File: graphmath.pp

package info (click to toggle)
lazarus 2.0.10%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 219,188 kB
  • sloc: pascal: 1,867,962; xml: 265,716; cpp: 56,595; sh: 3,005; java: 609; makefile: 568; perl: 297; sql: 222; ansic: 137
file content (1052 lines) | stat: -rw-r--r-- 32,551 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
{
/***************************************************************************
                             GraphMath.pp
                             ------------
         Math helper routines for use within Graphics/Drawing & related
                   Initial Revision  : Wed Aug 07 2002


***************************************************************************/

*****************************************************************************
  This file is part of the Lazarus Component Library (LCL)

  See the file COPYING.modifiedLGPL.txt, included in this distribution,
  for details about the license.
*****************************************************************************
}
{
@abstract(A Set of Math Helper routines to simply Cross-Platfrom Canvas, 
etc)
@author(Andrew Johnson <AJ_Genius@Hotmail.com>)
@created(2002)
@lastmod(2002)
}
unit GraphMath;

{$Mode OBJFPC} {$H+}

interface

Uses
  Types, Classes, SysUtils, Math,
  LCLProc;

Type
  TFloatPoint = Record
    X, Y : Extended;
  end;

  TBezier = Array[0..3] of TFloatPoint;

  PPoint = ^TPoint;

procedure Angles2Coords(X,Y, Width, Height : Integer;
  Angle1, Angle2 : Extended; var SX, SY, EX, EY : Integer);

procedure Arc2Bezier(X, Y, Width, Height : Longint; Angle1, Angle2,
  Rotation : Extended; var Points : TBezier);

function Bezier(const C1,C2,C3,C4 : TFloatPoint): TBezier; Overload; inline;
function Bezier(const C1,C2,C3,C4 : TPoint): TBezier; Overload; inline;

procedure Bezier2Polyline(const Bezier : TBezier; var Points : PPoint;
  var Count : Longint);

procedure BezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
  Rotation : Extended; var Points : PPoint; var Count : Longint);

function BezierMidPoint(Bezier : TBezier) : TFloatPoint;

procedure Coords2Angles(X, Y, Width, Height : Integer; SX, SY,
  EX, EY : Integer; var Angle1, Angle2 : Extended);

function Distance(PT1,Pt2 : TPoint) : Extended; overload;
function Distance(Pt, SP, EP : TFloatPoint) : Extended; overload;

function EccentricAngle(PT : TPoint; Rect : TRect) : Extended;

function EllipseRadialLength(Rect : TRect; EccentricAngle : Extended) : Longint;

function FloatPoint(AX,AY : Extended): TFloatPoint;

function LineEndPoint(StartPoint : TPoint; Angle, Length : Extended) : TPoint;

procedure PolyBezier2Polyline(Beziers: Array of TBezier;
  var Points : PPoint; var Count : Longint); Overload;
procedure PolyBezier2Polyline(Beziers : Array of TPoint; 
  var Points : PPoint; var Count : Longint; 
  Continuous : Boolean); Overload;
procedure PolyBezier2Polyline(Beziers : PPoint; BCount : Longint;
  var Points : PPoint; var Count : Longint; 
  Continuous : Boolean); Overload;

procedure PolyBezierArcPoints(X, Y, Width, Height : Longint; Angle1,
  Angle2, Rotation : Extended; var Points : PPoint; var Count : Longint);

function Quadrant(PT, Center : TPoint) : Integer;

function RadialPoint(EccentricAngle : Extended; Rect : TRect) : TPoint;

procedure SplitBezier(Bezier : TBezier; var Left, Right : TBezier);

Operator + (Addend1, Addend2 : TFloatPoint) : TFloatPoint;
Operator + (Addend1 : TFloatPoint; Addend2 : Extended) : TFloatPoint;
Operator + (Addend1 : Extended; Addend2 : TFloatPoint) : TFloatPoint;
Operator + (Addend1 : TFloatPoint; Addend2 : TPoint) : TFloatPoint;
Operator + (Addend1 : TPoint; Addend2 : TFloatPoint) : TFloatPoint;

Operator - (Minuend : TFloatPoint; Subtrahend : Extended) : TFloatPoint;
Operator - (Minuend, Subtrahend : TFloatPoint) : TFloatPoint;
Operator - (Minuend : TFloatPoint; Subtrahend : TPoint) : TFloatPoint;
Operator - (Minuend : TPoint; Subtrahend : TFloatPoint) : TFloatPoint;

