1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
|
uses
qt5, qtobjects;
{$if Defined(CPU386)}
{$ASMMODE INTEL}
{$endif}
procedure AlphaBlendLineConstant(Source, Destination: Pointer; Count: Integer; ConstantAlpha, Bias: Integer);
// Blends a line of Count pixels from Source to Destination using a constant alpha value.
// The layout of a pixel must be BGRA where A is ignored (but is calculated as the other components).
// ConstantAlpha must be in the range 0..255 where 0 means totally transparent (destination pixel only)
// and 255 totally opaque (source pixel only).
// Bias is an additional value which gets added to every component and must be in the range -128..127
{$if not Defined(CPU386)}
begin
end;
{$else}
asm
{$ifdef CPU64}
//windows
// RCX contains Source
// RDX contains Destination
// R8D contains Count
// R9D contains ConstantAlpha
// Bias is on the stack
//non windows
// RDI contains Source
// RSI contains Destination
// EDX contains Count
// ECX contains ConstantAlpha
// R8D contains Bias
//.NOFRAME
// Load XMM3 with the constant alpha value (replicate it for every component).
// Expand it to word size.
{$ifdef windows}
MOVD XMM3, R9D // ConstantAlpha
{$else}
MOVD XMM3, ECX // ConstantAlpha
{$endif}
PUNPCKLWD XMM3, XMM3
PUNPCKLDQ XMM3, XMM3
// Load XMM5 with the bias value.
{$ifdef windows}
MOVD XMM5, [Bias]
{$else}
MOVD XMM5, R8D //Bias
{$endif}
PUNPCKLWD XMM5, XMM5
PUNPCKLDQ XMM5, XMM5
// Load XMM4 with 128 to allow for saturated biasing.
MOV R10D, 128
MOVD XMM4, R10D
PUNPCKLWD XMM4, XMM4
PUNPCKLDQ XMM4, XMM4
@1: // The pixel loop calculates an entire pixel in one run.
// Note: The pixel byte values are expanded into the higher bytes of a word due
// to the way unpacking works. We compensate for this with an extra shift.
{$ifdef windows}
MOVD XMM1, DWORD PTR [RCX] // data is unaligned
MOVD XMM2, DWORD PTR [RDX] // data is unaligned
{$else}
MOVD XMM1, DWORD PTR [RDI] // data is unaligned
MOVD XMM2, DWORD PTR [RSI] // data is unaligned
{$endif}
PXOR XMM0, XMM0 // clear source pixel register for unpacking
PUNPCKLBW XMM0, XMM1{[RCX]} // unpack source pixel byte values into words
PSRLW XMM0, 8 // move higher bytes to lower bytes
PXOR XMM1, XMM1 // clear target pixel register for unpacking
PUNPCKLBW XMM1, XMM2{[RDX]} // unpack target pixel byte values into words
MOVQ XMM2, XMM1 // make a copy of the shifted values, we need them again
PSRLW XMM1, 8 // move higher bytes to lower bytes
// calculation is: target = (alpha * (source - target) + 256 * target) / 256
PSUBW XMM0, XMM1 // source - target
PMULLW XMM0, XMM3 // alpha * (source - target)
PADDW XMM0, XMM2 // add target (in shifted form)
PSRLW XMM0, 8 // divide by 256
// Bias is accounted for by conversion of range 0..255 to -128..127,
// doing a saturated add and convert back to 0..255.
PSUBW XMM0, XMM4
PADDSW XMM0, XMM5
PADDW XMM0, XMM4
PACKUSWB XMM0, XMM0 // convert words to bytes with saturation
{$ifdef windows}
MOVD DWORD PTR [RDX], XMM0 // store the result
{$else}
MOVD DWORD PTR [RSI], XMM0 // store the result
{$endif}
@3:
{$ifdef windows}
ADD RCX, 4
ADD RDX, 4
DEC R8D
{$else}
ADD RDI, 4
ADD RSI, 4
DEC EDX
{$endif}
JNZ @1
{$else}
// EAX contains Source
// EDX contains Destination
// ECX contains Count
// ConstantAlpha and Bias are on the stack
PUSH ESI // save used registers
PUSH EDI
MOV ESI, EAX // ESI becomes the actual source pointer
MOV EDI, EDX // EDI becomes the actual target pointer
// Load MM6 with the constant alpha value (replicate it for every component).
// Expand it to word size.
