File: tageometry.pas

package info (click to toggle)
lazarus 2.0.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 214,460 kB
  • sloc: pascal: 1,862,622; xml: 265,709; cpp: 56,595; sh: 3,008; java: 609; makefile: 535; perl: 297; sql: 222; ansic: 137
file content (931 lines) | stat: -rw-r--r-- 25,084 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
{
 *****************************************************************************
  See the file COPYING.modifiedLGPL.txt, included in this distribution,
  for details about the license.
 *****************************************************************************

  Authors: Alexander Klenin

}
unit TAGeometry;

{$H+}

interface

uses
  TAChartUtils, Types;

type
  TPolygon = object
  public
    FPoints: TPointArray;
    FCount: Integer;
  public
    constructor Init;
    procedure Add(const APoint: TPoint);
    procedure AddNoDup(const APoint: TPoint); inline;
    function LastPoint: TPoint; inline;
    function Purge: TPointArray; inline;
  end;

  TEllipse = object
  public
    FC: TDoublePoint;
    FR: TDoublePoint;
    constructor InitBoundingBox(AX1, AY1, AX2, AY2: Integer);
  public
    function GetPoint(AParametricAngle: Double): TDoublePoint;
    procedure SliceToPolygon(
      AAngleStart, AAngleLength: Double; AStep: Integer; var APoly: TPolygon);
    function TesselateRadialPie(
      AAngleStart, AAngleLength: Double; AStep: Integer): TPointArray;
  end;

function CopyPoints(
  APoints: array of TPoint; AStartIndex, ANumPts: Integer): TPointArray;
function DotProduct(A, B: TDoublePoint): Double;
function DoublePoint(AX, AY: Double): TDoublePoint; inline; overload;
function DoublePoint(const AP: TPoint): TDoublePoint; inline; overload;
function DoubleRect(AX1, AY1, AX2, AY2: Double): TDoubleRect; inline;
procedure ExpandRect(var ARect: TDoubleRect; const APoint: TDoublePoint); inline;
procedure ExpandRect(var ARect: TRect; const APoint: TPoint); inline;
procedure ExpandRect(
  var ARect: TRect; const ACenter: TPoint; ARadius: Integer;
  AAngle1, AAngle2: Double); inline;
function IsPointOnLine(const AP, A1, A2: TPoint): Boolean; inline;
function IsPointInPolygon(
  const AP: TPoint; const APolygon: array of TPoint): Boolean;
function IsPointInRect(const AP, A1, A2: TPoint): Boolean; inline; overload;
function IsPointInRect(const AP: TPoint; const AR: TRect): Boolean; inline; overload;
function IsRectInRect(const AInner, AOuter: TRect): Boolean; inline;
function IsLineIntersectsLine(const AA, AB, AC, AD: TPoint): Boolean;
function IsPolygonIntersectsPolygon(const AP1, AP2: array of TPoint): Boolean;
function LineIntersectsRect(
  var AA, AB: TDoublePoint; const ARect: TDoubleRect): Boolean;
procedure NormalizeRect(var ARect: TRect); overload;
procedure NormalizeRect(var ARect: TDoubleRect); overload;
function MakeSquare(const ARect: TRect): TRect;
function MakeCallout(
  const AShape: TPointArray; const ACenter, ATarget: TPoint;
  AAngle: Double): TPointArray;
function MaxPoint(const A, B: TPoint): TPoint; inline;
function MeasureRotatedRect(const ASize: TPoint; AAngle: Double): TSize;
function NextNumberSeq(
  const APoints: array of TDoublePoint; var AStart, AEnd: Integer): Boolean;
function PointDist(const A, B: TPoint): Integer; inline;
function PointDistX(const A, B: TPoint): Integer; inline;
function PointDistY(const A, B: TPoint): Integer; inline;
function PointLineDist(const P, A, B: TPoint): Integer;
function ProjToLine(const P, A, B: TDoublePoint): TDoublePoint; overload;
function ProjToLine(const P, A, B: TPoint): TPoint; overload;
function ProjToRect(
  const APt: TDoublePoint; const ARect: TDoubleRect): TDoublePoint;
function RectIntersectsRect(
  var ARect: TDoubleRect; const AFixed: TDoubleRect): Boolean;
function RotatePoint(const APoint: TDoublePoint; AAngle: Double): TDoublePoint; overload;
function RotatePoint(const APoint: TPoint; AAngle: Double): TPoint; overload;
function RotatePointX(AX, AAngle: Double): TPoint;
function RoundPoint(APoint: TDoublePoint): TPoint;
function TesselateRect(const ARect: TRect): TPointArray;
function TesselateEllipse(const ABounds: TRect; AStep: Integer): TPointArray;
function TesselateRoundRect(const ARect: TRect; ARadius, AStep: Integer): TPointArray;

