File: graphmath.xml

package info (click to toggle)
lazarus 2.0.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 214,460 kB
  • sloc: pascal: 1,862,622; xml: 265,709; cpp: 56,595; sh: 3,008; java: 609; makefile: 535; perl: 297; sql: 222; ansic: 137
file content (847 lines) | stat: -rw-r--r-- 30,102 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
<?xml version="1.0" encoding="UTF-8"?>
<fpdoc-descriptions>
  <package name="lcl">
    <!--
  ====================================================================
    GraphMath
  ====================================================================
-->
    <module name="GraphMath">
      <short>A Set of Mathematical Helper routines to simply Cross-Platfrom Canvas drawing etc</short>
      <descr/>
      <!-- unresolved type reference Visibility: default -->
      <element name="Classes">
        <short/>
        <descr/>
        <seealso/>
      </element>
      <!-- unresolved type reference Visibility: default -->
      <element name="SysUtils">
        <short/>
        <descr/>
        <seealso/>
      </element>
      <!-- unresolved type reference Visibility: default -->
      <element name="Math">
        <short/>
        <descr/>
        <seealso/>
      </element>
      <!-- unresolved type reference Visibility: default -->
      <element name="LCLProc">
        <short/>
        <descr/>
        <seealso/>
      </element>
      <!-- record type Visibility: default -->
      <element name="TFloatPoint">
        <short>
          <var>TFloatPoint</var> - an extended precision record specifying the X and Y coordinates of a point in a graphic environment</short>
        <descr/>
        <seealso/>
      </element>
      <!-- variable Visibility: default -->
      <element name="TFloatPoint.X">
        <short/>
        <descr/>
        <seealso/>
      </element>
      <!-- variable Visibility: default -->
      <element name="TFloatPoint.Y">
        <short/>
        <descr/>
        <seealso/>
      </element>
      <!-- array type Visibility: default -->
      <element name="TBezier">
        <short/>
        <descr/>
        <seealso/>
      </element>
      <!-- pointer type Visibility: default -->
      <element name="PPoint">
        <short/>
        <descr/>
        <seealso/>
      </element>
      <!-- procedure Visibility: default -->
      <element name="Angles2Coords">
        <short>
          <var>Angles2Coords</var> - convert an Eccentric Angle and an Angle-Length, into the coords for Start and End Radial-Points</short>
        <descr>
          <p>Method:   <var>Angles2Coords</var>
          </p>
          <pre>Params:   x,y,width,height,angle1,angle2, sx, sy, ex, ey
  Returns:  Nothing

  Use Angles2Coords to convert an Eccentric(aka Radial) Angle and an
  Angle-Length, such as are used in X-Windows and GTK, into the coords,
  for Start and End Radial-Points, such as are used in the Windows API Arc
  Pie and Chord routines. The angles are 1/16th of a degree. For example, a
  full circle equals 5760 (16*360). Positive values of Angle and AngleLength
  mean counter-clockwise while negative values mean clockwise direction. 
  Zero degrees is at the 3 o'clock position.</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Angles2Coords.X">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Angles2Coords.Y">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Angles2Coords.Width">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Angles2Coords.Height">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Angles2Coords.Angle1">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Angles2Coords.Angle2">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Angles2Coords.SX">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Angles2Coords.SY">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Angles2Coords.EX">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Angles2Coords.EY">
        <short/>
      </element>
      <!-- procedure Visibility: default -->
      <element name="Arc2Bezier">
        <short>
          <var>Arc2Bezier</var> - convert an Arc and ArcLength into a Bezier Aproximation of the Arc.</short>
        <descr>
          <p>Method:   <var>Arc2Bezier</var>
          </p>
          <pre>Params:   X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
  Returns:  Nothing

  Use Arc2Bezier to convert an Arc and ArcLength into a Bezier Aproximation
  of the Arc. The Rotation parameter accepts a Rotation-Angle for a rotated
  Ellipse'- for a non-rotated ellipse this value would be 0, or 360. If the
  AngleLength is greater than 90 degrees, or is equal to 0, it automatically
  exits, as Bezier cannot accurately aproximate any angle greater then 90
  degrees, and in fact for best result no angle greater than 45 should be
  converted, instead an array of Bezier's should be created, each Bezier
  descibing a portion of the total arc no greater than 45 degrees. The angles
  are 1/16th of a degree. For example, a full circle equals 5760 (16*360).
  Positive values of Angle and AngleLength mean counter-clockwise while
  negative values mean clockwise direction. Zero degrees is at the 3 o'clock
  position.</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Arc2Bezier.X">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Arc2Bezier.Y">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Arc2Bezier.Width">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Arc2Bezier.Height">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Arc2Bezier.Angle1">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Arc2Bezier.Angle2">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Arc2Bezier.Rotation">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Arc2Bezier.Points">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="Bezier">
        <short>
          <var>Bezier</var> - function to get a Bezierfigure from the given points</short>
        <descr/>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="Bezier.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier.C1">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier.C2">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier.C3">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier.C4">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="Bezier">
        <short/>
        <descr/>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="Bezier.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier.C1">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier.C2">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier.C3">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier.C4">
        <short/>
      </element>
      <!-- procedure Visibility: default -->
      <element name="Bezier2Polyline">
        <short>
          <var>Bezier2Polyline</var> - convert a 4-Point Bezier into a Pointer Array of TPoint and a Count variable</short>
        <descr>
          <p>Method:   <var>Bezier2Polyline</var>
          </p>
          <pre>Params:   Bezier, Points, Count
  Returns:  Nothing