MOV EAX, [ConstantAlpha]
DB $0F, $6E, $F0 /// MOVD MM6, EAX
DB $0F, $61, $F6 /// PUNPCKLWD MM6, MM6
DB $0F, $62, $F6 /// PUNPCKLDQ MM6, MM6
// Load MM5 with the bias value.
MOV EAX, [Bias]
DB $0F, $6E, $E8 /// MOVD MM5, EAX
DB $0F, $61, $ED /// PUNPCKLWD MM5, MM5
DB $0F, $62, $ED /// PUNPCKLDQ MM5, MM5
// Load MM4 with 128 to allow for saturated biasing.
MOV EAX, 128
DB $0F, $6E, $E0 /// MOVD MM4, EAX
DB $0F, $61, $E4 /// PUNPCKLWD MM4, MM4
DB $0F, $62, $E4 /// PUNPCKLDQ MM4, MM4
@1: // The pixel loop calculates an entire pixel in one run.
// Note: The pixel byte values are expanded into the higher bytes of a word due
// to the way unpacking works. We compensate for this with an extra shift.
DB $0F, $EF, $C0 /// PXOR MM0, MM0, clear source pixel register for unpacking
DB $0F, $60, $06 /// PUNPCKLBW MM0, [ESI], unpack source pixel byte values into words
DB $0F, $71, $D0, $08 /// PSRLW MM0, 8, move higher bytes to lower bytes
DB $0F, $EF, $C9 /// PXOR MM1, MM1, clear target pixel register for unpacking
DB $0F, $60, $0F /// PUNPCKLBW MM1, [EDI], unpack target pixel byte values into words
DB $0F, $6F, $D1 /// MOVQ MM2, MM1, make a copy of the shifted values, we need them again
DB $0F, $71, $D1, $08 /// PSRLW MM1, 8, move higher bytes to lower bytes
// calculation is: target = (alpha * (source - target) + 256 * target) / 256
DB $0F, $F9, $C1 /// PSUBW MM0, MM1, source - target
DB $0F, $D5, $C6 /// PMULLW MM0, MM6, alpha * (source - target)
DB $0F, $FD, $C2 /// PADDW MM0, MM2, add target (in shifted form)
DB $0F, $71, $D0, $08 /// PSRLW MM0, 8, divide by 256
// Bias is accounted for by conversion of range 0..255 to -128..127,
// doing a saturated add and convert back to 0..255.
DB $0F, $F9, $C4 /// PSUBW MM0, MM4
DB $0F, $ED, $C5 /// PADDSW MM0, MM5
DB $0F, $FD, $C4 /// PADDW MM0, MM4
DB $0F, $67, $C0 /// PACKUSWB MM0, MM0, convert words to bytes with saturation
DB $0F, $7E, $07 /// MOVD [EDI], MM0, store the result
@3:
ADD ESI, 4
ADD EDI, 4
DEC ECX
JNZ @1
POP EDI
POP ESI
{$endif}
end;
{$endif}
//----------------------------------------------------------------------------------------------------------------------
procedure AlphaBlendLinePerPixel(Source, Destination: Pointer; Count, Bias: Integer);
// Blends a line of Count pixels from Source to Destination using the alpha value of the source pixels.
// The layout of a pixel must be BGRA.
// Bias is an additional value which gets added to every component and must be in the range -128..127
{$if not Defined(CPU386)}
begin
end;
{$else}
asm
{$ifdef CPU64}
//windows
// RCX contains Source
// RDX contains Destination
// R8D contains Count
// R9D contains Bias
//non windows
// RDI contains Source
// RSI contains Destination
// EDX contains Count
// ECX contains Bias
//.NOFRAME
// Load XMM5 with the bias value.
{$ifdef windows}
MOVD XMM5, R9D // Bias
{$else}
MOVD XMM5, ECX // Bias
{$endif}
PUNPCKLWD XMM5, XMM5
PUNPCKLDQ XMM5, XMM5
// Load XMM4 with 128 to allow for saturated biasing.
MOV R10D, 128
MOVD XMM4, R10D
PUNPCKLWD XMM4, XMM4
PUNPCKLDQ XMM4, XMM4
@1: // The pixel loop calculates an entire pixel in one run.
// Note: The pixel byte values are expanded into the higher bytes of a word due
// to the way unpacking works. We compensate for this with an extra shift.
