a, int b) //power function computes a^b
{
if (b == 0)
return to_ZZ(1);
int bi[20];
int digit = 0;
while (b > 0)
{
digit++;
bi[digit - 1] = b % 2;
b = b / 2;
};
ZZ t = a;
for (int i = digit - 2; i >= 0; i--)
{
t *= t;
if (bi[i] == 1)
t *= a;
};
return t;
}
ZZ AChooseB(int a, int b)
{
ZZ t = to_ZZ(1);
if (b > a)
return to_ZZ(0);
if (2 * b > a)
b = a - b;
for (int i = 1; i <= b; i++)
{
t = t * (a - i + 1) / i;
};
return t;
}
/**
*This function is called when a vertex is irregular. The function computes the residue at the irregular vertex
* @parm d: dimension
* @parm m: power of the linear form.
* @parm innerProDiff[j] = <l, s_i - s_j>
* @parm p = <l, s_i>
* @parm a, b: output parameters: answer: a/b.
*
* Formula: Res_{z = 0} \defrac{(z + l_k)^{M + d}}{z^{m_k} \prod_{k \neq i} ((z + l_{i})^{m_i}}
*
* Implementation Goal: we expand the polynomial (z + l_k)^{M + d} and we expand the
* series of 1 / (z + l_{i})^{m_i} up to degree m_k and multiply everything together.
* Then, we return the coefficient of the m_k term.
*
* Background Math:
* (x + y) ^ r , for any (real or complex r) = \sum _{k = 0}^{\inf} (r, k) x^{r - k}y^{k},
* where (r, k) = r (r-1)(r-2)...(r-k+1)/k! = (r)_k/k!.
* See http://en.wikipedia.org/wiki/Binomial_series
*
* So, let r = -s, and using the fact that (-s, k) = -s(-s -1)(-s -2)..(-s-k + 1)/k!= (s +k -1, k)*(-1)^k
* 1/(x + b)^s = \sum _ {k = 0}^{\inf} (s +k -1, k)*(-1)^k * x^k * b^{-s - j}
* = \dfrac{1}{b^{m + s}} ( \sum _ {k = 0}^{\inf} (s +k -1, k)*(-1)^k * x^k * b^{m - j} )
* such that m >= j. This is done because we cannot work with rational-coeff. series...we
* don't want b^(negative number), so we increase the powers of b in the series and divide by
* b^{m + s} at the end.
*/
void computeResidue(int d, int M, const vec_ZZ &innerProDiff, const ZZ &p,
ZZ &a, ZZ &b)
{
//cout << "Compute residue called" << endl;
//cout << "d=" << d << "M=" << M << " innerprod=" << innerProDiff << "p= " << p << endl;
if (p == 0)
{
a = 0;
b = 1;
return;
}; //vertex vanishes, return 0;
int k, i, j;
int *counter = new int[d];
//counter counts number of appearances of each index[i]
//again, put this on the stack. Don't want the time requesting memory from the heap because this function is called many times.
vec_ZZ index;//collecting different terms in the innerProDiff passed in
bool found;
ZZ de, nu, g;
RationalNTL c; //coefficient
int e[1]; //this is an array of size one because this is the exponent "vector" using the BurstTrie.
int mindeg[1];
int maxdeg[1];
k = 1;
index.SetLength(d);
index[k - 1] = 0;
counter[k - 1] = 0;
for (i = 0; i <= d; i++)
{
found = 0;
for (j = 0; j < k; j++)
{
if (innerProDiff[i] == index[j])
{
counter[j]++;
found = 1;
break;
}
};
if (!found)
{
k++;
index[k - 1] = innerProDiff[i];
counter[k - 1] = 1;
};
};
counter[0]--; //excluding the vertex itself
//so far we've been doing book keeping stuff: index stores the UNIQUE differences and counter stores the multiplicity
//Brandon's notes: index[k] keeps the unique terms <l, s_i - s_j> for some fixed i.
// : and counter[k] keeps track of how many times index[k] appears in the denominator.
// : counter[0] = number of terms <l, s_i - s_j> that equals zero, which has to at least one, otherwise computeResidue would not have been called.
// : Thus, we take counter[0]--, and so counter[0] now is equal to the number of additional terms that vanish.
// : So now, counter[0] is our upper bound for how far we need to take the series expansion.