Operator * (Multiplicand, Multiplier : TFloatPoint) : TFloatPoint;
Operator * (Multiplicand : TFloatPoint; Multiplier : Extended) : TFloatPoint;
Operator * (Multiplicand : Extended; Multiplier : TFloatPoint) : TFloatPoint;
Operator * (Multiplicand : TFloatPoint; Multiplier : TPoint) : TFloatPoint;
Operator * (Multiplicand : TPoint; Multiplier : TFloatPoint) : TFloatPoint;

Operator / (Dividend, Divisor : TFloatPoint) : TFloatPoint;
Operator / (Dividend : TFloatPoint; Divisor : Extended) : TFloatPoint;
Operator / (Dividend : TFloatPoint; Divisor : TPoint) : TFloatPoint;
Operator / (Dividend : TPoint; Divisor : TFloatPoint) : TFloatPoint;

Operator = (Compare1, Compare2  : TPoint) : Boolean;
Operator = (Compare1, Compare2  : TFloatPoint) : Boolean;

Operator := (Value : TFloatPoint) : TPoint;

Operator := (Value : TPoint) : TFloatPoint;

Operator = (Compare1, Compare2  : TRect) : Boolean;


implementation


Operator + (Addend1, Addend2 : TFloatPoint) : TFloatPoint;
Begin
  With Result do begin
    X := Addend1.X + Addend2.X;
    Y := Addend1.Y + Addend2.Y;
  end;
end;

Operator + (Addend1 : TFloatPoint; Addend2 : Extended) : TFloatPoint;
Begin
  With Result do begin
    X := Addend1.X + Addend2;
    Y := Addend1.Y + Addend2;
  end;
end;

Operator + (Addend1 : Extended; Addend2 : TFloatPoint) : TFloatPoint;
begin
  Result := Addend2 + Addend1;
end;

Operator + (Addend1 : TFloatPoint; Addend2 : TPoint) : TFloatPoint;
Begin
  With Result do begin
    X := Addend1.X + Addend2.X;
    Y := Addend1.Y + Addend2.Y;
  end;
end;

Operator + (Addend1 : TPoint; Addend2 : TFloatPoint) : TFloatPoint;
begin
  Result := Addend2 + Addend1;
end;

Operator - (Minuend, Subtrahend:TFloatPoint) : TFloatPoint;
Begin
  With Result do begin
    X := Minuend.X - Subtrahend.X;
    Y := Minuend.Y - Subtrahend.Y;
  end;
end;

Operator - (Minuend : TFloatPoint; Subtrahend : Extended) : TFloatPoint;
Begin
  With Result do begin
    X := Minuend.X - Subtrahend;
    Y := Minuend.Y - Subtrahend;
  end;
end;

Operator - (Minuend : TFloatPoint; Subtrahend : TPoint) : TFloatPoint;
begin
  With Result do begin
    X := Minuend.X - Subtrahend.X;
    Y := Minuend.Y - Subtrahend.Y;
  end;
end;

Operator - (Minuend : TPoint; Subtrahend : TFloatPoint) : TFloatPoint;
begin
  With Result do begin
    X := Minuend.X - Subtrahend.X;
    Y := Minuend.Y - Subtrahend.Y;
  end;
end;

Operator * (Multiplicand, Multiplier : TFloatPoint) : TFloatPoint;
Begin
  With Result do begin
    X := Multiplicand.X * Multiplier.X;
    Y := Multiplicand.Y * Multiplier.Y;
  end;
end;

Operator * (Multiplicand : TFloatPoint; Multiplier : Extended) : TFloatPoint;
Begin
  With Result do begin
    X := Multiplicand.X * Multiplier;
    Y := Multiplicand.Y * Multiplier;
  end;
end;

Operator * (Multiplicand : Extended; Multiplier : TFloatPoint) : TFloatPoint;
Begin
  Result := Multiplier*Multiplicand;
end;

Operator * (Multiplicand : TFloatPoint; Multiplier : TPoint) : TFloatPoint;
begin
  With Result do begin
    X := Multiplicand.X * Multiplier.X;
    Y := Multiplicand.Y * Multiplier.Y;
  end;
end;

Operator * (Multiplicand : TPoint; Multiplier : TFloatPoint) : TFloatPoint;
begin
  Result := Multiplier*Multiplicand;
end;

