1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
|
unit ParseTreeNode;
{(*}
(*------------------------------------------------------------------------------
Delphi Code formatter source code
The Original Code is ParseTreeNode, released May 2003.
The Initial Developer of the Original Code is Anthony Steele.
Portions created by Anthony Steele are Copyright (C) 1999-2008 Anthony Steele.
All Rights Reserved.
Contributor(s): Anthony Steele.
The contents of this file are subject to the Mozilla Public License Version 1.1
(the "License"). you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.mozilla.org/NPL/
Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied.
See the License for the specific language governing rights and limitations
under the License.
Alternatively, the contents of this file may be used under the terms of
the GNU General Public License Version 2 or later (the "GPL")
See http://www.gnu.org/licenses/gpl.html
------------------------------------------------------------------------------*)
{*)}
{$I JcfGlobal.inc}
interface
{ AFS 27 October 2002
A node on the parse tree
}
uses
{delphi }
Contnrs, Classes,
{ local }
Tokens, ParseTreeNodeType, Nesting;
type
TParseTreeNode = class(TObject)
private
fcParent: TParseTreeNode;
fcChildNodes: TObjectList;
feNodeType: TParseTreeNodeType;
fcNestings: TNestingLevelList;
fiUserTag: integer;
function GetChildNodes(const piIndex: integer): TParseTreeNode;
protected
public
constructor Create;
destructor Destroy; override;
function ChildNodeCount: integer;
procedure SortChildNodes(Compare: TListSortCompare);
function RecursiveChildCount: integer;
function MaxDepth: integer;
function NewChild: TParseTreeNode;
procedure AddChild(const pcChild: TParseTreeNode);
procedure InsertChild(const piIndex: integer; const pcChild: TParseTreeNode);
function RemoveChild(const pcChild: TParseTreeNode): Boolean; overload;
function RemoveChild(const piIndex: integer): Boolean; overload;
function ExtractChild(const pcChild: TParseTreeNode): TParseTreeNode;
function IndexOfChild(const pcChild: TParseTreeNode): integer;
function IndexOfSelf: integer;
function SolidChildCount: integer; virtual;
function FirstLeaf: TParseTreeNode;
function FirstSolidLeaf: TParseTreeNode; virtual;
function LastLeaf: TParseTreeNode;
function PriorLeafNode: TParseTreeNode;
function NextLeafNode: TParseTreeNode;
function FirstNodeBefore(const pcChild: TParseTreeNode): TParseTreeNode;
function FirstNodeAfter(const pcChild: TParseTreeNode): TParseTreeNode;
function GetImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode; overload;
function GetImmediateChild(const peNodeType: TParseTreeNodeType): TParseTreeNode; overload;
function CountImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): integer; overload;
function CountImmediateChild(const peNodeType: TParseTreeNodeType): integer; overload;
function Level: integer;
function HasChildren: boolean;
function IsLeaf: boolean; virtual;
function Root: TParseTreeNode;
function HasChildNode(const peToken: TTokenType): boolean; overload;
function HasChildNode(const peTokens: TTokenTypeSet): boolean; overload; virtual;
function HasChildNode(const peTokens: TTokenTypeSet;
const piMaxDepth: integer): boolean; overload; virtual;
function HasChildNode(const peToken: TTokenType; const piMaxDepth: integer): boolean; overload; virtual;
function HasChildNode(const peNodes: TParseTreeNodeTypeSet;
const piMaxDepth: integer): boolean; overload; virtual;
function HasChildNode(const peNode: TParseTreeNodeType;
const piMaxDepth: integer): boolean; overload; virtual;
function HasChildNode(const peNode: TParseTreeNodeType): boolean; overload; virtual;
function HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet): boolean; overload;
function HasParentNode(const peNodeType: TParseTreeNodeType): boolean; overload;
function HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet;
const piMaxDepth: integer): boolean; overload;
function HasParentNode(const peNodeType: TParseTreeNodeType;
const piMaxDepth: integer): boolean; overload;
function HasParentNode(const pcParentNode: TParseTreeNode): boolean; overload;
function GetParentNode(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode; overload;
function GetParentNode(const peNodeType: TParseTreeNodeType): TParseTreeNode; overload;
function CountParentNodes(const peNodeType: TParseTreeNodeType): integer;
{ this one needs some explanation. Need to answer questions like
'Is this node in a type decl, on the right of an equal sign
So we find if we have a predecessor of one of peWords in the subtree rooted at peNodeTypes }
function IsOnRightOf(const peRootNodeTypes: TParseTreeNodeTypeSet;
const peTokens: TTokenTypeSet): boolean; overload;
function IsOnRightOf(const peRootNodeType: TParseTreeNodeType;
const peToken: TTokenType): boolean; overload;
{ same with parse tree interior nodes }
function IsOnRightOf(const peRootNodeTypes, peNodes: TParseTreeNodeTypeSet): boolean; overload;
function IsOnRightOf(const peRootNodeType, peNode: TParseTreeNodeType): boolean; overload;
function Describe: string; virtual;
property Parent: TParseTreeNode Read fcParent Write fcParent;
property ChildNodes[const piIndex: integer]: TParseTreeNode Read GetChildNodes;
property NodeType: TParseTreeNodeType Read feNodeType Write feNodeType;
property Nestings: TNestingLevelList Read fcNestings;
{ use tag is for temp use of any process.