  Use BezierToPolyline to convert a 4-Point Bezier into a Pointer Array of
  TPoint and a Count variable which can then be used within either a Polyline,
  or Polygon routine. It is primarily for use within PolyBezier2Polyline. If
  Points is not initialized or Count is less then 0, it is set to nil and
  the array starts at 0, otherwise it tries to append points
  to the array starting at Count. Points should ALWAYS be Freed when done
  by calling to ReallocMem(Points, 0) or FreeMem.
</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier2Polyline.Bezier">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier2Polyline.Points">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Bezier2Polyline.Count">
        <short/>
      </element>
      <!-- procedure Visibility: default -->
      <element name="BezierArcPoints">
        <short>
          <var>BezierArcPoints</var> - convert an Arc and ArcLength into a Pointer Array of TPoints for use with Polyline or Polygon</short>
        <descr>
          <p>Method:   <var>BezierArcPoints</var>
          </p>
          <pre>Params:   X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
  Returns:  Nothing

  Use BezierArcPoints to convert an Arc and ArcLength into a Pointer Array
  of TPoints for use with Polyline or Polygon. The Rotation parameter accepts
  a Rotation-Angle for a rotated Ellipse'- for a non-rotated ellipse this
  value would be 0, or 360. The result is an Aproximation based on 1 or more
  Beziers. If the AngleLength is greater than 90 degrees, it calls
  PolyBezierArcPoints, otherwise it Converts the angles into a Bezier by
  calling to Arc2Bezier, and then converts the Bezier into an array of Points
  by calling to Bezier2Polyline. The angles are 1/16th of a degree. For example,
  a full circle equals 5760 (16*360). Positive values of Angle and AngleLength
  mean counter-clockwise while negative values mean clockwise direction. Zero
  degrees is at the 3'o clock position. If Points is not initialized or Count
  is less then 0, it is set to nil and the array starts at 0,
  otherwise it tries to append points to the array starting at Count. Points
  should ALWAYS be Freed when done by calling ReallocMem(Points, 0) or FreeMem.
</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- argument Visibility: default -->
      <element name="BezierArcPoints.X">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="BezierArcPoints.Y">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="BezierArcPoints.Width">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="BezierArcPoints.Height">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="BezierArcPoints.Angle1">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="BezierArcPoints.Angle2">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="BezierArcPoints.Rotation">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="BezierArcPoints.Points">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="BezierArcPoints.Count">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="BezierMidPoint">
        <short>
          <var>BezierMidPoint</var> - get the Mid-Point of any 4-Point Bezier. It is  primarily for use in SplitBezier.</short>
        <descr/>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="BezierMidPoint.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="BezierMidPoint.Bezier">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="CenterPoint">
        <short>
          <var>CenterPoint</var> - get the Center-Point of any rectangle. It is primarily for use with, and in, other routines such as Quadrant, and RadialPoint</short>
        <descr/>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="CenterPoint.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="CenterPoint.Rect">
        <short/>
      </element>
      <!-- procedure Visibility: default -->
      <element name="Coords2Angles">
        <short>
          <var>Coords2Angles</var> - convert the coords for Start and End Radial-Points into an Eccentric counter clockwise Angle and an Angle-Length</short>
        <descr>
          <p>Method:   <var>Coords2Angles</var>
          </p>
          <pre>Params:   x,y,width,height,sx,sy,ex,ey, angle1,angle2
  Returns:  Nothing