{$ifdef windows}
MOVD XMM1, DWORD PTR [RCX] // data is unaligned
MOVD XMM2, DWORD PTR [RDX] // data is unaligned
{$else}
MOVD XMM1, DWORD PTR [RDI] // data is unaligned
MOVD XMM2, DWORD PTR [RSI] // data is unaligned
{$endif}
PXOR XMM0, XMM0 // clear source pixel register for unpacking
PUNPCKLBW XMM0, XMM1{[RCX]} // unpack source pixel byte values into words
PSRLW XMM0, 8 // move higher bytes to lower bytes
PXOR XMM1, XMM1 // clear target pixel register for unpacking
PUNPCKLBW XMM1, XMM2{[RDX]} // unpack target pixel byte values into words
MOVQ XMM2, XMM1 // make a copy of the shifted values, we need them again
PSRLW XMM1, 8 // move higher bytes to lower bytes
// Load XMM3 with the source alpha value (replicate it for every component).
// Expand it to word size.
MOVQ XMM3, XMM0
PUNPCKHWD XMM3, XMM3
PUNPCKHDQ XMM3, XMM3
// calculation is: target = (alpha * (source - target) + 256 * target) / 256
PSUBW XMM0, XMM1 // source - target
PMULLW XMM0, XMM3 // alpha * (source - target)
PADDW XMM0, XMM2 // add target (in shifted form)
PSRLW XMM0, 8 // divide by 256
// Bias is accounted for by conversion of range 0..255 to -128..127,
// doing a saturated add and convert back to 0..255.
PSUBW XMM0, XMM4
PADDSW XMM0, XMM5
PADDW XMM0, XMM4
PACKUSWB XMM0, XMM0 // convert words to bytes with saturation
{$ifdef windows}
MOVD DWORD PTR [RDX], XMM0 // store the result
{$else}
MOVD DWORD PTR [RSI], XMM0 // store the result
{$endif}
@3:
{$ifdef windows}
ADD RCX, 4
ADD RDX, 4
DEC R8D
{$else}
ADD RDI, 4
ADD RSI, 4
DEC EDX
{$endif}
JNZ @1
{$else}
// EAX contains Source
// EDX contains Destination
// ECX contains Count
// Bias is on the stack
PUSH ESI // save used registers
PUSH EDI
MOV ESI, EAX // ESI becomes the actual source pointer
MOV EDI, EDX // EDI becomes the actual target pointer
// Load MM5 with the bias value.
MOV EAX, [Bias]
DB $0F, $6E, $E8 /// MOVD MM5, EAX
DB $0F, $61, $ED /// PUNPCKLWD MM5, MM5
DB $0F, $62, $ED /// PUNPCKLDQ MM5, MM5
// Load MM4 with 128 to allow for saturated biasing.
MOV EAX, 128
DB $0F, $6E, $E0 /// MOVD MM4, EAX
DB $0F, $61, $E4 /// PUNPCKLWD MM4, MM4
DB $0F, $62, $E4 /// PUNPCKLDQ MM4, MM4
@1: // The pixel loop calculates an entire pixel in one run.
// Note: The pixel byte values are expanded into the higher bytes of a word due
// to the way unpacking works. We compensate for this with an extra shift.
DB $0F, $EF, $C0 /// PXOR MM0, MM0, clear source pixel register for unpacking
DB $0F, $60, $06 /// PUNPCKLBW MM0, [ESI], unpack source pixel byte values into words
DB $0F, $71, $D0, $08 /// PSRLW MM0, 8, move higher bytes to lower bytes
DB $0F, $EF, $C9 /// PXOR MM1, MM1, clear target pixel register for unpacking
DB $0F, $60, $0F /// PUNPCKLBW MM1, [EDI], unpack target pixel byte values into words
DB $0F, $6F, $D1 /// MOVQ MM2, MM1, make a copy of the shifted values, we need them again
DB $0F, $71, $D1, $08 /// PSRLW MM1, 8, move higher bytes to lower bytes
// Load MM6 with the source alpha value (replicate it for every component).
// Expand it to word size.
DB $0F, $6F, $F0 /// MOVQ MM6, MM0
DB $0F, $69, $F6 /// PUNPCKHWD MM6, MM6
DB $0F, $6A, $F6 /// PUNPCKHDQ MM6, MM6
// calculation is: target = (alpha * (source - target) + 256 * target) / 256
DB $0F, $F9, $C1 /// PSUBW MM0, MM1, source - target
DB $0F, $D5, $C6 /// PMULLW MM0, MM6, alpha * (source - target)
DB $0F, $FD, $C2 /// PADDW MM0, MM2, add target (in shifted form)
DB $0F, $71, $D0, $08 /// PSRLW MM0, 8, divide by 256
// Bias is accounted for by conversion of range 0..255 to -128..127,
// doing a saturated add and convert back to 0..255.