Operator / (Dividend, Divisor : TFloatPoint) : TFloatPoint;
Begin
  With Result do begin
    X := Dividend.X / Divisor.X;
    Y := Dividend.Y / Divisor.Y;
  end;
end;

Operator / (Dividend : TFloatPoint; Divisor : Extended) : TFloatPoint;
begin
  With Result do begin
    X := Dividend.X / Divisor;
    Y := Dividend.Y / Divisor;
  end;
end;

Operator / (Dividend : TFloatPoint; Divisor : TPoint) : TFloatPoint;
begin
  With Result do begin
    X := Dividend.X / Divisor.X;
    Y := Dividend.Y / Divisor.Y;
  end;
end;

Operator / (Dividend : TPoint; Divisor : TFloatPoint) : TFloatPoint;
begin
  With Result do begin
    X := Dividend.X / Divisor.X;
    Y := Dividend.Y / Divisor.Y;
  end;
end;

Operator = (Compare1, Compare2  : TPoint) : Boolean;
begin
  Result := (Compare1.X = Compare2.X) and (Compare1.Y = Compare2.Y);
end;

Operator = (Compare1, Compare2  : TFloatPoint) : Boolean;
begin
  Result := (Compare1.X = Compare2.X) and (Compare1.Y = Compare2.Y);
end;

Operator := (Value : TFloatPoint) : TPoint;
begin
  Result.X := Trunc(SimpleRoundTo(Value.X, 0));
  Result.Y := Trunc(SimpleRoundTo(Value.Y, 0));
end;

Operator := (Value : TPoint) : TFloatPoint;
begin
  With Result do begin
    X := Value.X;
    Y := Value.Y;
  end;
end;

Operator = (Compare1, Compare2  : TRect) : Boolean;
begin
  Result := (Compare1.Left = Compare2.Left) and
            (Compare1.Top = Compare2.Top) and
            (Compare1.Right = Compare2.Right) and
            (Compare1.Bottom = Compare2.Bottom);
end;

{------------------------------------------------------------------------------
  Method:   Angles2Coords
  Params:   x,y,width,height,angle1,angle2, sx, sy, ex, ey
  Returns:  Nothing

  Use Angles2Coords to convert an Eccentric(aka Radial) Angle and an
  Angle-Length, such as are used in X-Windows and GTK, into the coords,
  for Start and End Radial-Points, such as are used in the Windows API Arc
  Pie and Chord routines. The angles are 1/16th of a degree. For example, a
  full circle equals 5760 (16*360). Positive values of Angle and AngleLength
  mean counter-clockwise while negative values mean clockwise direction. 
  Zero degrees is at the 3'o clock position.

------------------------------------------------------------------------------}
procedure Angles2Coords(X, Y, Width, Height : Integer;
  Angle1, Angle2 : Extended; var SX, SY, EX, EY : Integer);
var
  aRect : TRect;
  SP, EP : TPoint;
begin
  aRect := Rect(X,Y,X + Width,Y + Height);
  SP := RadialPoint(Angle1 , aRect);
  If Angle2 + Angle1 > 360*16 then
    Angle2 := (Angle2 + Angle1) - 360*16
  else
    Angle2 := Angle2 + Angle1;
  EP := RadialPoint(Angle2, aRect);
  SX := SP.X;
  SY := SP.Y;
  EX := EP.X;
  EY := EP.Y;
end;

{------------------------------------------------------------------------------
  Method:   Arc2Bezier
  Params:   X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
  Returns:  Nothing

  Use Arc2Bezier to convert an Arc and ArcLength into a Bezier Aproximation
  of the Arc. The Rotation parameter accepts a Rotation-Angle for a rotated
  Ellipse'- for a non-rotated ellipse this value would be 0, or 360. If the
  AngleLength is greater than 90 degrees, or is equal to 0, it automatically
  exits, as Bezier cannot accurately aproximate any angle greater then 90
  degrees, and in fact for best result no angle greater than 45 should be
  converted, instead an array of Bezier's should be created, each Bezier
  descibing a portion of the total arc no greater than 45 degrees. The angles
  are 1/16th of a degree. For example, a full circle equals 5760 (16*360).
  Positive values of Angle and AngleLength mean counter-clockwise while
  negative values mean clockwise direction. Zero degrees is at the 3'o clock
  position.