  Use Coords2Angles to convert the coords for Start and End Radial-Points, such
  as are used in the Windows API Arc Pie and Chord routines, into an Eccentric
  (aka Radial) counter clockwise Angle and an Angle-Length, such as are used in
  X-Windows and GTK. The angles angle1 and angle2 are returned in 1/16th of a
  degree. For example, a full circle equals 5760 (16*360). Zero degrees is at
  the 3 o'clock position.</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Coords2Angles.X">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Coords2Angles.Y">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Coords2Angles.Width">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Coords2Angles.Height">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Coords2Angles.SX">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Coords2Angles.SY">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Coords2Angles.EX">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Coords2Angles.EY">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Coords2Angles.Angle1">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Coords2Angles.Angle2">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="Distance">
        <short>Get the <var>Distance</var> between any two Points. It is primarily for use in other routines such as EccentricAngle</short>
        <descr/>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="Distance.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Distance.PT1">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Distance.Pt2">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="Distance">
        <short/>
        <descr/>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="Distance.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Distance.Pt">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Distance.SP">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Distance.EP">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="EccentricAngle">
        <short>
          <var>EccentricAngle</var> - get the Eccentric Angle of a given point on any non-rotated ellipse</short>
        <descr>
          <p>Method:   <var>EccentricAngle</var>
          </p>
          <pre>Params:   Pt, Rect
  Returns:  Extended

  Use EccentricAngle to get the Eccentric( aka Radial ) Angle of a given
  point on any non-rotated ellipse. It is primarily for use in Coords2Angles.
  The result is in 1/16th of a degree. For example, a full circle equals
  5760 (16*360).  Zero degrees is at the 3 o'clock position.</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="EccentricAngle.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="EccentricAngle.PT">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="EccentricAngle.Rect">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="EllipseRadialLength">
        <short>
          <var>EllipseRadialLength</var> - Radial-Length of non-rotated ellipse at any given Eccentric Angle</short>
        <descr>
          <p>Method:   <var>EllipseRadialLength</var>
          </p>
          <pre>Params:   Rect, EccentricAngle
  Returns:  Longint

  Use EllipseRadialLength to get the Radial-Length of non-rotated ellipse at
  any given Eccentric( aka Radial ) Angle. It is primarily for use in other
  routines such as RadialPoint. The Eccentric angle is in 1/16th of a degree.
  For example, a full circle equals 5760 (16*360).  Zero degrees is at the
  3 o'clock position.
</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="EllipseRadialLength.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="EllipseRadialLength.Rect">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="EllipseRadialLength.EccentricAngle">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="FloatPoint">
        <short>
          <var>FloatPoint</var> - it is essentialy like Classes.Point in use, except that it accepts Extended Parameters. It is Primarily for use with and in Bezier routines.</short>
        <descr/>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="FloatPoint.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="FloatPoint.AX">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="FloatPoint.AY">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="LineEndPoint">
        <short>
          <var>LineEndPoint</var> - get the End-Point of a line of any given Length at any given angle with any given Start-Point</short>
        <descr>
          <p>Method:   <var>LineEndPoint</var>
          </p>
          <pre>Params:   StartPoint, Angle, Length
  Returns:  TPoint

  Use LineEndPoint to get the End-Point of a line of any given Length at
  any given angle with any given Start-Point. It is primarily for use in
  other routines such as RadialPoint. The angle is in 1/16th of a degree.
  For example, a full circle equals 5760 (16*360).  Zero degrees is at the
  3 o'clock position.
</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="LineEndPoint.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="LineEndPoint.StartPoint">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="LineEndPoint.Angle">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="LineEndPoint.Length">
        <short/>
      </element>
      <!-- procedure Visibility: default -->
      <element name="PolyBezier2Polyline">
        <short>
          <var>PolyBezier2Polyline</var> - convert an array of 4-Point Bezier into a Pointer Array of TPoint and a Count variable</short>
        <descr>
          <p>Method:   <var>PolyBezier2Polyline</var>
          </p>
          <pre>Params:   Beziers, Points, Count
  Returns:  Nothing

  Use BezierToPolyline to convert an array of 4-Point Bezier into a Pointer
  Array of TPoint and a Count variable which can then be used within either a
  Polyline, or Polygon routine. Points is automatically initialized, so any
  existing information is lost, and the array starts at 0. Points should ALWAYS
  be Freed when done by calling to ReallocMem(Points, 0).
</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Beziers">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Points">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Count">
        <short/>
      </element>
      <!-- procedure Visibility: default -->
      <element name="PolyBezier2Polyline">
        <short/>
        <descr/>
        <errors/>
        <seealso/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Beziers">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Points">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Count">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Continuous">
        <short/>
      </element>
      <!-- procedure Visibility: default -->
      <element name="PolyBezier2Polyline">
        <short/>
        <descr/>
        <errors/>
        <seealso/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Beziers">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.BCount">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Points">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Count">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezier2Polyline.Continuous">
        <short/>
      </element>
      <!-- procedure Visibility: default -->
      <element name="PolyBezierArcPoints">
        <short>
          <var>PolyBezierArcPoints</var> - convert an Arc and ArcLength into a Pointer Array of TPoints for use with Polyline or Polygon</short>
        <descr>
          <p>Method:   <var>PolyBezierArcPoints</var>
          </p>
          <pre>Params:   X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
  Returns:  Nothing