No process is guaranteed any input value here
Create for alignment processes }
property UserTag: integer Read fiUserTag Write fiUserTag;
end;
implementation
uses SysUtils, Math;
constructor TParseTreeNode.Create;
begin
inherited Create;
fcParent := nil;
feNodeType := nUnknown;
fcChildNodes := TObjectList.Create;
fcChildNodes.OwnsObjects := True;
fcNestings := TNestingLevelList.Create;
end;
destructor TParseTreeNode.Destroy;
begin
FreeAndNil(fcChildNodes);
FreeAndNil(fcNestings);
{ detatch from the tree }
if (Parent <> nil) and (Parent.fcChildNodes <> nil) then
Parent.fcChildNodes.Extract(self);
inherited;
end;
function TParseTreeNode.ChildNodeCount: integer;
begin
Result := fcChildNodes.Count;
end;
procedure TParseTreeNode.SortChildNodes(Compare: TListSortCompare);
begin
fcChildNodes.Sort(Compare);
end;
function TParseTreeNode.GetChildNodes(const piIndex: integer): TParseTreeNode;
begin
Result := TParseTreeNode(fcChildNodes[piIndex]);
end;
function TParseTreeNode.NewChild: TParseTreeNode;
begin
// a new child, properly attached parent <-> child
Result := TParseTreeNode.Create;
fcChildNodes.Add(Result);
end;
procedure TParseTreeNode.AddChild(const pcChild: TParseTreeNode);
begin
pcChild.fcParent := self;
fcChildNodes.Add(pcChild);
end;
procedure TParseTreeNode.InsertChild(const piIndex: integer;
const pcChild: TParseTreeNode);
begin
pcChild.fcParent := self;
fcChildNodes.Insert(piIndex, pcChild);
end;
function TParseTreeNode.RemoveChild(const pcChild: TParseTreeNode): Boolean;
begin
Result := RemoveChild(fcChildNodes.IndexOf(pcChild));
end;
function TParseTreeNode.RemoveChild(const piIndex: integer): Boolean;
begin
Result := (piIndex >= 0) and (piIndex < ChildNodeCount);
if Result then
begin
ChildNodes[piIndex].Parent := nil;
fcChildNodes.Delete(piIndex);
end;
end;
function TParseTreeNode.ExtractChild(const pcChild: TParseTreeNode): TParseTreeNode;
begin
Result := TParseTreeNode(fcChildNodes.Extract(pcChild));
end;
function TParseTreeNode.IndexOfChild(const pcChild: TParseTreeNode): integer;
begin
Result := fcChildNodes.IndexOf(pcChild);
end;
function TParseTreeNode.IndexOfSelf: integer;
begin
if Parent = nil then
Result := 0
else
Result := Parent.IndexOfChild(self);
end;
{ how far down the tree is this node? }
function TParseTreeNode.Level: integer;
begin
if fcParent = nil then
Result := 0
else
Result := fcParent.Level + 1;
end;
function TParseTreeNode.HasChildren: boolean;
begin
Result := (ChildNodeCount > 0);
end;
function TParseTreeNode.IsLeaf: boolean;
begin
Result := False;
end;
function TParseTreeNode.Describe: string;
begin
Result := NodeTypeToString(NodeType);
end;
function TParseTreeNode.MaxDepth: integer;
var
liLoop: integer;
liMaxChildDepth, liChildDepth: integer;
begin
liMaxChildDepth := 0;
// one deeper than the deepest child
for liLoop := 0 to ChildNodeCount - 1 do
begin
liChildDepth := ChildNodes[liLoop].MaxDepth;
liMaxChildDepth := Max(liMaxChildDepth, liChildDepth);
end;
Result := liMaxChildDepth + 1;
end;
function TParseTreeNode.RecursiveChildCount: integer;
var
liLoop: integer;
begin
// I am one, and my children are the rest
Result := 1;
for liLoop := 0 to ChildNodeCount - 1 do
Result := Result + ChildNodes[liLoop].RecursiveChildCount;
end;
function TParseTreeNode.Root: TParseTreeNode;
begin
// if I have a parent then I am not the root
if (fcParent = nil) then
Result := self
else
Result := fcParent.Root;
end;
function TParseTreeNode.HasChildNode(const peToken: TTokenType): boolean;
begin
Result := HasChildNode([peToken]);
end;