------------------------------------------------------------------------------}
procedure Arc2Bezier(X, Y, Width, Height : Longint; Angle1, Angle2,
  Rotation : Extended; var Points : TBezier);

  function Rotate(Point : TFloatPoint; Rotation : Extended) : TFloatPoint;
  var
    SinA,CosA : Extended;
  begin
    CosA := cos(Rotation);
    SinA := Sin(Rotation);
    Result.X := Point.X*CosA + Point.Y*SinA;
    Result.Y := Point.X*SinA - Point.Y*CosA;
  end;

  function Scale(Point : TFloatPoint; ScaleX, ScaleY : Extended) : TFloatPoint;
  begin
    Result := Point*FloatPoint(ScaleX,ScaleY);
  end;

var
  Beta : Extended;
  P : array[0..3] of TFLoatPoint;
  SinA,CosA : Extended;
  A,B : Extended;
  I : Longint;
  PT : TFloatPoint;
  ScaleX, ScaleY : Extended;
begin
  If ABS(Angle2) > 90*16 then
    exit;
  If Angle2 = 0 then
    exit;

  B := Extended(Height) / 2;
  A := Extended(Width) / 2;

  If (A <> B) and (A <> 0) and (B <> 0) then begin
    If A > B then begin
      ScaleX := Extended(Width) / Height;
      ScaleY := 1;
      A := B;
    end
    else begin
      ScaleX := 1;
      ScaleY := Extended(Height) / Width;
      B := A;
    end;
  end
  else begin
    ScaleX := 1;
    ScaleY := 1;
  end;

  Angle1 := DegToRad(Angle1/16);
  Angle2 := DegToRad(Angle2/16);
  Rotation := -DegToRad(Rotation/16);
  Beta := (4/3)*(1 - Cos(Angle2/2))/(Sin(Angle2/2));
  PT.X := X + Width / 2;
  PT.Y := Y + Height / 2;

  CosA := cos(Angle1);
  SinA := sin(Angle1);

  P[0].X := A *CosA;
  P[0].Y := B *SinA;
  P[1].X := P[0].X - Beta * A * SinA;
  P[1].Y := P[0].Y + Beta * B * CosA;

  CosA := cos(Angle1 + Angle2);
  SinA := sin(Angle1 + Angle2);

  P[3].X := A *CosA;
  P[3].Y := B *SinA;
  P[2].X := P[3].X + Beta * A * SinA;
  P[2].Y := P[3].Y - Beta * B * CosA;

  For I := 0 to 3 do
  begin
    Points[I] := Scale(P[I],ScaleX, ScaleY); //Scale to proper size
    Points[I] := Rotate(Points[I], Rotation); //Rotate Counter-Clockwise
    Points[I] := Points[I] + PT; //Translate to Center
  end;
end;

{------------------------------------------------------------------------------
  Method:   Bezier
  Params:   C1,C2,C3,C4
  Returns:  TBezier

  Use Bezier to get a TBezier. It is Primarily for use with and in Bezier
  routines.

------------------------------------------------------------------------------}
function Bezier(const C1,C2,C3,C4 : TFloatPoint): TBezier;
begin
  Result[0] := C1;
  Result[1] := C2;
  Result[2] := C3;
  Result[3] := C4;
end;

{------------------------------------------------------------------------------
  Method:   Bezier
  Params:   C1,C2,C3,C4
  Returns:  TBezier

  Use Bezier to get a TBezier. It is Primarily for use with and in Bezier
  routines.

------------------------------------------------------------------------------}
function Bezier(const C1,C2,C3,C4 : TPoint): TBezier;
begin
  Result[0] := FloatPoint(C1.X,C1.Y);
  Result[1] := FloatPoint(C2.X,C2.Y);
  Result[2] := FloatPoint(C3.X,C3.Y);
  Result[3] := FloatPoint(C4.X,C4.Y);
end;

{------------------------------------------------------------------------------
  Method:   Bezier2Polyline
  Params:   Bezier, Points, Count
  Returns:  Nothing

  Use BezierToPolyline to convert a 4-Point Bezier into a Pointer Array of
  TPoint and a Count variable which can then be used within either a Polyline,
  or Polygon routine. It is primarily for use within PolyBezier2Polyline. If
  Points is not initialized or Count is less then 0, it is set to nil and
  the array starts at 0, otherwise it tries to append points
  to the array starting at Count. Points should ALWAYS be Freed when done
  by calling to ReallocMem(Points, 0) or FreeMem.

