1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
#-*- R -*-
## Script from Fourth Edition of `Modern Applied Statistics with S'
# Chapter 4 Graphical Output
library(MASS)
library(lattice)
trellis.device(postscript, file="ch04.ps", width=8, height=6,
pointsize=9)
options(echo=T, width=65, digits=5)
# 4.2 Basic plotting functions
topo.loess <- loess(z ~ x * y, topo, degree = 2, span = 0.25)
topo.mar <- list(x = seq(0, 6.5, 0.2), y=seq(0, 6.5, 0.2))
topo.lo <- predict(topo.loess, expand.grid(topo.mar))
topo.lo1 <- cbind(expand.grid(x=topo.mar$x, y=topo.mar$y),
z=as.vector(topo.lo))
contourplot(z ~ x * y, topo.lo1, aspect = 1,
at = seq(700, 1000, 25), xlab = "", ylab = "",
panel = function(x, y, subscripts, ...) {
panel.levelplot(x, y, subscripts, ...)
panel.xyplot(topo$x, topo$y, cex = 0.5)
}
)
# 4.5 Trellis graphics
xyplot(time ~ dist, data = hills,
panel = function(x, y, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y, type = "l")
panel.abline(lqs(y ~ x), lty = 3)
# identify(x, y, row.names(hills))
}
)
bwplot(Expt ~ Speed, data = michelson, ylab = "Experiment No.",
main = "Speed of Light Data")
data(swiss)
splom(~ swiss, aspect = "fill",
panel = function(x, y, ...) {
panel.xyplot(x, y, ...); panel.loess(x, y, ...)
}
)
sps <- trellis.par.get("superpose.symbol")
sps$pch <- 1:7
trellis.par.set("superpose.symbol", sps)
xyplot(Time ~ Viscosity, data = stormer, groups = Wt,
panel = panel.superpose, type = "b",
key = list(columns = 3,
text = list(paste(c("Weight: ", "", ""),
unique(stormer$Wt), "gms")),
points = Rows(sps, 1:3)
)
)
rm(sps)
topo.plt <- expand.grid(topo.mar)
topo.plt$pred <- as.vector(predict(topo.loess, topo.plt))
levelplot(pred ~ x * y, topo.plt, aspect = 1,
at = seq(690, 960, 10), xlab = "", ylab = "",
panel = function(x, y, subscripts, ...) {
panel.levelplot(x, y, subscripts, ...)
panel.xyplot(topo$x,topo$y, cex = 0.5, col = 1)
}
)
## if (F) {
wireframe(pred ~ x * y, topo.plt, aspect = c(1, 0.5),
drape = T, screen = list(z = -150, x = -60),
colorkey = list(space="right", height=0.6))
## }
lcrabs.pc <- predict(princomp(log(crabs[,4:8])))
crabs.grp <- c("B", "b", "O", "o")[rep(1:4, each = 50)]
splom(~ lcrabs.pc[, 1:3], groups = crabs.grp,
panel = panel.superpose,
key = list(text = list(c("Blue male", "Blue female",
"Orange Male", "Orange female")),
points = Rows(trellis.par.get("superpose.symbol"), 1:4),
columns = 4)
)
sex <- crabs$sex
levels(sex) <- c("Female", "Male")
sp <- crabs$sp
levels(sp) <- c("Blue", "Orange")
splom(~ lcrabs.pc[, 1:3] | sp*sex, cex = 0.5, pscales = 0)
Quine <- quine
levels(Quine$Eth) <- c("Aboriginal", "Non-aboriginal")
levels(Quine$Sex) <- c("Female", "Male")
levels(Quine$Age) <- c("primary", "first form",
"second form", "third form")
levels(Quine$Lrn) <- c("Average learner", "Slow learner")
bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine)
bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine, layout = c(4, 2),
strip = function(...) strip.default(..., style = 1))
stripplot(Age ~ Days | Sex*Lrn*Eth, data = Quine,
jitter = TRUE, layout = c(4, 2))
stripplot(Age ~ Days | Eth*Sex, data = Quine,
groups = Lrn, jitter = TRUE,
panel = function(x, y, subscripts, jitter.data = F, ...) {
if(jitter.data) y <- jitter(as.numeric(y))
panel.superpose(x, y, subscripts, ...)
},
xlab = "Days of absence",
between = list(y = 1), par.strip.text = list(cex = 0.7),
key = list(columns = 2, text = list(levels(Quine$Lrn)),
points = Rows(trellis.par.get("superpose.symbol"), 1:2)
),
strip = function(...)
strip.default(..., strip.names = c(TRUE, TRUE), style = 1)
)
fgl0 <- fgl[ ,-10] # omit type.
fgl.df <- data.frame(type = rep(fgl$type, 9),
y = as.vector(as.matrix(fgl0)),
meas = factor(rep(1:9, each = 214), labels = names(fgl0)))
stripplot(type ~ y | meas, data = fgl.df,
scales = list(x = "free"), xlab = "", cex = 0.5,
strip = function(...) strip.default(style = 1, ...))
if(F) { # no data supplied
xyplot(ratio ~ scant | subject, data = A5,
xlab = "scan interval (years)",
ylab = "ventricle/brain volume normalized to 1 at start",
subscripts = TRUE, ID = A5$ID,
strip = function(factor, ...)
strip.default(..., factor.levels = labs, style = 1),
layout = c(8, 5, 1),
skip = c(rep(FALSE, 37), rep(TRUE, 1), rep(FALSE, 1)),
panel = function(x, y, subscripts, ID) {
panel.xyplot(x, y, type = "b", cex = 0.5)
which <- unique(ID[subscripts])
panel.xyplot(c(0, 1.5), pr3[names(pr3) == which],
type = "l", lty = 3)
if(which == 303 || which == 341) points(1.4, 1.3)
})
}
Cath <- equal.count(swiss$Catholic, number = 6, overlap = 0.25)
xyplot(Fertility ~ Education | Cath, data = swiss,
span = 1, layout = c(6, 1), aspect = 1,
panel = function(x, y, span) {
panel.xyplot(x, y); panel.loess(x, y, span)
}
)
Cath2 <- equal.count(swiss$Catholic, number = 2, overlap = 0)
Agr <- equal.count(swiss$Agric, number = 3, overlap = 0.25)
xyplot(Fertility ~ Education | Agr * Cath2, data = swiss,
span = 1, aspect = "xy",
panel = function(x, y, span) {
panel.xyplot(x, y); panel.loess(x, y, span)
}
)
Cath
levels(Cath)
plot(Cath, aspect = 0.3)
# End of ch04
|