1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
{
*****************************************************************************
See the file COPYING.modifiedLGPL.txt, included in this distribution,
for details about the license.
*****************************************************************************
Authors: Alexander Klenin, Werner Pamler
}
unit TAMath;
{$H+}
interface
uses
Classes, SysUtils;
function CumulNormDistr(AX: Double): Double;
function InvCumulNormDistr(AX: Double): Double;
procedure EnsureOrder(var A, B: Integer); overload; inline;
procedure EnsureOrder(var A, B: Double); overload; inline;
procedure ExpandRange(var ALo, AHi: Double; ACoeff: Double);
function InRangeUlps(AX, ALo, AHi: Double; AMaxUlps: Word): Boolean;
function SafeInfinity: Double; inline;
function SafeInRange(AValue, ABound1, ABound2: Double): Boolean;
function SafeMin(A, B: Double): Double;
function SafeNan: Double; inline;
implementation
uses
Math, spe, TAChartUtils;
function Ulps(AX: Double): Int64; forward;
// Cumulative normal distribution
// x = -INF ... INF --> Result = 0 ... 1
function CumulNormDistr(AX: Double): Double;
begin
if AX > 0 then
Result := (speerf(AX / Sqrt(2)) + 1) * 0.5
else if AX < 0 then
Result := (1 - speerf(-AX / Sqrt(2))) * 0.5
else
Result := 0;
end;
// Inverse cumulative normal distribution.
// x = 0 ... 1 --> Result = -INF ... +INF
// Algorithm by Peter John Acklam.
// http://home.online.no/~pjacklam/notes/invnorm/index.html
function InvCumulNormDistr(AX: Double): Double;
const
A: array[1..6] of Double = (
-3.969683028665376e+01,
+2.209460984245205e+02,
-2.759285104469687e+02,
+1.383577518672690e+02,
-3.066479806614716e+01,
+2.506628277459239e+00
);
B: array[1..5] of Double = (
-5.447609879822406e+01,
+1.615858368580409e+02,
-1.556989798598866e+02,
+6.680131188771972e+01,
-1.328068155288572e+01
);
C: array[1..6] of Double = (
-7.784894002430293e-03,
-3.223964580411365e-01,
-2.400758277161838e+00,
-2.549732539343734e+00,
+4.374664141464968e+00,
+2.938163982698783e+00
);
D: array[1..4] of Double = (
+7.784695709041462e-03,
+3.224671290700398e-01,
+2.445134137142996e+00,
+3.754408661907416e+00
);
// Switching points between regions.
P_LOW = 0.02425;
P_HIGH = 1 - P_LOW;
var
q, r: Extended;
begin
if AX <= 0 then
Result := NegInfinity
else if AX < P_LOW then begin
// Rational approximation for lower region.
q := Sqrt(-2 * Ln(AX));
Result :=
(((((C[1] * q + C[2]) * q + C[3]) * q + C[4]) * q + C[5]) * q + C[6]) /
((((D[1] * q + D[2]) * q + D[3]) * q + D[4]) * q + 1);
end
else if AX <= P_HIGH then begin
// Rational approximation for central region.
q := AX - 0.5 ;
r := q * q ;
Result :=
(((((A[1] * r + A[2]) * r + A[3]) * r + A[4]) * r + A[5]) * r + A[6]) * q /
(((((B[1] * r + B[2]) * r + B[3]) * r + B[4]) * r + B[5]) * r + 1);
end
else if AX < 1 then begin
// Rational approximation for upper region.
q := Sqrt(-2 * Ln(1 - AX));
Result :=
-(((((C[1] * q + C[2]) * q + C[3]) * q + C[4]) * q + C[5]) * q + C[6]) /
((((D[1] * q + D[2]) * q + D[3]) * q + D[4]) * q + 1);
end else
Result := SafeInfinity;
end;
procedure EnsureOrder(var A, B: Integer); overload; inline;
begin
if A > B then
Exchange(A, B);
end;
procedure EnsureOrder(var A, B: Double); overload; inline;
begin
if A > B then
Exchange(A, B);
end;
procedure ExpandRange(var ALo, AHi: Double; ACoeff: Double);
var
d: Double;
begin
if IsInfinite(ALo) or IsInfinite(AHi) then exit;
d := AHi - ALo;
ALo -= d * ACoeff;
AHi += d * ACoeff;
end;
function InRangeUlps(AX, ALo, AHi: Double; AMaxUlps: Word): Boolean;
begin
Result := InRange(Ulps(AX), Ulps(ALo) - AMaxUlps, Ulps(AHi) + AMaxUlps);
end;
function SafeInfinity: Double;
begin
{$PUSH}{$R-}{$Q-}
Result := Infinity;
{$POP}
end;
function SafeInRange(AValue, ABound1, ABound2: Double): Boolean;
begin
EnsureOrder(ABound1, ABound2);
Result := InRange(AValue, ABound1, ABound2);
end;
function SafeMin(A, B: Double): Double;
begin
if IsNan(A) then
Result := B
else if IsNan(B) then
Result := A
else if A < B then
Result := A
else
Result := B;
end;
function SafeNan: Double;
begin
{$PUSH}{$R-}{$Q-}
Result := NaN;
{$POP}
end;
// Convert double value to integer 2's complement representation.
// Difference between resulting integers can be interpreted as distance in ulps.
function Ulps(AX: Double): Int64; inline;
begin
Result := Int64(AX);
if Result < 0 then
Result := (1 shl 63) - Result;
end;
end.
|