function TParseTreeNode.HasChildNode(const peTokens: TTokenTypeSet): boolean;
var
liLoop: integer;
begin
Result := False;
for liLoop := 0 to ChildNodeCount - 1 do
begin
Result := ChildNodes[liLoop].HasChildNode(peTokens);
if Result then
break;
end;
end;
function TParseTreeNode.HasChildNode(const peTokens: TTokenTypeSet;
const piMaxDepth: integer): boolean;
var
liLoop: integer;
begin
Result := False;
if (piMaxDepth > 0) then
begin
for liLoop := 0 to ChildNodeCount - 1 do
begin
Result := ChildNodes[liLoop].HasChildNode(peTokens, piMaxDepth - 1);
if Result then
break;
end;
end;
end;
function TParseTreeNode.HasChildNode(const peToken: TTokenType;
const piMaxDepth: integer): boolean;
begin
Result := HasChildNode([peToken], piMaxDepth);
end;
function TParseTreeNode.HasChildNode(const peNodes: TParseTreeNodeTypeSet;
const piMaxDepth: integer): boolean;
var
liLoop: integer;
begin
Result := (NodeType in peNodes);
if Result then
exit;
if (piMaxDepth > 0) then
begin
for liLoop := 0 to ChildNodeCount - 1 do
begin
Result := ChildNodes[liLoop].HasChildNode(peNodes, piMaxDepth - 1);
if Result then
break;
end;
end;
end;
function TParseTreeNode.HasChildNode(const peNode: TParseTreeNodeType;
const piMaxDepth: integer): boolean;
begin
Result := HasChildNode([peNode], piMaxDepth);
end;
function TParseTreeNode.HasChildNode(const peNode: TParseTreeNodeType): boolean;
begin
// get the child down to any depth
Result := HasChildNode([peNode], High(integer));
end;
function TParseTreeNode.HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet): boolean;
begin
Result := (NodeType in peNodeTypes);
// try above
if ( not Result) and (Parent <> nil) then
Result := Parent.HasParentNode(peNodeTypes);
end;
function TParseTreeNode.HasParentNode(const peNodeType: TParseTreeNodeType): boolean;
begin
Result := HasParentNode([peNodeType]);
end;
function TParseTreeNode.GetParentNode(const peNodeTypes: TParseTreeNodeTypeSet):
TParseTreeNode;
begin
if (NodeType in peNodeTypes) then
begin
Result := self;
end
else
begin
Result := nil;
// try above
if (Parent <> nil) then
Result := Parent.GetParentNode(peNodeTypes);
end;
end;
function TParseTreeNode.HasParentNode(const peNodeTypes: TParseTreeNodeTypeSet;
const piMaxDepth: integer): boolean;
begin
Result := (NodeType in peNodeTypes);
// try above
if ( not Result) and (Parent <> nil) and (piMaxDepth > 0) then
Result := Parent.HasParentNode(peNodeTypes, (piMaxDepth - 1));
end;
function TParseTreeNode.HasParentNode(const peNodeType: TParseTreeNodeType;
const piMaxDepth: integer): boolean;
begin
Result := HasParentNode([peNodeType], piMaxDepth);
end;
function TParseTreeNode.HasParentNode(const pcParentNode: TParseTreeNode): boolean;
begin
Result := (Parent = pcParentNode);
if (not Result) and (Parent <> nil) then
Result := Parent.HasParentNode(pcParentNode);
end;
function TParseTreeNode.GetParentNode(const peNodeType: TParseTreeNodeType): TParseTreeNode;
begin
Result := GetParentNode([peNodeType]);
end;
function TParseTreeNode.CountParentNodes(const peNodeType: TParseTreeNodeType): integer;
var
lcParent: TParseTreeNode;
begin
Result := 0;
lcParent := GetParentNode(peNodeType);
while (lcParent <> nil) do
begin
inc(Result);
if lcParent.Parent <> nil then
begin
lcParent := lcParent.Parent.GetParentNode(peNodeType);
end
else
begin
lcParent := nil;
end;
end;
end;
{ a copy of the above with different types }
function TParseTreeNode.IsOnRightOf(const peRootNodeTypes: TParseTreeNodeTypeSet;
const peTokens: TTokenTypeSet): boolean;
var
lbSearchDone: boolean;
function GetFirstMatch(const pcRoot: TParseTreeNode;