DB $0F, $F9, $C4 /// PSUBW MM0, MM4
DB $0F, $ED, $C5 /// PADDSW MM0, MM5
DB $0F, $FD, $C4 /// PADDW MM0, MM4
DB $0F, $67, $C0 /// PACKUSWB MM0, MM0, convert words to bytes with saturation
DB $0F, $7E, $07 /// MOVD [EDI], MM0, store the result
@3:
ADD ESI, 4
ADD EDI, 4
DEC ECX
JNZ @1
POP EDI
POP ESI
{$endif}
end;
{$endif}
//----------------------------------------------------------------------------------------------------------------------
procedure AlphaBlendLineMaster(Source, Destination: Pointer; Count: Integer; ConstantAlpha, Bias: Integer);
// Blends a line of Count pixels from Source to Destination using the source pixel and a constant alpha value.
// The layout of a pixel must be BGRA.
// ConstantAlpha must be in the range 0..255.
// Bias is an additional value which gets added to every component and must be in the range -128..127
{$if not Defined(CPU386)}
begin
end;
{$else}
asm
{$ifdef CPU64}
//windows
// RCX contains Source
// RDX contains Destination
// R8D contains Count
// R9D contains ConstantAlpha
// Bias is on the stack
//non windows
// RDI contains Source
// RSI contains Destination
// EDX contains Count
// ECX contains ConstantAlpha
// R8D contains Bias
//.SAVENV XMM6 //todo see how implement in fpc
// Load XMM3 with the constant alpha value (replicate it for every component).
// Expand it to word size.
{$ifdef windows}
MOVD XMM3, R9D // ConstantAlpha
{$else}
MOVD XMM3, ECX // ConstantAlpha
{$endif}
PUNPCKLWD XMM3, XMM3
PUNPCKLDQ XMM3, XMM3
// Load XMM5 with the bias value.
{$ifdef windows}
MOV R10D, [Bias]
MOVD XMM5, R10D
{$else}
MOVD XMM5, R8D
{$endif}
PUNPCKLWD XMM5, XMM5
PUNPCKLDQ XMM5, XMM5
// Load XMM4 with 128 to allow for saturated biasing.
MOV R10D, 128
MOVD XMM4, R10D
PUNPCKLWD XMM4, XMM4
PUNPCKLDQ XMM4, XMM4
@1: // The pixel loop calculates an entire pixel in one run.
// Note: The pixel byte values are expanded into the higher bytes of a word due
// to the way unpacking works. We compensate for this with an extra shift.
{$ifdef windows}
MOVD XMM1, DWORD PTR [RCX] // data is unaligned
MOVD XMM2, DWORD PTR [RDX] // data is unaligned
{$else}
MOVD XMM1, DWORD PTR [RDI] // data is unaligned
MOVD XMM2, DWORD PTR [RSI] // data is unaligned
{$endif}
PXOR XMM0, XMM0 // clear source pixel register for unpacking
PUNPCKLBW XMM0, XMM1{[RCX]} // unpack source pixel byte values into words
PSRLW XMM0, 8 // move higher bytes to lower bytes
PXOR XMM1, XMM1 // clear target pixel register for unpacking
PUNPCKLBW XMM1, XMM2{[RCX]} // unpack target pixel byte values into words
MOVQ XMM2, XMM1 // make a copy of the shifted values, we need them again
PSRLW XMM1, 8 // move higher bytes to lower bytes
// Load XMM6 with the source alpha value (replicate it for every component).
// Expand it to word size.
MOVQ XMM6, XMM0
PUNPCKHWD XMM6, XMM6
PUNPCKHDQ XMM6, XMM6
PMULLW XMM6, XMM3 // source alpha * master alpha
PSRLW XMM6, 8 // divide by 256
// calculation is: target = (alpha * master alpha * (source - target) + 256 * target) / 256
PSUBW XMM0, XMM1 // source - target
PMULLW XMM0, XMM6 // alpha * (source - target)
PADDW XMM0, XMM2 // add target (in shifted form)
PSRLW XMM0, 8 // divide by 256
// Bias is accounted for by conversion of range 0..255 to -128..127,
// doing a saturated add and convert back to 0..255.