operator +(const A: TPoint; B: TSize): TPoint; overload; inline;
operator +(const A, B: TPoint): TPoint; overload; inline;
operator +(const A, B: TDoublePoint): TDoublePoint; overload; inline;
operator -(const A: TPoint): TPoint; overload; inline;
operator -(const A, B: TPoint): TPoint; overload; inline;
operator -(const A, B: TDoublePoint): TDoublePoint; overload; inline;
operator div(const A: TPoint; ADivisor: Integer): TPoint; inline;
operator *(const A: TPoint; AMultiplier: Integer): TPoint; inline;
operator *(const A, B: TPoint): TPoint; inline;
operator *(const A, B: TDoublePoint): TDoublePoint; overload; inline;
operator * (const A: TDoublePoint; B: Double): TDoublePoint; overload; inline;
operator /(const A, B: TDoublePoint): TDoublePoint; overload; inline;
operator = (const A, B: TDoublePoint): Boolean; overload; inline;
operator = (const A, B: TDoubleRect): Boolean; overload; inline;
operator <= (const A, B: TDoublePoint): Boolean; overload; inline;
operator :=(const APoint: TPoint): TSize; inline;
operator :=(const ASize: TSize): TPoint; inline;

implementation

uses
  GraphMath, Math, TAMath;

function PointLineSide(AP, A1, A2: TPoint): TValueSign; forward;

function CopyPoints(
  APoints: array of TPoint; AStartIndex, ANumPts: Integer): TPointArray;
var
  i: Integer;
begin
  Assert(ANumPts >= 0);
  SetLength(Result, ANumPts);
  for i := 0 to ANumPts - 1 do
    Result[i] := APoints[i + AStartIndex];
end;

function DotProduct(A, B: TDoublePoint): Double;
begin
  Result := A.X * B.X + A.Y * B.Y;
end;

function DoublePoint(AX, AY: Double): TDoublePoint; inline;
begin
  Result.X := AX;
  Result.Y := AY;
end;

function DoublePoint(const AP: TPoint): TDoublePoint;
begin
  Result.X := AP.X;
  Result.Y := AP.Y;
end;

function DoubleRect(AX1, AY1, AX2, AY2: Double): TDoubleRect; inline;
begin
  Result.a.X := AX1;
  Result.a.Y := AY1;
  Result.b.X := AX2;
  Result.b.Y := AY2;
end;

procedure ExpandRect(var ARect: TDoubleRect; const APoint: TDoublePoint);
begin
  UpdateMinMax(APoint.X, ARect.a.X, ARect.b.X);
  UpdateMinMax(APoint.Y, ARect.a.Y, ARect.b.Y);
end;

procedure ExpandRect(var ARect: TRect; const APoint: TPoint);
begin
  UpdateMinMax(APoint.X, ARect.Left, ARect.Right);
  UpdateMinMax(APoint.Y, ARect.Top, ARect.Bottom);
end;

procedure ExpandRect(
  var ARect: TRect; const ACenter: TPoint; ARadius: Integer;
  AAngle1, AAngle2: Double);
var
  i, j: Integer;
begin
  EnsureOrder(AAngle1, AAngle2);
  ExpandRect(ARect, RotatePointX(ARadius, AAngle1) + ACenter);
  ExpandRect(ARect, RotatePointX(ARadius, AAngle2) + ACenter);
  j := Floor(AAngle1 / Pi * 2);
  for i := j to j + 4 do
    if InRange(Pi / 2 * i, AAngle1, AAngle2) then
      ExpandRect(ARect, RotatePointX(ARadius, Pi / 2 * i) + ACenter);
end;

