File: tafitlib.pas

package info (click to toggle)
lazarus 2.0.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 214,460 kB
  • sloc: pascal: 1,862,622; xml: 265,709; cpp: 56,595; sh: 3,008; java: 609; makefile: 535; perl: 297; sql: 222; ansic: 137
file content (371 lines) | stat: -rw-r--r-- 10,681 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
{ This unit implements a more versatile linear fit than the routines in unit
  ipf of FCL's numlib.

  Author: Werner Pamler
}

unit TAFitLib;

{$mode objfpc}{$H+}
{$modeswitch nestedprocvars}

interface

uses
  typ;   // data types of numlib

type
  TArbFloatArray = array of ArbFloat;
  TArbFloatMatrix = array of array of ArbFloat;

  TFitFunc = function(x: ArbFloat; Param: Integer): ArbFloat; // is nested;

  TFitParam = record
    Func: TFitFunc;
    FuncName: String;
    Value: ArbFloat;
    Fixed: Boolean;
  end;

  TFitParamArray = array of TFitParam;

  TFitErrCode = (
    fitOK,                     // everything ok
    fitDimError,               // The lengths of the data vectors do not match.
    fitMoreParamsThanValues,   // There are more fitting parameters than data values
    fitNoFitParams,            // No fit parameters specified
    fitSingular,               // Matrix is (nearly) singular
    fitNoBaseFunctions         // No user-provided base functions
  );

  TFitResults = record
    ErrCode: TFitErrCode;
    ParamValues: TArbFloatArray;
    CovarianceMatrix: TArbFloatMatrix;
    N: Integer;                // Number of observations
    M: Integer;                // Number of fit parameters
    SSR: ArbFloat;             // regression sum of squares (yhat - ybar)²
    SSE: ArbFloat;             // error sum of squares (yi - yhat)²
    xbar: ArbFloat;            // mean x value
    SSx: ArbFloat;             // sum of squares (xi - xbar)²
  end;

  { for compatibility with TAChart of Lazarus version <= 1.8.x }
  TSimpleFitResults = record
    ErrCode: TFitErrCode;
    ParamValues: TArbFloatArray;
  end;

function LinearFit(const x, y, dy: TArbFloatArray;
  FitParams: TFitParamArray): TFitResults;

// Some basic fit basis functions for linear least-squares fitting
function FitBaseFunc_Const({%H-}x: ArbFloat; {%H-}Param: Integer): ArbFloat;
function FitBaseFunc_Linear(x: ArbFloat; {%H-}Param: Integer): ArbFloat;
function FitBaseFunc_Square(x: ArbFloat; {%H-}Param: Integer): ArbFloat;
function FitBaseFunc_Cube(x: ArbFloat; {%H-}Param: Integer): ArbFloat;
function FitBaseFunc_Poly(x: ArbFloat; Param: Integer): ArbFloat;
function FitBaseFunc_Sin(x: ArbFloat; Param: Integer): ArbFloat;
function FitBaseFunc_Cos(x: ArbFloat; Param: Integer): ArbFloat;


implementation

uses
  SysUtils,
  math,   // IsNaN
  sle,    // Solving linear system of equations
  spe,    // Incomplete gamma function
  inv;    // Inverse matrix

function FitBaseFunc_Const(x: ArbFloat; Param: Integer): ArbFloat;
begin
  Result := 1.0;
end;

function FitBaseFunc_Linear(x: ArbFloat; Param: Integer): ArbFloat;
begin
  Result := x;
end;

function FitBaseFunc_Square(x: ArbFloat; Param: Integer): ArbFloat;
begin
  Result := x*x;
end;

function FitBaseFunc_Cube(x: ArbFloat; Param: Integer): ArbFloat;
begin
  Result := x*x*x;
end;

{ Param is the degree of the polynomial term }
function FitBaseFunc_Poly(x: ArbFloat; Param: Integer): ArbFloat;
begin
  Result := 1.0;
  if Param > 0 then
    while Param > 0 do begin
      Result := Result * x;
      dec(Param);
    end
  else
  if Param < 0 then
    while Param < 0 do begin
      Result := Result / x;
      inc(Param);
    end;
end;

function FitBaseFunc_Sin(x: ArbFloat; Param: Integer): ArbFloat;
begin
  Result := sin(x * Param);
end;

function FitBaseFunc_Cos(x: ArbFloat; Param: Integer): ArbFloat;
begin
  Result := cos(x * Param);
end;