------------------------------------------------------------------------------}
procedure Bezier2Polyline(const Bezier : TBezier; var Points : PPoint;
  var Count : Longint);
var
  Pt : TPoint;

  procedure AddPoint(const Point : TFloatPoint);
  var
    P : TPoint;
  begin
    P := Point;
    if (Pt <> P) then
    begin
      Inc(Count);
      ReallocMem(Points, SizeOf(TPoint) * Count);
      Points[Count - 1] := P;
      Pt := P;
    end;
  end;

  function Colinear(BP : TBezier; Tolerance : Extended) : Boolean;
  var
    D : Extended;
  begin
    D := SQR(Distance(BP[1], BP[0], BP[3]));
    Result := D < Tolerance;
    D := SQR(Distance(BP[2], BP[0], BP[3]));
    If Result then
      Result := Result and (D < Tolerance);
  end;

  procedure SplitRecursive(B : TBezier);
  var
    Left,
    Right : TBezier;
  begin
    If Colinear(B, 1) then begin
      AddPoint(B[0]);
      AddPoint(B[3]);
    end
    else begin
      SplitBezier(B,left,right);
      SplitRecursive(left);
      SplitRecursive(right);
    end;
  end;

begin
  Pt := Point(-1,-1);
  If (not Assigned(Points)) or (Count <= 0) then
  begin
    Count := 0;

    if Assigned(Points) then
      ReallocMem(Points, 0);
  end;
  SplitRecursive(Bezier);
end;

{------------------------------------------------------------------------------
  Method:   BezierArcPoints
  Params:   X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
  Returns:  Nothing

  Use BezierArcPoints to convert an Arc and ArcLength into a Pointer Array
  of TPoints for use with Polyline or Polygon. The Rotation parameter accepts
  a Rotation-Angle for a rotated Ellipse'- for a non-rotated ellipse this
  value would be 0, or 360. The result is an Aproximation based on 1 or more
  Beziers. If the AngleLength is greater than 90 degrees, it calls
  PolyBezierArcPoints, otherwise it Converts the angles into a Bezier by
  calling to Arc2Bezier, and then converts the Bezier into an array of Points
  by calling to Bezier2Polyline. The angles are 1/16th of a degree. For example,
  a full circle equals 5760 (16*360). Positive values of Angle and AngleLength
  mean counter-clockwise while negative values mean clockwise direction. Zero
  degrees is at the 3'o clock position. If Points is not initialized or Count
  is less then 0, it is set to nil and the array starts at 0,
  otherwise it tries to append points to the array starting at Count. Points
  should ALWAYS be Freed when done by calling ReallocMem(Points, 0) or FreeMem.

------------------------------------------------------------------------------}
procedure BezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
  Rotation : Extended; var Points : PPoint; var Count : Longint);
var
  B : TBezier;
begin
  If ABS(Angle2) > 90*16 then begin
    PolyBezierArcPoints(X, Y, Width, Height, Angle1, Angle2, Rotation, Points,
                        Count);
    Exit;
  end;
  If Angle2 = 0 then
    exit;

  If (not Assigned(Points)) or (Count <= 0) then
  begin
    Count := 0;
    
    if Assigned(Points) then
      ReallocMem(Points, 0);
  end;
  
  Arc2Bezier(X, Y, Width, Height, Angle1, Angle2, Rotation, B);
  Bezier2Polyline(B,Points,Count);
end;

{------------------------------------------------------------------------------
  Method:   BezierMidPoint
  Params:   Bezier
  Returns:  TFloatPoint

  Use BezierMidPoint to get the Mid-Point of any 4-Point Bezier. It is
  primarily for use in SplitBezier.

------------------------------------------------------------------------------}
function BezierMidPoint(Bezier : TBezier) : TFloatPoint;
begin
  Result := (Bezier[0] + 3*Bezier[1] + 3*Bezier[2] + Bezier[3]) / 8;
end;

{------------------------------------------------------------------------------
  Method:   Coords2Angles
  Params:   x,y,width,height,sx,sy,ex,ey, angle1,angle2
  Returns:  Nothing

  Use Coords2Angles to convert the coords for Start and End Radial-Points, such
  as are used in the Windows API Arc Pie and Chord routines, into an Eccentric
  (aka Radial) counter clockwise Angle and an Angle-Length, such as are used in
  X-Windows and GTK. The angles angle1 and angle2 are returned in 1/16th of a
  degree. For example, a full circle equals 5760 (16*360). Zero degrees is at
  the 3'o clock position.