function IsPointOnLine(const AP, A1, A2: TPoint): Boolean;
begin
  Result := IsPointInRect(AP, A1, A2) and (PointLineSide(AP, A1, A2) = 0);
end;

function IsPointInPolygon(
  const AP: TPoint; const APolygon: array of TPoint): Boolean;
var
  i, count: Integer;
  p1, p2: TPoint;
  s1, s2: TValueSign;
begin
  if Length(APolygon) = 0 then exit(false);
  p1 := APolygon[High(APolygon)];
  for i := 0 to High(APolygon) do begin
    p2 := APolygon[i];
    if IsPointOnLine(AP, p1, p2) then exit(true);
    p1 := p2;
  end;
  count := 0;
  p1 := APolygon[High(APolygon)];
  for i := 0 to High(APolygon) do begin
    p2 := APolygon[i];
    s1 := Sign(p1.Y - AP.Y);
    s2 := Sign(p2.Y - AP.Y);
    case s1 * s2 of
      -1: count += Ord(PointLineSide(AP, p1, p2) = Sign(p1.Y - p2.Y));
      0: if s1 + s2 = 1 then begin
        if s1 = 0 then
          count += Ord(p1.X >= AP.X)
        else
          count += Ord(p2.X >= AP.X)
      end;
    end;
    p1 := p2;
  end;
  Result := count mod 2 = 1;
end;

function IsPointInRect(const AP, A1, A2: TPoint): Boolean;
begin
  Result := SafeInRange(AP.X, A1.X, A2.X) and SafeInRange(AP.Y, A1.Y, A2.Y);
end;

function IsPointInRect(const AP: TPoint; const AR: TRect): Boolean;
begin
  Result :=
    SafeInRange(AP.X, AR.Left, AR.Right) and
    SafeInRange(AP.Y, AR.Top, AR.Bottom);
end;

function IsRectInRect(const AInner, AOuter: TRect): Boolean;
begin
  Result :=
    IsPointInRect(AInner.TopLeft, AOuter) and
    IsPointInRect(AInner.BottomRight, AOuter);
end;

function IsLineIntersectsLine(const AA, AB, AC, AD: TPoint): Boolean;
var
  sa, sb, sc, sd: TValueSign;
begin
  sa := PointLineSide(AA, AC, AD);
  sb := PointLineSide(AB, AC, AD);
  if (sa = 0) and (sb = 0) then
    // All points are on the same infinite line.
    Result :=
      IsPointInRect(AA, AC, AD) or IsPointInRect(AB, AC, AD) or
      IsPointInRect(AC, AA, AB) or IsPointInRect(AD, AA, AB)
  else begin
    sc := PointLineSide(AC, AA, AB);
    sd := PointLineSide(AD, AA, AB);
    Result := (sa * sb <= 0) and (sc * sd <= 0);
  end;
end;

function IsPolygonIntersectsPolygon(const AP1, AP2: array of TPoint): Boolean;
var
  i, j: Integer;
  p1, p2: TPoint;
begin
  if (Length(AP1) = 0) or (Length(AP2) = 0) then exit(false);
  if IsPointInPolygon(AP1[0], AP2) or IsPointInPolygon(AP2[0], AP1) then
    exit(true);
  for i := 0 to High(AP1) do begin
    p1 := AP1[i];
    p2 := AP1[(i + 1) mod Length(AP1)];
    for j := 0 to High(AP2) do
      if IsLineIntersectsLine(p1, p2, AP2[j], AP2[(j + 1) mod Length(AP2)]) then
        exit(true);
  end;
  Result := false;
end;

function LineIntersectsRect(
  var AA, AB: TDoublePoint; const ARect: TDoubleRect): Boolean;

  procedure AdjustX(var AP: TDoublePoint; ANewX: Double); inline;
  var
    dx: Double;
  begin
    dx := AB.X - AA.X;
    if not IsInfinite(dx) and not IsInfinite(AP.Y) then
      AP.Y += (AB.Y - AA.Y) / dx * (ANewX - AP.X);
    AP.X := ANewX;
  end;