{ calculates the best-fit value for each y value }
function CalcBestFitValues(const x, y: TArbFloatArray; n, m: Integer;
  FitParams: TFitParamArray): TArbFloatArray;
var
  i, j: Integer;
begin
  SetLength(Result, Length(y));
  for i := 0 to n - 1 do begin
    Result[i] := 0.0;
    for j := 0 to m - 1 do
      Result[i] += fitParams[j].Value * FitParams[j].Func(x[i], j);
  end;
end;

{ Calculates the sum of squares for evaluating the fit statistics }
procedure CalcSumOfSquares(const y, dy, yhat: TArbFloatArray;
  var SSE, SSR: ArbFloat);
var
  hasSig: Boolean;
  ybar: Double;
  sig2, totalsig2: Double;
  i, n: Integer;
begin
  n := Length(y);
  hasSig := (dy <> nil) and (Length(dy) > 0);
  Assert(n = Length(yhat));
  if hasSig then
    Assert(n = Length(dy));

  // Calculate (weighted) average y data value
  ybar := 0.0;
  if hasSig then begin
    totalsig2 := 0.0;
    for i := 0 to n - 1 do begin
      sig2 := 1.0 / sqr(dy[i]);
      totalsig2 := totalsig2 + sig2;
      ybar := ybar + y[i] * sig2;
    end;
    ybar := ybar / totalsig2;
  end else begin
    for i := 0 to n - 1 do
      ybar := ybar + y[i];
    ybar := ybar / n;
  end;

  // Calculate sum of squares
  SSR := 0.0;
  SSE := 0.0;
  if hasSig then
    for i := 0 to n - 1 do begin
      sig2 := 1.0 / sqr(dy[i]);
      SSR += sqr(yhat[i] - ybar) * sig2;
      SSE += sqr(y[i] - yhat[i]) * sig2;
    end
  else
    for i := 0 to n - 1 do begin
      SSR += sqr(yhat[i] - ybar);
      SSE += sqr(y[i] - yhat[i]);
    end;
end;

{ Fits a linear combination of the functions defined in FitParams to the data
  arrays provides in x and y. dy contains the error bars of y (std deviation).
  Besides the fit basis functions, the FitParams also contain information
  whether a parameter will be held fixed during fitting ("FitParams[].Fixed").
  In this case, the fixed parameter value is specified in "FitParams[].Values".
  Fit results are returned as a record TFitResults. The field ErrCode is fitOK
  if the fit was successful or contains an error code otherwise. If ErrCode=fitOK
  the TFitResults contain the fitted parameters in field ParamValues[] and their
  standard errors in ParamErros[0], as well as some statistical characterization
  in the other fields (GOF = goodness-of-fit, DOF = degrees of freedom).

  Ref:
  - Numerical Recipes, Ch 14, Modelling of data, General linear least squares }
function LinearFit(const x, y, dy: TArbFloatArray;
  FitParams: TFitParamArray): TFitResults;
var
  alpha: TArbFloatArray;
  beta: TArbFloatArray;
  xx: TArbFloatArray;
  funcs: TArbFloatArray;
  list: Array of Integer;
  ycalc: TArbFloatArray;
  fp: TFitParam;
  n, m, mfit: Integer;
  i, j, k, jk, kj: Integer;
  hasSig: Boolean;
  ym, wt, sig2, chi2: ArbFloat;
  ca: ArbFloat = 0.0;
  term: ArbInt = 0;
begin
  SetLength(Result.ParamValues, 0);
  SetLength(Result.CovarianceMatrix, 0);

  // Check parameters
  n := Length(x);
  if n <> Length(y) then begin
    Result.ErrCode := fitDimError;
    exit;
  end;
  hasSig := (dy <> nil) and (Length(dy) > 0);
  if hasSig and (n <> Length(dy)) then begin
    Result.ErrCode := fitDimError;
    exit;
  end;

  m := Length(FitParams);
  if m < 1 then begin
    Result.ErrCode := fitNoFitParams;
    exit;
  end;
  if m > n then begin
    Result.ErrCode := fitMoreParamsThanValues;
    exit;
  end;

  // Prepare index list for parameters to be used for fitting
  SetLength(list, m);
  mfit := 0;
  for j := 0 to m - 1 do
    if not FitParams[j].Fixed then begin
      list[mfit] := j;
      inc(mfit);
    end;
  SetLength(list, mfit);
  if mfit = 0 then begin
    Result.ErrCode := fitNoFitParams;
    exit;
  end;