PSUBW XMM0, XMM4
PADDSW XMM0, XMM5
PADDW XMM0, XMM4
PACKUSWB XMM0, XMM0 // convert words to bytes with saturation
{$ifdef windows}
MOVD DWORD PTR [RDX], XMM0 // store the result
{$else}
MOVD DWORD PTR [RSI], XMM0 // store the result
{$endif}
@3:
{$ifdef windows}
ADD RCX, 4
ADD RDX, 4
DEC R8D
{$else}
ADD RDI, 4
ADD RSI, 4
DEC EDX
{$endif}
JNZ @1
{$else}
// EAX contains Source
// EDX contains Destination
// ECX contains Count
// ConstantAlpha and Bias are on the stack
PUSH ESI // save used registers
PUSH EDI
MOV ESI, EAX // ESI becomes the actual source pointer
MOV EDI, EDX // EDI becomes the actual target pointer
// Load MM6 with the constant alpha value (replicate it for every component).
// Expand it to word size.
MOV EAX, [ConstantAlpha]
DB $0F, $6E, $F0 /// MOVD MM6, EAX
DB $0F, $61, $F6 /// PUNPCKLWD MM6, MM6
DB $0F, $62, $F6 /// PUNPCKLDQ MM6, MM6
// Load MM5 with the bias value.
MOV EAX, [Bias]
DB $0F, $6E, $E8 /// MOVD MM5, EAX
DB $0F, $61, $ED /// PUNPCKLWD MM5, MM5
DB $0F, $62, $ED /// PUNPCKLDQ MM5, MM5
// Load MM4 with 128 to allow for saturated biasing.
MOV EAX, 128
DB $0F, $6E, $E0 /// MOVD MM4, EAX
DB $0F, $61, $E4 /// PUNPCKLWD MM4, MM4
DB $0F, $62, $E4 /// PUNPCKLDQ MM4, MM4
@1: // The pixel loop calculates an entire pixel in one run.
// Note: The pixel byte values are expanded into the higher bytes of a word due
// to the way unpacking works. We compensate for this with an extra shift.
DB $0F, $EF, $C0 /// PXOR MM0, MM0, clear source pixel register for unpacking
DB $0F, $60, $06 /// PUNPCKLBW MM0, [ESI], unpack source pixel byte values into words
DB $0F, $71, $D0, $08 /// PSRLW MM0, 8, move higher bytes to lower bytes
DB $0F, $EF, $C9 /// PXOR MM1, MM1, clear target pixel register for unpacking
DB $0F, $60, $0F /// PUNPCKLBW MM1, [EDI], unpack target pixel byte values into words
DB $0F, $6F, $D1 /// MOVQ MM2, MM1, make a copy of the shifted values, we need them again
DB $0F, $71, $D1, $08 /// PSRLW MM1, 8, move higher bytes to lower bytes
// Load MM7 with the source alpha value (replicate it for every component).
// Expand it to word size.
DB $0F, $6F, $F8 /// MOVQ MM7, MM0
DB $0F, $69, $FF /// PUNPCKHWD MM7, MM7
DB $0F, $6A, $FF /// PUNPCKHDQ MM7, MM7
DB $0F, $D5, $FE /// PMULLW MM7, MM6, source alpha * master alpha
DB $0F, $71, $D7, $08 /// PSRLW MM7, 8, divide by 256
// calculation is: target = (alpha * master alpha * (source - target) + 256 * target) / 256
DB $0F, $F9, $C1 /// PSUBW MM0, MM1, source - target
DB $0F, $D5, $C7 /// PMULLW MM0, MM7, alpha * (source - target)
DB $0F, $FD, $C2 /// PADDW MM0, MM2, add target (in shifted form)
DB $0F, $71, $D0, $08 /// PSRLW MM0, 8, divide by 256
// Bias is accounted for by conversion of range 0..255 to -128..127,
// doing a saturated add and convert back to 0..255.
DB $0F, $F9, $C4 /// PSUBW MM0, MM4
DB $0F, $ED, $C5 /// PADDSW MM0, MM5
DB $0F, $FD, $C4 /// PADDW MM0, MM4
DB $0F, $67, $C0 /// PACKUSWB MM0, MM0, convert words to bytes with saturation
DB $0F, $7E, $07 /// MOVD [EDI], MM0, store the result
@3:
ADD ESI, 4
ADD EDI, 4
DEC ECX
JNZ @1
POP EDI
POP ESI
{$endif}
end;
{$endif}
//----------------------------------------------------------------------------------------------------------------------
procedure AlphaBlendLineMasterAndColor(Destination: Pointer; Count: Integer; ConstantAlpha, Color: Integer);
// Blends a line of Count pixels in Destination against the given color using a constant alpha value.