  procedure AdjustY(var AP: TDoublePoint; ANewY: Double); inline;
  var
    dy: Double;
  begin
    dy := AB.Y - AA.Y;
    if not IsInfinite(dy) and not IsInfinite(AP.X) then
      AP.X += (AB.X - AA.X) / dy * (ANewY - AP.Y);
    AP.Y := ANewY;
  end;

begin
  case CASE_OF_TWO[AA.X < ARect.a.X, AB.X < ARect.a.X] of
    cotFirst: AdjustX(AA, ARect.a.X);
    cotSecond: AdjustX(AB, ARect.a.X);
    cotBoth: exit(false);
  end;
  case CASE_OF_TWO[AA.X > ARect.b.X, AB.X > ARect.b.X] of
    cotFirst: AdjustX(AA, ARect.b.X);
    cotSecond: AdjustX(AB, ARect.b.X);
    cotBoth: exit(false);
  end;
  case CASE_OF_TWO[AA.Y < ARect.a.Y, AB.Y < ARect.a.Y] of
    cotFirst: AdjustY(AA, ARect.a.Y);
    cotSecond: AdjustY(AB, ARect.a.Y);
    cotBoth: exit(false);
  end;
  case CASE_OF_TWO[AA.Y > ARect.b.Y, AB.Y > ARect.b.Y] of
    cotFirst: AdjustY(AA, ARect.b.Y);
    cotSecond: AdjustY(AB, ARect.b.Y);
    cotBoth: exit(false);
  end;
  Result := true;
end;

function MakeSquare(const ARect: TRect): TRect;
var
  c: TPoint;
  w, h: Integer;
begin
  c := CenterPoint(ARect);
  Result := ARect;
  w := Abs(Result.Right - Result.Left);
  h := Abs(Result.Bottom - Result.Top);
  if w > h then begin
    Result.Left := c.X - h div 2;
    Result.Right := c.X + h div 2;
  end
  else begin
    Result.Top := c.Y - w div 2;
    Result.Bottom := c.Y + w div 2;
  end;
end;

function MakeCallout(
  const AShape: TPointArray; const ACenter, ATarget: TPoint;
  AAngle: Double): TPointArray;
var
  AVector: TPoint;

  function Next(AIndex, ADir: Integer): Integer; inline;
  begin
    Result := (AIndex + Length(AShape) + ADir) mod Length(AShape);
  end;

  function NearestSide: Integer;
  begin
    for Result := 0 to High(AShape) do
      if
        IsLineIntersectsLine(
          ACenter, ATarget, AShape[Result], AShape[Next(Result, 1)])
      then
        exit;
    Result := -1;
  end;

  function ScalarProduct(const AP1, AP2: TPoint): Double; inline;
  begin
    Result := Double(AP1.X) * AP2.X + Double(AP1.Y) * AP2.Y;
  end;

  function CrossProductSign(const AP1, AP2: TPoint): Integer; inline;
  begin
    Result := Sign(Double(AP1.X) * AP2.Y - Double(AP1.Y) * AP2.X);
  end;

  function CrossProductSignByIndex(AIndex: Integer): Integer; inline;
  begin
    Result := CrossProductSign(AVector, AShape[AIndex] - ATarget);
  end;

  function CosVector(AIndex: Integer): Double;
  begin
    Result :=
      ScalarProduct(AShape[AIndex] - ATarget, AVector) /
      Sqrt(Double(PointDist(AShape[AIndex], ATarget)) * PointDist(ACenter, ATarget));
  end;

  function LineIntersectsRay(
    const AFrom: TPoint; const ARay: TDoublePoint; const AA, AB: TPoint): TPoint;
  var
    line: TDoublePoint;
    det, t: Double;
  begin
    line := DoublePoint(AB - AA);
    // x = t * ARay.X + AFrom.X; y = t * ARay.Y + AFrom.Y;
    // (x - AA.X) * line.Y = (y - AA.Y) * line.X
    // t * ARay.X * line.Y + (AFrom.X - AA.X) * line.Y =
    // t * ARay.Y * line.X + (AFrom.Y - AA.Y) * line.X
    det := ARay.X * line.Y - ARay.Y * line.X;
    if det = 0 then exit(AB);
    with (AFrom - AA) do // Workaround for issue #17005.
      t := (Y * line.X - X * line.Y) / det;
    if t <= 0 then exit(AB);
    Result := RoundPoint(DoublePoint(t, t) * ARay) + AFrom;
  end;