------------------------------------------------------------------------------}
procedure Coords2Angles(X, Y, Width, Height : Integer; SX, SY,
  EX, EY : Integer; var Angle1, Angle2 : Extended);
var
  aRect : TRect;
  SP,EP : TPoint;
begin
  aRect := Rect(X,Y,X + Width,Y + Height);
  SP := Point(SX,SY);
  EP := Point(EX,EY);
  Angle1 := EccentricAngle(SP, aRect);
  Angle2 := EccentricAngle(EP, aRect);
  If Angle2 < Angle1 then
    Angle2 := 360*16 - (Angle1 - Angle2)
  else
    Angle2 := Angle2 - Angle1;
end;

{------------------------------------------------------------------------------
  Method:   Distance
  Params:   PT1, PT2
  Returns:  Extended

  Use Distance to get the distance between any two Points. It is primarily
  for use in other routines such as EccentricAngle.

------------------------------------------------------------------------------}
function Distance(Pt1,Pt2 : TPoint) : Extended;
begin
  Result := Sqrt(Sqr(Pt2.X - Pt1.X) + Sqr(Pt2.Y - Pt1.Y));
end;

{------------------------------------------------------------------------------
  Method:   Distance
  Params:   PT, SP,EP
  Returns:  Extended

  Use Distance to get the distance between any point(PT) and a line defined
  by any two points(SP, EP). Intended for use in Bezier2Polyline, so params
  are TFloatPoint's, NOT TPoint's.

------------------------------------------------------------------------------}
function Distance(Pt, SP, EP : TFloatPoint) : Extended;
var
  A, B, C : Extended;

  function Slope(PT1,Pt2 : TFloatPoint) : Extended;
  begin
    If Pt2.X <> Pt1.X then
      Result := (Pt2.Y - Pt1.Y) / (Pt2.X - Pt1.X)
    else
      Result := 1;
  end;

  function YIntercept(PT1,Pt2 : TFloatPoint) : Extended;
  begin
    Result := Pt1.Y - Slope(Pt1,Pt2)*Pt1.X;
  end;

begin
  A := -Slope(SP,EP);
  B := 1;
  C := -YIntercept(SP, EP);
  Result := ABS(A*Pt.X + B*Pt.Y + C)/Sqrt(Sqr(A) + Sqr(B));
end;

{------------------------------------------------------------------------------
  Method:   EccentricAngle
  Params:   Pt, Rect
  Returns:  Extended

  Use EccentricAngle to get the Eccentric( aka Radial ) Angle of a given
  point on any non-rotated ellipse. It is primarily for use in Coords2Angles.
  The result is in 1/16th of a degree. For example, a full circle equals
  5760 (16*360).  Zero degrees is at the 3'o clock position.

------------------------------------------------------------------------------}
function EccentricAngle(PT : TPoint; Rect : TRect) : Extended;
var
  CenterPt : TPoint;
  Quad : Integer;
  Theta : Extended;
begin
  CenterPt := CenterPoint(Rect);
  Quad := Quadrant(Pt,CenterPt);
  Theta := -1;
  Case Quad of
    1..4:
      begin
        Theta := Distance(CenterPt,Pt);
        If Theta > 0 then
          Theta := RadToDeg(ArcSin(ABS(PT.Y - CenterPt.Y) / Theta));
      end;
  end;
  Case Quad of
    0:{ 0, 0}
      Theta := -1;
    1:{ X, Y}
      Theta := Theta;
    2:{-X, Y}
      Theta := 180 - Theta;
    3:{-X,-Y}
      Theta := 180 + Theta;
    4:{ X,-Y}
      Theta := 360 - Theta;
    5:{ 0, Y}
      Theta := 90;
    6:{ X, 0}
      Theta := 0;
    7:{ 0,-Y}
      Theta := 270;
    8:{-X, 0}
      Theta := 180;
  end;
  Result := Theta*16;
end;

{------------------------------------------------------------------------------
  Method:   EllipseRadialLength
  Params:   Rect, EccentricAngle
  Returns:  Longint

  Use EllipseRadialLength to get the Radial-Length of non-rotated ellipse at
  any given Eccentric( aka Radial ) Angle. It is primarily for use in other
  routines such as RadialPoint. The Eccentric angle is in 1/16th of a degree.
  For example, a full circle equals 5760 (16*360).  Zero degrees is at the
  3'o clock position.