// : To find the residue, we need to find the coeff. of the counter[0]-degree term because we are dividing by z^{counter[0]+1}
//actual calculations, I want the appropriate coefficient in a product of one polynomial and some power series. (everything is truncated).
nu = 1;
de = 1;
//for (i=1;i<=counter[0];i++) nu*=i;
for (j = 1; j <= k - 1; j++)
de = de * Power_ZZ(index[j], counter[j] + counter[0]);
monomialSum m1;
monomialSum sub; //sub is the substitution for m1, which alternatively stores the product for each other
// we alternatively do sum:= m1 * m2 and then m1:=sub * m2.
m1.varCount = 1;
m1.termCount = 0;
sub.varCount = 1;
sub.termCount = 0;
sub.myMonomials = NULL;
for (i = 0; i <= counter[0]; i++)
{
c = AChooseB(M + d, i) * Power_ZZ(p, M + d - i);
e[0] = i;
insertMonomial(c, e, m1);
}//now, m1 = <l, s_i>^(M+d) but in expanded form.
for (i = 1; i < k; i++)
{
monomialSum m2;
m2.varCount = 1;
m2.termCount = 0;
for (j = 0; j <= counter[0]; j++)
{
c = AChooseB(counter[i] + j - 1, j) * Power_ZZ(index[i], counter[0]
- j);
//index[i]^{counter[0] - j - (counter[j] + counter[0] (which is in de))} = -counter[j] - j. :)
if (j % 2 == 1)
c.mult(to_ZZ(-1), to_ZZ(1));
e[0] = j;
insertMonomial(c, e, m2);
};
mindeg[0] = 0;
maxdeg[0] = counter[0];
BTrieIterator<RationalNTL, int>* it = new BTrieIterator<RationalNTL, int> ();
BTrieIterator<RationalNTL, int>* it2 = new BTrieIterator<RationalNTL, int> ();
if (i % 2 == 1)
{
it->setTrie(m1.myMonomials, m1.varCount);
it2->setTrie(m2.myMonomials, m2.varCount);
if ( sub.myMonomials != NULL)
destroyMonomials(sub);
sub.varCount = 1;
multiply<RationalNTL> (it, it2, sub, mindeg, maxdeg);
}//cout<<"times "<<printMonomials(m2)<<" gives "<<printMonomials(sub)<<endl;}
else
{
it->setTrie(sub.myMonomials, sub.varCount);
it2->setTrie(m2.myMonomials, m2.varCount);
destroyMonomials(m1);
m1.varCount = 1;
multiply<RationalNTL> (it, it2, m1, mindeg, maxdeg);
}//cout<<"times "<<printMonomials(m2)<<"gives "<<printMonomials(m1)<<endl;};
delete it;
delete it2;
destroyMonomials(m2);
};
//ZZ findCoeff = to_ZZ(0);
RationalNTL findCoeff;
/* This part does the same thing as the uncommented part following this, but using the original block structure for multiplication
if (k % 2) //m1
{
//search m1 for the first term whose exponent vector is equal to [counter[0]]
}
else //sub
{
//search sub for the first term whose exponent vector is equal to [counter[0]]
}
eBlock* myExps; cBlock<ZZ>* myCoeffs;
if (k % 2==1) //choose which one to pick result from
{myExps = m1.eHead; myCoeffs = m1.cHead;
for (i=0;i<m1.termCount;i++)
{
if (i>0 && i % BLOCK_SIZE ==0)
{
myExps = myExps->next; myCoeffs=myCoeffs->next;
};
if (myExps->data[i % BLOCK_SIZE]== counter[0]) {findCoeff=myCoeffs->data[i % BLOCK_SIZE];break;};
};
}
else
{myExps = sub.eHead; myCoeffs = sub.cHead;
for (i=0;i<sub.termCount;i++)
{
if (i>0 && i % BLOCK_SIZE ==0)
{
myExps = myExps->next; myCoeffs=myCoeffs->next;
};
if (myExps->data[i % BLOCK_SIZE]== counter[0]) {findCoeff=myCoeffs->data[i % BLOCK_SIZE];break;};
};
};*/
//The following part is trying to find a monomial that has the degree we want and returns its coefficient to findCoeff
//BurstTerm<RationalNTL, int>* temp;
BurstTrie<RationalNTL, int>* myTrie;
BTrieIterator<RationalNTL, int>* it = new BTrieIterator<RationalNTL, int> ();
if (k % 2 == 1)
{
//temp = new BurstTerm<RationalNTL, int> (m1.varCount);
myTrie = m1.myMonomials;
it->setTrie(myTrie, m1.varCount);
} else
{
//temp = new BurstTerm<RationalNTL, int> (sub.varCount);
myTrie = sub.myMonomials;
it->setTrie(myTrie, sub.varCount);
}
it->begin();
term<RationalNTL, int>* storedTerm;
while ((storedTerm = it->nextTerm()) != 0)
{
if (storedTerm->exps[0] == counter[0])
{
findCoeff = storedTerm->coef;
break;
}//again, counter[0] +1 = degree of z, which we are dividing by.