  procedure PointOnAngle(ADir: Integer; var AIndex: Integer; out APt: TPoint);
  var
    targetCos, c, maxCos: Double;
    this, prev: TPoint;
    ray: TDoublePoint;
    s, n: Integer;
  begin
    targetCos := Cos(AAngle / 2);
    maxCos := 2.0;
    while true do begin
      // Central vector of the callout passes exactly through the shape vertex.
      s := CrossProductSignByIndex(AIndex);
      if s <> 0 then break;
      AIndex := Next(AIndex, ADir);
    end;
    prev := AShape[Next(AIndex, -ADir)];
    while true do begin
      this := AShape[AIndex];
      c := CosVector(AIndex);
      n := Next(AIndex, ADir);
      if
        (CrossProductSignByIndex(AIndex) <> s) or (c > maxCos) and
        // Imprecision of integer grid may result in short concave segments on
        // a convex figure. Skip them by a single-point lookahead.
        ((CrossProductSignByIndex(n) <> s) or (CosVector(n) > maxCos))
      then begin
        APt := prev;
        AIndex := Next(AIndex, -ADir);
        exit;
      end;
      if c <= targetCos then begin
        ray := RotatePoint(DoublePoint(AVector), s * AAngle / 2);
        APt := LineIntersectsRay(ATarget, ray, prev, this);
        exit;
      end;
      AIndex := Next(AIndex, ADir);
      maxCos := c;
      prev := this;
    end;
  end;

var
  cnt: Integer = 0;

  procedure Add(const APoint: TPoint);
  begin
    if (cnt = 0) or (Result[cnt - 1] <> APoint) then begin
      Result[cnt] := APoint;
      cnt += 1;
    end;
  end;

var
  ni, li, ri, i: Integer;
  lp, rp: TPoint;
begin
  if
    (Length(AShape) < 3) or
    IsPointInPolygon(ATarget, AShape) or not IsPointInPolygon(ACenter, AShape)
  then
    exit(AShape);
  ni := NearestSide;
  if ni < 0 then exit(AShape);
  AVector := ACenter - ATarget;
  li := ni;
  PointOnAngle(-1, li, lp);
  ri := Next(ni, 1);
  PointOnAngle(+1, ri, rp);
  SetLength(Result, Length(AShape) + 3);
  i := ri;
  while i <> li do begin
    Add(AShape[i]);
    i := Next(i, 1);
  end;
  Add(AShape[li]);
  Add(lp);
  Add(ATarget);
  Add(rp);
  SetLength(Result, cnt);
end;

function MaxPoint(const A, B: TPoint): TPoint;
begin
  Result.X := Max(A.X, B.X);
  Result.Y := Max(A.Y, B.Y);
end;

function MeasureRotatedRect(const ASize: TPoint; AAngle: Double): TSize;
var
  pt1, pt2: TPoint;
begin
  pt1 := RotatePoint(ASize, AAngle);
  pt2 := RotatePoint(Point(ASize.X, -ASize.Y), AAngle);
  Result.cx := Max(Abs(pt1.X), Abs(pt2.X));
  Result.cy := Max(Abs(pt1.Y), Abs(pt2.Y));
end;

procedure NormalizeRect(var ARect: TRect);
begin
  with ARect do begin
    EnsureOrder(Left, Right);
    EnsureOrder(Top, Bottom);
  end;
end;

procedure NormalizeRect(var ARect: TDoubleRect); overload;
begin
  with ARect do begin
    EnsureOrder(a.X, b.X);
    EnsureOrder(a.Y, b.Y);
  end;
end;

function PointLineSide(AP, A1, A2: TPoint): TValueSign;
var
  a1x, a1y: Int64;
begin
  a1x := A1.X;
  a1y := A1.Y;
  Result := Sign((AP.X - a1x) * (A2.Y - a1y) - (AP.Y - a1y) * (A2.X - a1x));
end;