const peTokens: TTokenTypeSet): TParseTreeNode;
var
liLoop: integer;
lcChild: TParseTreeNode;
begin
Result := nil;
if pcRoot = self then
begin
lbSearchDone := True;
exit;
end;
// leaf node - matching token using the 'HasChildNode' override to match self
if (pcRoot.ChildNodeCount = 0) and pcRoot.HasChildNode(peTokens) then
begin
lbSearchDone := True;
Result := pcRoot;
exit;
end;
// recurse into all children (or until self is encountered)
for liLoop := 0 to pcRoot.ChildNodeCount - 1 do
begin
lcChild := pcRoot.ChildNodes[liLoop];
if lcChild = self then
begin
lbSearchDone := True;
break;
end;
Result := GetFirstMatch(lcChild, peTokens);
if Result <> nil then
break;
if lbSearchDone then
break;
end;
end;
var
lcRoot, lcFirstMatch: TParseTreeNode;
begin
{ does it have the required parent }
lcRoot := GetParentNode(peRootNodeTypes);
if lcRoot = nil then
begin
Result := False;
exit;
end;
{ does the parent have the required child
search depth-first, ending when the self node is reached }
lbSearchDone := False;
lcFirstMatch := GetFirstMatch(lcRoot, peTokens);
Result := (lcFirstMatch <> nil);
end;
function TParseTreeNode.IsOnRightOf(const peRootNodeType: TParseTreeNodeType;
const peToken: TTokenType): boolean;
begin
Result := IsOnRightOf([peRootNodeType], [peToken]);
end;
function TParseTreeNode.IsOnRightOf(const peRootNodeTypes, peNodes: TParseTreeNodeTypeSet): boolean;
var
lbSearchDone: boolean;
function GetFirstMatch(const pcRoot: TParseTreeNode;
const peNodes: TParseTreeNodeTypeSet): TParseTreeNode;
var
liLoop: integer;
lcChild: TParseTreeNode;
begin
Result := nil;
if pcRoot = self then
begin
lbSearchDone := True;
exit;
end;
if pcRoot.NodeType in peNodes then
begin
lbSearchDone := True;
Result := self;
exit;
end;
// recurse into all children (or until self is encountered)
for liLoop := 0 to ChildNodeCount - 1 do
begin
lcChild := ChildNodes[liLoop];
if lcChild = self then
begin
lbSearchDone := True;
break;
end;
Result := GetFirstMatch(lcChild, peNodes);
if Result <> nil then
break;
if lbSearchDone then
break;
end;
end;
var
lcRoot, lcFirstMatch: TParseTreeNode;
begin
{ does it have the required parent }
lcRoot := GetParentNode(peRootNodeTypes);
if lcRoot = nil then
begin
Result := False;
exit;
end;
{ does the parent have the required child
search depth-first, ending when the self node is reached }
lbSearchDone := False;
lcFirstMatch := GetFirstMatch(lcRoot, peNodes);
// not enough - must be before self
Result := (lcFirstMatch <> nil);
end;
function TParseTreeNode.IsOnRightOf(const peRootNodeType, peNode:
TParseTreeNodeType): boolean;
begin
Result := IsOnRightOf([peRootNodeType], [peNode])
end;
function TParseTreeNode.FirstLeaf: TParseTreeNode;
var
liLoop: integer;
begin
if IsLeaf then
Result := Self // I am a leaf
else if ChildNodeCount = 0 then
begin
Result := nil // I am a bare branch.
end
else
begin
// child may be a bare branch. Look back until a non-bare child is found
liLoop := 0;
Result := nil;
while (Result = nil) and (liLoop < ChildNodeCount) do
begin
Result := ChildNodes[liLoop].FirstLeaf; // go down
Inc(liLoop)
end;
end;
end;
function TParseTreeNode.FirstSolidLeaf: TParseTreeNode;
var
liLoop: integer;
begin
Result := nil;
for liLoop := 0 to ChildNodeCount - 1 do
begin
Result := ChildNodes[liLoop].FirstSolidLeaf; // go down
if Result <> nil then
break;
end;
end;
function TParseTreeNode.LastLeaf: TParseTreeNode;
var
liLoop: integer;
begin
if IsLeaf then
Result := Self // I am a leaf
else if ChildNodeCount = 0 then
begin
Result := nil // I am a bare branch.