// The layout of a pixel must be BGRA and Color must be rrggbb00 (as stored by a COLORREF).
// ConstantAlpha must be in the range 0..255.
{$if not Defined(CPU386)}
begin
end;
{$else}
asm
{$ifdef CPU64}
//windows
// RCX contains Destination
// EDX contains Count
// R8D contains ConstantAlpha
// R9D contains Color
//non windows
// RDI contains Destination
// ESI contains Count
// EDX contains ConstantAlpha
// ECX contains Color
//.NOFRAME
// The used formula is: target = (alpha * color + (256 - alpha) * target) / 256.
// alpha * color (factor 1) and 256 - alpha (factor 2) are constant values which can be calculated in advance.
// The remaining calculation is therefore: target = (F1 + F2 * target) / 256
// Load XMM3 with the constant alpha value (replicate it for every component).
// Expand it to word size. (Every calculation here works on word sized operands.)
{$ifdef windows}
MOVD XMM3, R8D // ConstantAlpha
{$else}
MOVD XMM3, EDX // ConstantAlpha
{$endif}
PUNPCKLWD XMM3, XMM3
PUNPCKLDQ XMM3, XMM3
// Calculate factor 2.
MOV R10D, $100
MOVD XMM2, R10D
PUNPCKLWD XMM2, XMM2
PUNPCKLDQ XMM2, XMM2
PSUBW XMM2, XMM3 // XMM2 contains now: 255 - alpha = F2
// Now calculate factor 1. Alpha is still in XMM3, but the r and b components of Color must be swapped.
{$ifdef windows}
BSWAP R9D // Color
ROR R9D, 8
MOVD XMM1, R9D // Load the color and convert to word sized values.
{$else}
BSWAP ECX // Color
ROR ECX, 8
MOVD XMM1, ECX // Load the color and convert to word sized values.
{$endif}
PXOR XMM4, XMM4
PUNPCKLBW XMM1, XMM4
PMULLW XMM1, XMM3 // XMM1 contains now: color * alpha = F1
@1: // The pixel loop calculates an entire pixel in one run.
{$ifdef windows}
MOVD XMM0, DWORD PTR [RCX]
{$else}
MOVD XMM0, DWORD PTR [RDI]
{$endif}
PUNPCKLBW XMM0, XMM4
PMULLW XMM0, XMM2 // calculate F1 + F2 * target
PADDW XMM0, XMM1
PSRLW XMM0, 8 // divide by 256
PACKUSWB XMM0, XMM0 // convert words to bytes with saturation
{$ifdef windows}
MOVD DWORD PTR [RCX], XMM0 // store the result
ADD RCX, 4
DEC EDX
{$else}
MOVD DWORD PTR [RDI], XMM0 // store the result
ADD RDI, 4
DEC ESI
{$endif}
JNZ @1
{$else}
// EAX contains Destination
// EDX contains Count
// ECX contains ConstantAlpha
// Color is passed on the stack
// The used formula is: target = (alpha * color + (256 - alpha) * target) / 256.
// alpha * color (factor 1) and 256 - alpha (factor 2) are constant values which can be calculated in advance.
// The remaining calculation is therefore: target = (F1 + F2 * target) / 256
// Load MM3 with the constant alpha value (replicate it for every component).
// Expand it to word size. (Every calculation here works on word sized operands.)
DB $0F, $6E, $D9 /// MOVD MM3, ECX
DB $0F, $61, $DB /// PUNPCKLWD MM3, MM3
DB $0F, $62, $DB /// PUNPCKLDQ MM3, MM3
// Calculate factor 2.
MOV ECX, $100
DB $0F, $6E, $D1 /// MOVD MM2, ECX
DB $0F, $61, $D2 /// PUNPCKLWD MM2, MM2
DB $0F, $62, $D2 /// PUNPCKLDQ MM2, MM2
DB $0F, $F9, $D3 /// PSUBW MM2, MM3 // MM2 contains now: 255 - alpha = F2
// Now calculate factor 1. Alpha is still in MM3, but the r and b components of Color must be swapped.
MOV ECX, [Color]
BSWAP ECX
ROR ECX, 8
DB $0F, $6E, $C9 /// MOVD MM1, ECX // Load the color and convert to word sized values.
DB $0F, $EF, $E4 /// PXOR MM4, MM4
DB $0F, $60, $CC /// PUNPCKLBW MM1, MM4
DB $0F, $D5, $CB /// PMULLW MM1, MM3 // MM1 contains now: color * alpha = F1
@1: // The pixel loop calculates an entire pixel in one run.