function NextNumberSeq(
  const APoints: array of TDoublePoint; var AStart, AEnd: Integer): Boolean;
begin
  AStart := AEnd + 2;
  while (AStart <= High(APoints)) and IsNan(APoints[AStart]) do
    AStart += 1;
  AEnd := AStart;
  while (AEnd + 1 <= High(APoints)) and not IsNan(APoints[AEnd + 1]) do
    AEnd += 1;
  Result := AStart <= High(APoints);
end;

function PointDist(const A, B: TPoint): Integer;
begin
  Result := Min(Sqr(Int64(A.X) - B.X) + Sqr(Int64(A.Y) - B.Y), MaxInt);
end;

function PointDistX(const A, B: TPoint): Integer;
begin
  Result := Min(Abs(Int64(A.X) - B.X), MaxInt);
end;

function PointDistY(const A, B: TPoint): Integer; inline;
begin
  Result := Min(Abs(Int64(A.Y) - B.Y), MaxInt);
end;

function PointLineDist(const P, A,B: TPoint): Integer;
var
  v, w, Q: TPoint;
  dot: Int64;
  lv: Integer;
begin
  if A = B then
    Result := PointDist(A, P)
  else begin
    v := B - A;                // Vector pointing along line from A to B
    w := P - A;                // Vector pointing from A to P
    dot := Int64(v.x) * w.x + Int64(v.y) * w.y;  // dot product v . w
    lv := PointDist(A, B);     // Length of vector AB
    Q := (v * dot) div lv;     // Projection of P onto line A-B, seen from A
    Result := PointDist(Q, w); // Length from A to Q
  end;
end;

function ProjToLine(const P, A,B: TDoublePoint): TDoublePoint;
var
  v, s: TDoublePoint;
begin
  if P = A then
    Result := A
  else if P = B then
    Result := B
  else begin
    s := B - A;
    v := P - A;
    Result := A + s * (DotProduct(v, s) / DotProduct(s, s));
  end;
end;

function ProjToLine(const P, A, B: TPoint): TPoint;
begin
  Result := RoundPoint(ProjToLine(DoublePoint(P), DoublePoint(A), DoublePoint(B)));
end;

function ProjToRect(
  const APt: TDoublePoint; const ARect: TDoubleRect): TDoublePoint;
begin
  Result.X := EnsureRange(APt.X, ARect.a.X, ARect.b.X);
  Result.Y := EnsureRange(APt.Y, ARect.a.Y, ARect.b.Y);
end;

function RectIntersectsRect(
  var ARect: TDoubleRect; const AFixed: TDoubleRect): Boolean;

  function RangesIntersect(L1, R1, L2, R2: Double; out L, R: Double): Boolean;
  begin
    EnsureOrder(L1, R1);
    EnsureOrder(L2, R2);
    L := Max(L1, L2);
    R := Min(R1, R2);
    Result := L <= R;
  end;

begin
  with ARect do
    Result :=
      RangesIntersect(a.X, b.X, AFixed.a.X, AFixed.b.X, a.X, b.X) and
      RangesIntersect(a.Y, b.Y, AFixed.a.Y, AFixed.b.Y, a.Y, b.Y);
end;

function RotatePoint(const APoint: TDoublePoint; AAngle: Double): TDoublePoint;
var
  sa, ca: Extended;
begin
  SinCos(AAngle, sa, ca);
  Result.X := ca * APoint.X - sa * APoint.Y;
  Result.Y := sa * APoint.X + ca * APoint.Y;
end;

function RotatePoint(const APoint: TPoint; AAngle: Double): TPoint;
var
  sa, ca: Extended;
begin
  SinCos(AAngle, sa, ca);
  Result.X := Round(ca * APoint.X - sa * APoint.Y);
  Result.Y := Round(sa * APoint.X + ca * APoint.Y);
end;

function RotatePointX(AX, AAngle: Double): TPoint;
var
  sa, ca: Extended;
begin
  SinCos(AAngle, sa, ca);
  Result.X := Round(ca * AX);
  Result.Y := Round(sa * AX);
end;

function RoundPoint(APoint: TDoublePoint): TPoint;
begin
  Result.X := Round(APoint.X);
  Result.Y := Round(APoint.Y);
end;