  // Prepare array for matrix alpha (mfit x mfit) and vector m (length mfit)
  SetLength(alpha, mfit * mfit);
  SetLength(beta, mfit);
  FillChar(alpha[0], mfit * mfit * SizeOf(ArbFloat), 0);
  FillChar(beta[0], mfit * SizeOf(ArbFloat), 0);

  // Prepare array for values of base functions
  SetLength(funcs, m);

  // Populate matrix alpha and vector beta
  for i := 0 to n - 1 do begin
    // Calculate values of base functions at x[i]
    for j := 0 to m - 1 do
      funcs[j] := FitParams[j].Func(x[i], j);
    // Subtract the function values of the fixed terms from the constant parameter.
    ym := y[i];
    if mfit < m then
      for j := 0 to m - 1 do begin
        fp := FitParams[j];
        if fp.Fixed then ym := ym - fp.Value * funcs[j];
      end;
    // Prepare factor with standard error
    if hasSig then sig2 := 1.0 / sqr(dy[i]) else sig2 := 1.0;
    // Calculate matrix alpha and vector beta. Note: alpha is symmetric
    for j := 0 to mfit - 1 do begin
      wt := funcs[list[j]] * sig2;
      for k := 0 to j do begin
        jk := j * mfit + k;
        alpha[jk] := alpha[jk] + wt * funcs[list[k]];
      end;
      beta[j] := beta[j] + ym * wt;
    end;
  end;
  // Fill above the diagonal for symmetry
  for j := 1 to mfit-1 do
    for k := 0 to j - 1 do begin
      kj := k * mfit + j;
      jk := j * mfit + k;
      alpha[kj] := alpha[jk];
    end;

  // Solve equation system
  //    alpha * xx = beta, xx contains the fitted parameters
  SetLength(xx, mfit);
  slegen(mfit, mfit, alpha[0], beta[0], xx[0], ca, term);

  // Check error conditions
  if term = 3 then begin
    // error in input values: mfit < 1
    Result.ErrCode := fitNoFitParams;
    exit;
    // This parameter error already should have been detected. Something is very wrong...
  end;

  if term = 2 then begin
    // the solution could not have been determined because the matrix is (almost) singular.
    Result.ErrCode := fitSingular;
    exit;
  end;

  // term = 1 --> success
  // Copy solution to correct index of ParamValues of the FitResult record.
  Result.ErrCode := fitOK;
  Result.N := n;
  Result.M := mfit;
  SetLength(Result.ParamValues, m);
  for j := 0 to m - 1 do
    Result.ParamValues[j] := FitParams[j].Value;
  for j := 0 to mfit-1 do begin
    Result.ParamValues[list[j]] := xx[j];
    FitParams[list[j]].Value := xx[j];
  end;

  // Calculate sum of squares for statistical analysis
  ycalc := CalcBestFitValues(x, y, n, m, FitParams);
  CalcSumOfSquares(y, dy, ycalc, Result.SSE, Result.SSR);
  SetLength(ycalc, 0);
  chi2 := Result.SSE / (n - mfit);

  // Calculate inverse of alpha. This is (almost) the variance-covariance matrix
  invgen(mfit, mfit, alpha[0], term);
  // Get variance-covariance matrix.
  for i:=0 to High(alpha) do
    alpha[i] := alpha[i] * chi2;

  if term = 1 then begin
    // Extract variance/covariance matrix
    SetLength(Result.CovarianceMatrix, m, m);
    for j := 0 to m - 1 do
      for i := 0 to m - 1 do
        Result.CovarianceMatrix[i, j] := NaN;
    for k := 0 to High(alpha) do begin
      j := k div mfit;
      i := k mod mfit;
      Result.CovarianceMatrix[list[i], list[j]] := alpha[k];
      Result.CovarianceMatrix[list[j], list[i]] := alpha[k];
    end;
  end;

  // Calculate x mean and sum of squares (needed for confidence intervals)
  Result.xbar := 0;
  for i := 0 to n - 1 do Result.xbar += x[i];
  Result.xbar := Result.xbar / n;
  Result.SSx := 0;
  for i := 0 to n - 1 do Result.SSx += sqr(x[i] - Result.xbar);

  // Clean up
  SetLength(alpha, 0);
  SetLength(beta, 0);
  SetLength(funcs, 0);
  SetLength(xx, 0);
end;

end.