DB $0F, $6E, $00 /// MOVD MM0, [EAX]
DB $0F, $60, $C4 /// PUNPCKLBW MM0, MM4
DB $0F, $D5, $C2 /// PMULLW MM0, MM2 // calculate F1 + F2 * target
DB $0F, $FD, $C1 /// PADDW MM0, MM1
DB $0F, $71, $D0, $08 /// PSRLW MM0, 8 // divide by 256
DB $0F, $67, $C0 /// PACKUSWB MM0, MM0 // convert words to bytes with saturation
DB $0F, $7E, $00 /// MOVD [EAX], MM0 // store the result
ADD EAX, 4
DEC EDX
JNZ @1
{$endif}
end;
{$endif}
//----------------------------------------------------------------------------------------------------------------------
procedure EMMS;
{$if not Defined(CPU386)}
begin
end;
{$else}
// Reset MMX state to use the FPU for other tasks again.
{$ifdef CPU64}
inline;
begin
end;
{$else}
asm
DB $0F, $77 /// EMMS
end;
{$endif}
{$endif}
//----------------------------------------------------------------------------------------------------------------------
function GetBitmapBitsFromDeviceContext(DC: HDC; out Width, Height: Integer): Pointer;
// Helper function used to retrieve the bitmap selected into the given device context. If there is a bitmap then
// the function will return a pointer to its bits otherwise nil is returned.
// Additionally the dimensions of the bitmap are returned.
var
Bitmap: HBITMAP;
DIB: TDIBSection;
begin
Result := nil;
Width := 0;
Height := 0;
Bitmap := GetCurrentObject(DC, OBJ_BITMAP);
if Bitmap <> 0 then
begin
if GetObject(Bitmap, SizeOf(DIB), @DIB) = SizeOf(DIB) then
begin
Assert(DIB.dsBm.bmPlanes * DIB.dsBm.bmBitsPixel = 32, 'Alpha blending error: bitmap must use 32 bpp.');
Result := DIB.dsBm.bmBits;
Width := DIB.dsBmih.biWidth;
Height := DIB.dsBmih.biHeight;
end;
end;
Assert(Result <> nil, 'Alpha blending DC error: no bitmap available.');
end;
//----------------------------------------------------------------------------------------------------------------------
function GetBitmapBitsFromBitmap(Bitmap: HBITMAP): Pointer;
var
DIB: TDIBSection;
begin
Result := nil;
if Bitmap <> 0 then
begin
if GetObject(Bitmap, SizeOf(DIB), @DIB) = SizeOf(DIB) then
begin
Assert(DIB.dsBm.bmPlanes * DIB.dsBm.bmBitsPixel = 32, 'Alpha blending error: bitmap must use 32 bpp.');
Result := DIB.dsBm.bmBits;
end;
end;
end;
function CalculateScanline(Bits: Pointer; Width, Height, Row: Integer): Pointer;
// Helper function to calculate the start address for the given row.
begin
//todo: Height is always > 0 in LCL
{
if Height > 0 then // bottom-up DIB
Row := Height - Row - 1;
}
// Return DWORD aligned address of the requested scanline.
Result := Bits + Row * ((Width * 32 + 31) and not 31) div 8;
end;
//----------------------------------------------------------------------------------------------------------------------
procedure AlphaBlend(Source, Destination: HDC; const R: TRect; const Target: TPoint; Mode: TBlendMode; ConstantAlpha, Bias: Integer);
// Optimized alpha blend procedure using MMX instructions to perform as quick as possible.
// For this procedure to work properly it is important that both source and target bitmap use the 32 bit color format.
// R describes the source rectangle to work on.
// Target is the place (upper left corner) in the target bitmap where to blend to. Note that source width + X offset
// must be less or equal to the target width. Similar for the height.
// If Mode is bmConstantAlpha then the blend operation uses the given ConstantAlpha value for all pixels.
// If Mode is bmPerPixelAlpha then each pixel is blended using its individual alpha value (the alpha value of the source).
// If Mode is bmMasterAlpha then each pixel is blended using its individual alpha value multiplied by ConstantAlpha.
// If Mode is bmConstantAlphaAndColor then each destination pixel is blended using ConstantAlpha but also a constant
// color which will be obtained from Bias. In this case no offset value is added, otherwise Bias is used as offset.
// Blending of a color into target only (bmConstantAlphaAndColor) ignores Source (the DC) and Target (the position).