function TesselateRect(const ARect: TRect): TPointArray;
begin
  SetLength(Result, 4);
  with ARect do begin
    Result[0] := TopLeft;
    Result[1] := Point(Left, Bottom);
    Result[2] := BottomRight;
    Result[3] := Point(Right, Top);
  end;
end;

function TesselateEllipse(const ABounds: TRect; AStep: Integer): TPointArray;
var
  e: TEllipse;
  p: TPolygon;
begin
  with ABounds do
    e.InitBoundingBox(Left, Top, Right, Bottom);
  p.Init;
  e.SliceToPolygon(0, 2 * Pi, AStep, p);
  Result := p.Purge;
end;

function TesselateRoundRect(
  const ARect: TRect; ARadius, AStep: Integer): TPointArray;
var
  e: TEllipse;
  p: TPolygon;
begin
  with ARect do begin
    if Min(Right - Left, Bottom - Top) < 2 * ARadius then exit(nil);

    p.Init;
    e.FR := DoublePoint(ARadius, ARadius);

    p.AddNoDup(Point(Right, Bottom - ARadius));
    p.AddNoDup(Point(Right, Top + ARadius));
    e.FC := DoublePoint(Right - ARadius, Top + ARadius);
    e.SliceToPolygon(0, Pi / 2, AStep, p);

    p.AddNoDup(Point(Right - ARadius, Top));
    p.AddNoDup(Point(Left + ARadius, Top));
    e.FC := DoublePoint(Left + ARadius, Top + ARadius);
    e.SliceToPolygon(Pi / 2, Pi / 2, AStep, p);

    p.AddNoDup(Point(Left, Top + ARadius));
    p.AddNoDup(Point(Left, Bottom - ARadius));
    e.FC := DoublePoint(Left + ARadius, Bottom - ARadius);
    e.SliceToPolygon(Pi, Pi / 2, AStep, p);

    p.AddNoDup(Point(Left + ARadius, Bottom));
    p.AddNoDup(Point(Right - ARadius, Bottom));
    e.FC := DoublePoint(Right - ARadius, Bottom - ARadius);
    e.SliceToPolygon(Pi * 3/2, Pi / 2, AStep, p);
  end;

  Result := p.Purge;
end;

operator + (const A: TPoint; B: TSize): TPoint;
begin
  Result.X := A.X + B.cx;
  Result.Y := A.Y + B.cy;
end;

operator + (const A, B: TPoint): TPoint;
begin
  Result.X := A.X + B.X;
  Result.Y := A.Y + B.Y;
end;

operator + (const A, B: TDoublePoint): TDoublePoint;
begin
  Result.X := A.X + B.X;
  Result.Y := A.Y + B.Y;
end;

operator - (const A: TPoint): TPoint;
begin
  Result.X := - A.X;
  Result.Y := - A.Y;
end;

operator - (const A, B: TPoint): TPoint;
begin
  Result.X := A.X - B.X;
  Result.Y := A.Y - B.Y;
end;

operator - (const A, B: TDoublePoint): TDoublePoint;
begin
  Result.X := A.X - B.X;
  Result.Y := A.Y - B.Y;
end;

operator div(const A: TPoint; ADivisor: Integer): TPoint;
begin
  Result.X := A.X div ADivisor;
  Result.Y := A.Y div ADivisor;
end;

operator * (const A: TPoint; AMultiplier: Integer): TPoint;
begin
  Result.X := A.X * AMultiplier;
  Result.Y := A.Y * AMultiplier;
end;

operator * (const A, B: TPoint): TPoint;
begin
  Result.X := A.X * B.X;
  Result.Y := A.Y * B.Y;
end;

operator * (const A, B: TDoublePoint): TDoublePoint;
begin
  Result.X := A.X * B.X;
  Result.Y := A.Y * B.Y;
end;

operator * (const A: TDoublePoint; B: Double): TDoublePoint;
begin
  Result.X := A.X * B;
  Result.Y := A.Y * B;
end;

operator / (const A, B: TDoublePoint): TDoublePoint;
begin
  Result.X := A.X / B.X;
  Result.Y := A.Y / B.Y;
end;

operator = (const A, B: TDoublePoint): Boolean;
begin
  Result := (A.X = B.X) and (A.Y = B.Y);
end;

operator = (const A, B: TDoubleRect): Boolean;
begin
  Result := (A.a = B.a) and (A.b = B.b);
end;

operator <= (const A, B: TDoublePoint): Boolean;
begin
  Result := (A.X <= B.X) and (A.Y <= B.Y);
end;

operator := (const APoint: TPoint): TSize;
begin
  Result.cx := APoint.X;
  Result.cy := APoint.Y;
end;

operator := (const ASize: TSize): TPoint;
begin
  Result.X := ASize.cx;
  Result.Y := ASize.cy;
end;