end
else
begin
// child may be a bare branch. Look back until a non-bare child is found
liLoop := ChildNodeCount - 1;
Result := nil;
while (Result = nil) and (liLoop >= 0) do
begin
Result := ChildNodes[liLoop].LastLeaf; // go down
Dec(liLoop)
end;
end;
end;
{ find the first leaf before this one }
function TParseTreeNode.PriorLeafNode: TParseTreeNode;
var
lcFocus, lcParent, lcLeaf: TParseTreeNode;
begin
// get the node before this one
Result := Parent.FirstNodeBefore(Self);
if Result = nil then
begin
{ climb the tree until we reach the top or a node with stuff before this }
lcParent := Parent;
while (Result = nil) and (lcParent <> nil) do
begin
lcFocus := lcParent;
lcParent := lcParent.Parent;
if lcParent <> nil then
Result := lcParent.FirstNodeBefore(lcFocus);
end;
end;
// result may not be a leaf node
if Result <> nil then
begin
if (Result.ChildNodeCount = 0) and ( not Result.IsLeaf) then
// result is a bare branch. Move on
Result := Result.PriorLeafNode
else
begin
lcLeaf := Result.LastLeaf;
if lcLeaf = nil then
// result is a bare branch. Move on
Result := Result.PriorLeafNode
else
Result := lcLeaf;
end;
end;
end;
function TParseTreeNode.NextLeafNode: TParseTreeNode;
var
lcFocus, lcParent: TParseTreeNode;
begin
// get the node after this one
Assert(Parent <> nil);
Result := Parent.FirstNodeAfter(Self);
if Result = nil then
begin
{ climb the tree until we reach the top or a node with stuff before this }
lcParent := Parent;
while (Result = nil) and (lcParent <> nil) do
begin
lcFocus := lcParent;
lcParent := lcParent.Parent;
if lcParent <> nil then
Result := lcParent.FirstNodeAfter(lcFocus);
end;
end;
// result may not be a leaf node
if Result <> nil then
begin
if (Result.ChildNodeCount = 0) and ( not Result.IsLeaf) then
// result is a bare branch. Move on
Result := Result.NextLeafNode
else
Result := Result.FirstLeaf;
end;
end;
function TParseTreeNode.FirstNodeBefore(const pcChild: TParseTreeNode): TParseTreeNode;
var
liIndex: integer;
begin
liIndex := IndexOfChild(pcChild);
if liIndex > 0 then
Result := ChildNodes[liIndex - 1]
else
Result := nil;
end;
function TParseTreeNode.FirstNodeAfter(const pcChild: TParseTreeNode): TParseTreeNode;
var
liIndex: integer;
begin
liIndex := IndexOfChild(pcChild);
if (liIndex < (ChildNodeCount - 1)) then
Result := ChildNodes[liIndex + 1]
else
Result := nil;
end;
function TParseTreeNode.SolidChildCount: integer;
var
liLoop: integer;
begin
Result := 0;
for liLoop := 0 to ChildNodeCount - 1 do
begin
Result := Result + ChildNodes[liLoop].SolidChildCount;
end;
end;
function TParseTreeNode.GetImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): TParseTreeNode;
var
liLoop: integer;
lcNode: TParseTreeNode;
begin
Result := nil;
for liLoop := 0 to ChildNodeCount - 1 do
begin
lcNode := ChildNodes[liLoop];
if lcNode.NodeType in peNodeTypes then
begin
Result := lcNode;
break;
end;
end;
end;
function TParseTreeNode.GetImmediateChild(const peNodeType: TParseTreeNodeType):
TParseTreeNode;
begin
Result := GetImmediateChild([peNodeType]);
end;
function TParseTreeNode.CountImmediateChild(const peNodeTypes: TParseTreeNodeTypeSet): integer;
var
liLoop: integer;
lcNode: TParseTreeNode;
begin
Result := 0;
for liLoop := 0 to ChildNodeCount - 1 do
begin
lcNode := ChildNodes[liLoop];
if lcNode.NodeType in peNodeTypes then
inc(Result);
end;
end;
function TParseTreeNode.CountImmediateChild(const peNodeType: TParseTreeNodeType): integer;
begin
Result := CountImmediateChild([peNodeType]);
end;
end.
|