// CAUTION: This procedure does not check whether MMX instructions are actually available! Call it only if MMX is really
// usable.
var
Y: Integer;
SourceRun,
TargetRun: PByte;
SourceBits,
DestBits: Pointer;
SourceWidth,
SourceHeight,
DestWidth,
DestHeight: Integer;
//BlendColor: TQColor;
begin
if not IsRectEmpty(R) then
begin
{$ifdef CPU64}
//avoid MasterAlpha due to incomplete AlphaBlendLineMaster. See comment in procedure
if Mode = bmMasterAlpha then
Mode := bmConstantAlpha;
{$endif}
// Note: it is tempting to optimize the special cases for constant alpha 0 and 255 by just ignoring soure
// (alpha = 0) or simply do a blit (alpha = 255). But this does not take the bias into account.
case Mode of
bmConstantAlpha:
begin
// Get a pointer to the bitmap bits for the source and target device contexts.
// Note: this supposes that both contexts do actually have bitmaps assigned!
SourceBits := GetBitmapBitsFromDeviceContext(Source, SourceWidth, SourceHeight);
DestBits := GetBitmapBitsFromDeviceContext(Destination, DestWidth, DestHeight);
if Assigned(SourceBits) and Assigned(DestBits) then
begin
for Y := 0 to R.Bottom - R.Top - 1 do
begin
SourceRun := CalculateScanline(SourceBits, SourceWidth, SourceHeight, Y + R.Top);
Inc(SourceRun, 4 * R.Left);
TargetRun := CalculateScanline(DestBits, DestWidth, DestHeight, Y + Target.Y);
Inc(TargetRun, 4 * Target.X);
AlphaBlendLineConstant(SourceRun, TargetRun, R.Right - R.Left, ConstantAlpha, Bias);
end;
end;
EMMS;
end;
bmPerPixelAlpha:
begin
SourceBits := GetBitmapBitsFromDeviceContext(Source, SourceWidth, SourceHeight);
DestBits := GetBitmapBitsFromDeviceContext(Destination, DestWidth, DestHeight);
if Assigned(SourceBits) and Assigned(DestBits) then
begin
for Y := 0 to R.Bottom - R.Top - 1 do
begin
SourceRun := CalculateScanline(SourceBits, SourceWidth, SourceHeight, Y + R.Top);
Inc(SourceRun, 4 * R.Left);
TargetRun := CalculateScanline(DestBits, DestWidth, DestHeight, Y + Target.Y);
Inc(TargetRun, 4 * Target.X);
AlphaBlendLinePerPixel(SourceRun, TargetRun, R.Right - R.Left, Bias);
end;
end;
EMMS;
end;
bmMasterAlpha:
begin
SourceBits := GetBitmapBitsFromDeviceContext(Source, SourceWidth, SourceHeight);
DestBits := GetBitmapBitsFromDeviceContext(Destination, DestWidth, DestHeight);
if Assigned(SourceBits) and Assigned(DestBits) then
begin
for Y := 0 to R.Bottom - R.Top - 1 do
begin
SourceRun := CalculateScanline(SourceBits, SourceWidth, SourceHeight, Y + R.Top);
Inc(SourceRun, 4 * Target.X);
TargetRun := CalculateScanline(DestBits, DestWidth, DestHeight, Y + Target.Y);
AlphaBlendLineMaster(SourceRun, TargetRun, R.Right - R.Left, ConstantAlpha, Bias);
end;
end;
EMMS;
end;
bmConstantAlphaAndColor:
begin
//todo: see why is not working
{
QColor_fromRgb(@BlendColor,
Bias and $000000FF,
(Bias shr 8) and $000000FF,
(Bias shr 16) and $000000FF,
ConstantAlpha);
QPainter_fillRect(TQTDeviceContext(Destination).Widget,
R.Left + Target.x, R.Top + Target.y,
R.Right - R.Left, R.Bottom - R.Top, @BlendColor);
}
// Source is ignored since there is a constant color value.
DestBits := GetBitmapBitsFromDeviceContext(Destination, DestWidth, DestHeight);
if Assigned(DestBits) then
begin
for Y := 0 to R.Bottom - R.Top - 1 do
begin
TargetRun := CalculateScanline(DestBits, DestWidth, DestHeight, Y + R.Top);
Inc(TargetRun, 4 * R.Left);
AlphaBlendLineMasterAndColor(TargetRun, R.Right - R.Left, ConstantAlpha, Bias);
end;
end;
EMMS;
end;
end;
end;
end;
|