{ TPolygon }

procedure TPolygon.Add(const APoint: TPoint);
begin
  if FCount > High(FPoints) then
    SetLength(FPoints, Max(2 * FCount, 16));
  FPoints[FCount] := APoint;
  FCount += 1;
end;

procedure TPolygon.AddNoDup(const APoint: TPoint);
begin
  if (FCount = 0) or (LastPoint <> APoint) then
    Add(APoint);
end;

constructor TPolygon.Init;
begin
  FCount := 0;
  FPoints := nil;
end;

function TPolygon.LastPoint: TPoint;
begin
  Result := FPoints[FCount - 1];
end;

function TPolygon.Purge: TPointArray;
begin
  SetLength(FPoints, FCount);
  Result := FPoints;
end;

{ TEllipse }

function TEllipse.GetPoint(AParametricAngle: Double): TDoublePoint;
var
  s, c: Extended;
begin
  SinCos(AParametricAngle, s, c);
  Result := DoublePoint(c, -s) * FR + FC;
end;

constructor TEllipse.InitBoundingBox(AX1, AY1, AX2, AY2: Integer);
begin
  FC.X := (AX1 + AX2) / 2;
  FC.Y := (AY1 + AY2) / 2;
  FR.X := Abs(AX1 - AX2) / 2;
  FR.Y := Abs(AY1 - AY2) / 2;
end;

procedure TEllipse.SliceToPolygon(
  AAngleStart, AAngleLength: Double; AStep: Integer; var APoly: TPolygon);
var
  lastAngle: Double;

  procedure SafeAddPoint(APoint: TPoint; AAngle: Double);
  begin
    if APoly.LastPoint <> APoint then begin
      APoly.Add(APoint);
      lastAngle := AAngle;
    end;
  end;

  procedure Rec(ALo, AHi: Double);
  var
    pt: TPoint;
  begin
    pt := RoundPoint(GetPoint(AHi));
    if PointDist(APoly.LastPoint, pt) <= Sqr(AStep) then
      SafeAddPoint(pt, AHi)
    else begin
      Rec(ALo, (ALo + AHi) / 2);
      Rec(lastAngle, AHi)
    end;
  end;

  procedure Add(AAngle: Double);
  begin
    SafeAddPoint(RoundPoint(GetPoint(AAngle)), AAngle)
  end;

const
  HalfPi = Pi / 2;
var
  t, tprev, tlast: Double;
begin
  tprev := AAngleStart;
  tlast := AAngleStart + AAngleLength;
  APoly.Add(RoundPoint(GetPoint(tprev)));
  if (FR.X < 1) or (FR.Y < 1) then begin
    // Ellipse has degenerated into a line.
    Add(tlast);
    exit;
  end;
  APoly.Add(RoundPoint(GetPoint(tprev)));
  lastAngle := tprev;
  t := Ceil(tprev / HalfPi) * HalfPi;
  while t < tlast do begin
    Add(tprev);
    Rec(tprev, t);
    tprev := t;
    t += HalfPi;
  end;
  Rec(tprev, tlast);
  Add(tlast);
end;

// Represent the ellipse sector with a polygon on an integer grid.
// Polygon vertices are no more then AStep pixels apart.
function TEllipse.TesselateRadialPie(
  AAngleStart, AAngleLength: Double; AStep: Integer): TPointArray;
var
  resultPoly: TPolygon;
begin
  resultPoly.Init;
  SliceToPolygon(AAngleStart, AAngleLength, AStep, resultPoly);
  resultPoly.AddNoDup(RoundPoint(FC));
  Result := resultPoly.Purge;
end;

end.