}//while
a = nu * findCoeff.getNumerator();
b = de * findCoeff.getDenominator();
g = GCD(a, b);
if (g != 0)
{
a = a / g;
b = b / g;
};
//cout << "compute residue: d=" << d << ", M=" << M << ", p=" << p << endl;
//cout << " innerProdDiff" << innerProDiff << endl;
//cout << " a/b = " << RationalNTL(a, b) << endl;
delete it;
destroyMonomials(m1);
destroyMonomials(sub);
return;
}//computeResidue
/**
* This function is very similar to the computeResidue() function, but
* instead of finding the series expansion of 1/(a+e)^m about e= 0,
* we need to take the expansion 1/(a+b*e)^m about e=0.
*
* Assumes the numerator does not vanish.
* Assumes the first entry of lDotR is zero and the first entry of leDotRPower is the order of the pole.
* We find Residue about e=0 of( (lDotV +eDotV*e)^d+m / (e^leDotRPower[0]+1 * (lDotR[i] + eDotR[i]*e)^leDotRPower[i]))
* \_>note the +1.
* This function is a friend function to LinearLawrenceIntegration
* @parm d: dimension
* @parm m: power of the linear form.
* @parm coneTerm: <v,l+e>/ e^m1*(a1 +b1e)^m2*...(ak +bke)^mk, k<d.(note that the power of <v,e+l> is not saved here.
* @parm numerator, denominator:output parameters
*
* Formula: Res_{z = 0} \defrac{(z + l_k)^{M + d}}{z^{m_k} \prod_{k \neq i} ((z + l_{i})^{m_i}}
*
* Implementation: Use regular binomial theorem to expand <v,l+e>^(m+d) and delete terms of larger than degree m1.
* Expand 1/(a+be)^mi using the negative binomial theorem and delete powers larger than degree m1.
* Multiply these finite powers, keeping the degree <= m1 terms.
* Then find the constant coeff. term in this final polynmial product.
* For the negative binomial theorem: http://en.wikipedia.org/wiki/Binomial_series
*
* Like in computeResideu, when expanding 1/(a + be)^m up to degree m1,
* we factor a 1/(a^(m+m1)) so that the finite-degree polynomial will have
* integer values.See the notes for computeResidue()
*/
void computeResidueLawrence(const int d, const int M, const LinearLawrenceIntegration & coneTerm, ZZ &numerator, ZZ &denominator)
{
//cout << "computeResidueLawrence" << endl;
//cout << " d=" << d << ", M=" << M << " ";
//coneTerm.printTerm();
int k, i, j;
//int counter[1000];//counter counts number of appearances of each index[i]
//again, put this on the stack. Don't want the time requesting memory from the heap because this function is called many times.
//vec_ZZ index;//collecting different terms in the innerProDiff passed in
//bool found;
ZZ de, nu, g;
RationalNTL c; //coefficient.
int e[1]; //this is an array of size one because this is the exponent "vector" using the BurstTrie.
int mindeg[1];
int maxdeg[1];
int truncateDegree;
truncateDegree = coneTerm.rayDotProducts[0].power; //want to find the coef. of the truncateDegree-degree term in the final polynomial.
//we assume the power of the (0+c1*e) term is in the first array index.
nu = 1;
de = coneTerm.rayDotProducts[0].epsilon; //factor the coeff. of e^m out.
