File: MASSch04.R

package info (click to toggle)
lattice 0.20-41-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,988 kB
  • sloc: ansic: 357; makefile: 2
file content (179 lines) | stat: -rw-r--r-- 5,448 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#-*- R -*-

## Script from Fourth Edition of `Modern Applied Statistics with S'

# Chapter 4   Graphical Output

library(MASS)
library(lattice)
trellis.device(postscript, file="ch04.ps", width=8, height=6,
               pointsize=9)
options(echo=T, width=65, digits=5)


# 4.2  Basic plotting functions

topo.loess <- loess(z ~ x * y, topo, degree = 2, span = 0.25)
topo.mar <- list(x = seq(0, 6.5, 0.2), y=seq(0, 6.5, 0.2))
topo.lo <- predict(topo.loess, expand.grid(topo.mar))
topo.lo1 <- cbind(expand.grid(x=topo.mar$x, y=topo.mar$y),
                  z=as.vector(topo.lo))
contourplot(z ~ x * y, topo.lo1, aspect = 1,
  at = seq(700, 1000, 25), xlab = "", ylab = "",
  panel = function(x, y, subscripts, ...) {
     panel.levelplot(x, y, subscripts, ...)
     panel.xyplot(topo$x, topo$y, cex = 0.5)
  }
)







# 4.5  Trellis graphics


xyplot(time ~ dist, data = hills,
  panel = function(x, y, ...) {
     panel.xyplot(x, y, ...)
     panel.lmline(x, y, type = "l")
     panel.abline(lqs(y ~ x), lty = 3)
#     identify(x, y, row.names(hills))
  }
)

bwplot(Expt ~ Speed, data = michelson, ylab = "Experiment No.",
       main = "Speed of Light Data")


data(swiss)
splom(~ swiss, aspect = "fill",
  panel = function(x, y, ...) {
     panel.xyplot(x, y, ...); panel.loess(x, y, ...)
  }
)

sps <- trellis.par.get("superpose.symbol")
sps$pch <- 1:7
trellis.par.set("superpose.symbol", sps)
xyplot(Time ~ Viscosity, data = stormer, groups = Wt,
   panel = panel.superpose, type = "b",
   key = list(columns = 3,
       text = list(paste(c("Weight:   ", "", ""),
                         unique(stormer$Wt), "gms")),
       points = Rows(sps, 1:3)
       )
)
rm(sps)

topo.plt <- expand.grid(topo.mar)
topo.plt$pred <- as.vector(predict(topo.loess, topo.plt))
levelplot(pred ~ x * y, topo.plt, aspect = 1,
  at = seq(690, 960, 10), xlab = "", ylab = "",
  panel = function(x, y, subscripts, ...) {
     panel.levelplot(x, y, subscripts, ...)
     panel.xyplot(topo$x,topo$y, cex = 0.5, col = 1)
  }
)

## if (F) {
wireframe(pred ~ x * y, topo.plt, aspect = c(1, 0.5),
  drape = T, screen = list(z = -150, x = -60),
  colorkey = list(space="right", height=0.6))
## }

lcrabs.pc <- predict(princomp(log(crabs[,4:8])))
crabs.grp <- c("B", "b", "O", "o")[rep(1:4, each = 50)]
splom(~ lcrabs.pc[, 1:3], groups = crabs.grp,
   panel = panel.superpose,
   key = list(text = list(c("Blue male", "Blue female",
                            "Orange Male", "Orange female")),
       points = Rows(trellis.par.get("superpose.symbol"), 1:4),
       columns = 4)
  )

sex <- crabs$sex
levels(sex) <- c("Female", "Male")
sp <- crabs$sp
levels(sp) <- c("Blue", "Orange")
splom(~ lcrabs.pc[, 1:3] | sp*sex, cex = 0.5, pscales = 0)

Quine <- quine
levels(Quine$Eth) <- c("Aboriginal", "Non-aboriginal")
levels(Quine$Sex) <- c("Female", "Male")
levels(Quine$Age) <- c("primary", "first form",
                      "second form", "third form")
levels(Quine$Lrn) <- c("Average learner", "Slow learner")
bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine)

bwplot(Age ~ Days | Sex*Lrn*Eth, data = Quine, layout = c(4, 2),
      strip = function(...) strip.default(..., style = 1))

stripplot(Age ~ Days | Sex*Lrn*Eth, data = Quine,
         jitter = TRUE, layout = c(4, 2))

stripplot(Age ~ Days | Eth*Sex, data = Quine,
   groups = Lrn, jitter = TRUE,
   panel = function(x, y, subscripts, jitter.data = F, ...) {
       if(jitter.data)  y <- jitter(as.numeric(y))
       panel.superpose(x, y, subscripts, ...)
   },
   xlab = "Days of absence",
   between = list(y = 1), par.strip.text = list(cex = 0.7),
   key = list(columns = 2, text = list(levels(Quine$Lrn)),
       points = Rows(trellis.par.get("superpose.symbol"), 1:2)
       ),
   strip = function(...)
        strip.default(..., strip.names = c(TRUE, TRUE), style = 1)
)

fgl0 <- fgl[ ,-10] # omit type.
fgl.df <- data.frame(type = rep(fgl$type, 9),
  y = as.vector(as.matrix(fgl0)),
  meas = factor(rep(1:9, each = 214), labels = names(fgl0)))
stripplot(type ~ y | meas, data = fgl.df,
  scales = list(x = "free"), xlab = "", cex = 0.5,
  strip = function(...) strip.default(style = 1, ...))

if(F) { # no data supplied
xyplot(ratio ~ scant | subject, data = A5,
      xlab = "scan interval (years)",
      ylab = "ventricle/brain volume normalized to 1 at start",
      subscripts = TRUE, ID = A5$ID,
      strip = function(factor, ...)
         strip.default(..., factor.levels = labs, style = 1),
      layout = c(8, 5, 1),
      skip = c(rep(FALSE, 37), rep(TRUE, 1), rep(FALSE, 1)),
      panel = function(x, y, subscripts, ID) {
          panel.xyplot(x, y, type = "b", cex = 0.5)
          which <- unique(ID[subscripts])
          panel.xyplot(c(0, 1.5), pr3[names(pr3) == which],
                       type = "l", lty = 3)
          if(which == 303 || which == 341) points(1.4, 1.3)
      })
}

Cath <- equal.count(swiss$Catholic, number = 6, overlap = 0.25)
xyplot(Fertility ~ Education | Cath, data = swiss,
  span = 1, layout = c(6, 1), aspect = 1,
  panel = function(x, y, span) {
     panel.xyplot(x, y); panel.loess(x, y, span)
  }
)

Cath2 <- equal.count(swiss$Catholic, number = 2, overlap = 0)
Agr <- equal.count(swiss$Agric, number = 3, overlap = 0.25)
xyplot(Fertility ~ Education | Agr * Cath2, data = swiss,
  span = 1, aspect = "xy",
  panel = function(x, y, span) {
     panel.xyplot(x, y); panel.loess(x, y, span)
  }
)

Cath
levels(Cath)
plot(Cath, aspect = 0.3)

# End of ch04