------------------------------------------------------------------------------}
function EllipseRadialLength(Rect : TRect; EccentricAngle : Extended) : Longint;
var
  a, b, R : Extended;
begin
  a := (Rect.Right - Rect.Left) div 2;
  b := (Rect.Bottom - Rect.Top) div 2;
  R := Sqr(a)*Sqr(b);
  if R <> 0 then
    R := Sqrt(R / ((Sqr(b)*Sqr(Cos(DegToRad(EccentricAngle/16)))) +
      (Sqr(a)*Sqr(Sin(DegToRad(EccentricAngle/16))))));
  Result := TruncToInt(R);
end;

{------------------------------------------------------------------------------
  Method:   FloatPoint
  Params:   AX, AY
  Returns:  TFloatPoint

  Use FloatPoint to get a TFloatPoint. It is essentialy like Classes. Point in
  use, except that it excepts Extended Parameters. It is Primarily for use with
  and in Bezier routines.

------------------------------------------------------------------------------}
function FloatPoint(AX,AY : Extended): TFloatPoint;
begin
  With Result do begin
    X := AX;
    Y := AY;
  end;
end;

{------------------------------------------------------------------------------
  Method:   LineEndPoint
  Params:   StartPoint, Angle, Length
  Returns:  TPoint

  Use LineEndPoint to get the End-Point of a line of any given Length at
  any given angle with any given Start-Point. It is primarily for use in
  other routines such as RadialPoint. The angle is in 1/16th of a degree.
  For example, a full circle equals 5760 (16*360).  Zero degrees is at the
  3'o clock position.

------------------------------------------------------------------------------}
function LineEndPoint(StartPoint : TPoint; Angle, Length : Extended) : 
TPoint;
begin
  if Angle > 360*16 then
    Angle := Frac(Angle / 360*16) * 360*16;

  if Angle < 0 then
    Angle := 360*16 - abs(Angle);

  Result.Y := StartPoint.Y - Round(Length*Sin(DegToRad(Angle/16)));
  Result.X := StartPoint.X + Round(Length*Cos(DegToRad(Angle/16)));
end;


{------------------------------------------------------------------------------
  Method:   PolyBezier2Polyline
  Params:   Beziers, Points, Count
  Returns:  Nothing

  Use BezierToPolyline to convert an array of 4-Point Bezier into a Pointer
  Array of TPoint and a Count variable which can then be used within either a
  Polyline, or Polygon routine. Points is automatically initialized, so any
  existing information is lost, and the array starts at 0. Points should ALWAYS
  be Freed when done by calling to ReallocMem(Points, 0).

------------------------------------------------------------------------------}
procedure PolyBezier2Polyline(Beziers: Array of TBezier;
  var Points : PPoint; var Count : Longint);
var
  I : Integer;
begin
  If (High(Beziers) < 1) then
    exit;
  Count := 0;
  If Assigned(Points) then
    Try
      ReallocMem(Points, 0)
    Finally
      Points := nil;
    end;
  For I := 0 to High(Beziers) - 1 do
    Bezier2PolyLine(Beziers[I], Points, Count);
end;

{------------------------------------------------------------------------------
  Method:   PolyBezier2Polyline
  Params:   Beziers, Points, Count, Continuous
  Returns:  Nothing

  Use BezierToPolyline to convert an array of TPoints descibing 1 or more
  4-Point Beziers into a Pointer Array of TPoint and a Count variable which
  can then be used within either a Polyline, or Polygon routine. If Continuous
  is set to true then the first point of each Bezier is the last point of
  the preceding Bezier, so every bezier must have 3 described points, in
  addition to the initial Starting Point; otherwise each Bezier must have 4
  points. If there are an uneven number of points then the last set of points
  is ignored. Points is automatically initialized, so any existing information
  is lost, and the array starts at 0. Points should ALWAYS be Freed when done
  by calling to ReallocMem(Points, 0).