monomialSum products;
monomialSum tempProducts;
products.varCount = 1;
products.termCount = 0;
tempProducts.varCount = 1;
tempProducts.termCount = 0;
tempProducts.myMonomials = NULL;
//cout << "(" << coneTerm.numeratorDotProduct.constant << "+ " << coneTerm.numeratorDotProduct.epsilon << ") ^" << M + d << "==" << endl;
for (i = 0; i <= truncateDegree; i++)
{
//MATH: (a + be)^M+d = sum_k=0^m+d (m+d choose k) (be)^k * (a)^{m+d -k}
// \ \_>numeratorDotProduct.constant
// \_>coneTerm.numeratorDotProduct.epsilon
c = AChooseB(M + d, i) * Power_ZZ(coneTerm.numeratorDotProduct.constant, M + d - i) * Power_ZZ(coneTerm.numeratorDotProduct.epsilon, i);
e[0] = i;
//cout << c << "e^" << e[0] << " + ";
insertMonomial(c, e, products);
}//now, m1 = <l +e, vertex>^(M+d) but in expanded form and truncated
//cout << endl;
//start i at 1 because first index (0) assumed to be order of pole....(0+ce)
for (i = 1; i < d; i++)
{
//cout << "going to do case i=" << i << endl;
if (coneTerm.rayDotProducts[i].power <= 0 )
continue; //really, at this point, the power should not be zero. It could be negative if this term is a repeat or positive.
if (coneTerm.rayDotProducts[i].epsilon == 0)
{
//cout << "factored anoter term: " << coneTerm.rayDotProducts[i].constant << "^" << coneTerm.rayDotProducts[i].power << endl;
de *= Power_ZZ(coneTerm.rayDotProducts[i].constant, coneTerm.rayDotProducts[i].power);
continue;
}//factor the constant out: (a + 0*e)^power.
//factor out a so that the polynomial is integer.
//cout << "factoring out: " << coneTerm.rayDotProducts[j].constant << "^" << coneTerm.rayDotProducts[j].power + truncateDegree << endl;
de = de * Power_ZZ(coneTerm.rayDotProducts[i].constant, coneTerm.rayDotProducts[i].power + truncateDegree);
monomialSum m2;
m2.varCount = 1;
m2.termCount = 0;
//cout << "series: ";
for (j = 0; j <= truncateDegree; j++)
{
//MATH: (a + be)^{-s} truncated to degree m in terms of e:
// = b^{-s -m} sum_j=0^k=m (-1)^j * (s+j-1 choose j) * (be)^j * a^{m -k}
// \ \ \_>coneTerm.rayDotProducts[i].constant
// \ \_>coneTerm.rayDotProducts[i].epsilon
// \_>factored out into de agove.
c = AChooseB(coneTerm.rayDotProducts[i].power + j - 1, j) * Power_ZZ(coneTerm.rayDotProducts[i].constant, truncateDegree - j) * Power_ZZ(coneTerm.rayDotProducts[i].epsilon, j);
if (j % 2 == 1)//this sign comes from (-s, k) = -s(-s -1)(-s -2)..(-s-k + 1)/k!= (s +k -1, k)*(-1)^k
c.mult(to_ZZ(-1));
e[0] = j;
//cout << c << "e^" << j << " + ";
insertMonomial(c, e, m2);
};
//cout << endl;
//I took out the whole polynomial multiplication flip-flop code found in computeResidue().
mindeg[0] = 0;
maxdeg[0] = truncateDegree;
BTrieIterator<RationalNTL, int>* it = new BTrieIterator<RationalNTL, int> ();
BTrieIterator<RationalNTL, int>* it2 = new BTrieIterator<RationalNTL, int> ();
it->setTrie(products.myMonomials, products.varCount);
it2->setTrie(m2.myMonomials, m2.varCount);
multiply<RationalNTL> (it, it2, tempProducts, mindeg, maxdeg);//tempProducts = m2 * products.
destroyMonomials(products);
products.myMonomials = tempProducts.myMonomials;
products.termCount = tempProducts.termCount;
products.varCount = tempProducts.varCount;
delete it;
delete it2;
destroyMonomials(m2);
};
//cout << "end of denominator processing" << endl;
//ZZ findCoeff = to_ZZ(0);
RationalNTL findCoeff;
///find a monomial that has degree truncateDegree and get its coefficient
BTrieIterator<RationalNTL, int>* it = new BTrieIterator<RationalNTL, int> ();
//myTrie = products.myMonomials;
it->setTrie(products.myMonomials, products.varCount);
it->begin();
term<RationalNTL, int>* storedTerm;
while ((storedTerm = it->nextTerm()) != 0)
{
if (storedTerm->exps[0] == truncateDegree)
{
findCoeff = storedTerm->coef;
break;
}//found coeff. of highest term.
}//while
numerator = nu * findCoeff.getNumerator();
denominator = de * findCoeff.getDenominator();
//cout << "*compute residue: d=" << d << ", M=" << M << " " ;
//coneTerm.printTerm();
//cout << "* num/den = " << RationalNTL(numerator, denominator) << endl;
delete it;
destroyMonomials(products);
return;
}//computeResidueLawrence
|