  Use PolyBezierArcPoints to convert an Arc and ArcLength into a Pointer Array
  of TPoints for use with Polyline or Polygon. The Rotation parameter accepts
  a Rotation-Angle for a rotated Ellipse'- for a non-rotated ellipse this
  value would be 0, or 360. The result is an Aproximation based on 1 or more
  Beziers. If the AngleLength is greater than 45 degrees, it recursively breaks
  the Arc into Arcs of 45 degrees or less, and converts them into Beziers with
  BezierArcPoints. The angles are 1/16th of a degree. For example, a full circle
  equals 5760 (16*360). Positive values of Angle and AngleLength mean
  counter-clockwise while negative values mean clockwise direction. Zero
  degrees is at the 3'o clock position. Points is automatically initialized,
  so any existing information is lost, and the array starts at 0. Points
  should ALWAYS be Freed when done by calling to ReallocMem(Points, 0).
</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezierArcPoints.X">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezierArcPoints.Y">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezierArcPoints.Width">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezierArcPoints.Height">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezierArcPoints.Angle1">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezierArcPoints.Angle2">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezierArcPoints.Rotation">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezierArcPoints.Points">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="PolyBezierArcPoints.Count">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="Quadrant">
        <short>Determine the <var>Quadrant</var>  of any point, given the Center</short>
        <descr>
          <p>Method:   <var>Quadrant</var>
          </p>
          <pre>Params:   PT, Center
  Returns:  Integer

  Use Quadrant to determine the Quadrant of any point, given the Center.
  It is primarily for use in other routines such as EccentricAngle. A result
  of 1-4 represents the primary 4 quardants. A result of 5-8 means the point
  lies on one of the Axis', 5 = -Y Axis, 6 = +X Axis, 7 = +Y Axis, and
  8 = -X Axis. A result of -1 means that it does not fall in any quadrant,
  that is, it is the Center.
</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="Quadrant.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Quadrant.PT">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="Quadrant.Center">
        <short/>
      </element>
      <!-- function Visibility: default -->
      <element name="RadialPoint">
        <short>Get the <var>RadialPoint</var> at any given Eccentric angle on any non-rotated ellipse</short>
        <descr>
          <p>Method:   <var>RadialPoint</var>
          </p>
          <pre>Params:   EccentricAngle, Rect
  Returns:  TPoint

  Use RadialPoint to get the Radial-Point at any given Eccentric( aka Radial )
  angle on any non-rotated ellipse. It is primarily for use in Angles2Coords.
  The EccentricAngle is in 1/16th of a degree. For example, a full circle
  equals 5760 (16*360).  Zero degrees is at the 3 o'clock position.
</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- function result Visibility: default -->
      <element name="RadialPoint.Result">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="RadialPoint.EccentricAngle">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="RadialPoint.Rect">
        <short/>
      </element>
      <!-- procedure Visibility: default -->
      <element name="SplitBezier">
        <short>
          <var>SplitBezier</var> - split any 4-Point Bezier into two 4-Point Beziers: a 'Left' and a 'Right'</short>
        <descr>
          <p>Method:   <var>SplitBezier</var>
          </p>
          <pre>Params:   Bezier, Left, Right
  Returns:  Nothing

  Use SplitBezier to split any 4-Point Bezier into two 4-Point Beziers:
  a 'Left' and a 'Right'. It is primarily for use in Bezier2Polyline.
</pre>
        </descr>
        <errors/>
        <seealso/>
      </element>
      <!-- argument Visibility: default -->
      <element name="SplitBezier.Bezier">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="SplitBezier.Left">
        <short/>
      </element>
      <!-- argument Visibility: default -->
      <element name="SplitBezier.Right">
        <short/>
      </element>
      <topic name="GraphMath Operators">
        <short>
          <b>GraphMath Operators</b>
        </short>
        <descr>
          <p>This Unit contains a number of routines for calculating and converting series of graphic points from one coordinate system to another.</p>
          <p>A fundamental type is introduced, called TFloatPoint. It is an extended precision record containg an X and a Y coordinate for a graphic point. Its structure is as follows:</p>
          <pre>Type
  TFloatPoint = Record
    X, Y : Extended;
  end;

</pre>
          <p>The Unit contains definitions for mathematical operators which extend the normal definitions of addition, subtraction, multiplication, division and comparison to cover manipulations with TFloatPoints, allowing, for example, addition or multiplication of two TFloatPoints, a TFloatPoint and a TPoint, or a TFloatPoint and an Extended Precision number. </p>
        </descr>
      </topic>
    </module>
    <!-- GraphMath -->
  </package>
</fpdoc-descriptions>