------------------------------------------------------------------------------}
procedure PolyBezier2Polyline(Beziers : Array of TPoint; var Points : PPoint;
  var Count : Longint; Continuous : Boolean);
begin  
  PolyBezier2Polyline(@Beziers[0],High(Beziers) + 1, Points, Count, 
    	              Continuous);
end;

procedure PolyBezier2Polyline(Beziers : PPoint; BCount : Longint;
  var Points : PPoint; var Count : Longint; Continuous : Boolean);
var
  I : Integer;
  NB : Longint;
begin
  If BCount < 4 then
    exit;
  Count := 0;
  If Assigned(Points) then
    Try
      ReallocMem(Points, 0)
    Finally
      Points := nil;
    end;
  If Not Continuous then begin
    NB := BCount;
    NB := NB div 4;
    For I := 0 to NB - 1 do
      Bezier2PolyLine(Bezier(Beziers[I*4],Beziers[I*4+1],
        Beziers[I*4+2],Beziers[I*4+3]), Points, Count);
  end
  else begin
    NB := BCount - 1;
    NB := NB div 3;
    For I := 0 to NB-1 do
      Bezier2PolyLine(Bezier(Beziers[(I - 1)*3 + 3],Beziers[I*3 + 1],
        Beziers[I*3+2],Beziers[I*3+3]), Points, Count);
  end;
end;
  
{------------------------------------------------------------------------------
  Method:   PolyBezierArcPoints
  Params:   X, Y, Width, Height, Angle1, Angle2, Rotation, Points, Count
  Returns:  Nothing

  Use PolyBezierArcPoints to convert an Agnle and AgnleLength into a
  Pointer Array of TPoints for use with Polyline or Polygon.
  The Rotation parameter accepts a Rotation-Angle for a rotated Ellipse'- for
  a non-rotated ellipse this value would be 0, or 360*16.
  The result is an Aproximation based on 1 or more Beziers. If the AngleLength
  is greater than 45*16 degrees, it recursively breaks the Arc into Arcs of
  45*16 degrees or less, and converts them into Beziers with BezierArcPoints.
  The angles are 1/16th of a degree. For example, a full circle equals
  5760 (16*360).
  Positive values of Angle and AngleLength mean counter-clockwise while negative
  values mean clockwise direction. Zero degrees is at the 3'o clock position.
  Points is automatically initialized, so any existing information is lost,
  and the array starts at 0. Points should ALWAYS be Freed when done by calling
  to ReallocMem(Points, 0).

------------------------------------------------------------------------------}
procedure PolyBezierArcPoints(X, Y, Width, Height : Longint; Angle1, Angle2,
  Rotation : Extended; var Points : PPoint; var Count : Longint);
var
  I,K : Integer;
  FullAngle : Extended;
  TST : Boolean;
begin
  If Abs(Angle2) > 360*16 then begin
    Angle2 := 360*16;
    Angle1 := 0;
  end;
  If Abs(Rotation) > 360*16 then
    Rotation := Frac(Rotation / 360*16)*360*16;
  FullAngle := Angle1 + Angle2;
  K := Ceil(ABS(Angle2/16) / 45);
  Count := 0;
  If Assigned(Points) then
    Try
      ReallocMem(Points, 0)
    Finally
      Points := nil;
    end;
  If Angle2 > 45*16 then
    Angle2 := 45*16
  else
    If Angle2 < -45*16 then
      Angle2 := -45*16;
  For I := 0 to K - 1 do begin
    BezierArcPoints(X, Y, Width,Height,Angle1,Angle2,Rotation,Points,Count);
    Angle1 := Angle1 + Angle2;
    If Angle2 > 0 then
      TST := (FullAngle - Angle1) > 45*16
    else
      TST := ABS(FullAngle - Angle1) > 45*16;
    If TST then begin
      If Angle2 > 0 then
        Angle2 := 45*16
      else
        Angle2 := -45*16;
    end
    else begin
      {If Angle2 > 0 then}
        Angle2 := FullAngle - Angle1
      {else
        Angle2 := -(FullAngle - Angle1);
        - Wrong: This gives the wrong sign to Angle2 - G. Colla
        }
    end;
  end;
end;

{------------------------------------------------------------------------------
  Method:   Quadrant
  Params:   PT, Center
  Returns:  Integer

  Use Quadrant to determine the Quadrant of any point, given the Center.
  It is primarily for use in other routines such as EccentricAngle. A result
  of 1-4 represents the primary 4 quardants. A result of 5-8 means the point
  lies on one of the Axis', 5 = -Y Axis, 6 = +X Axis, 7 = +Y Axis, and
  8 = -X Axis. A result of -1 means that it does not fall in any quadrant,
  that is, it is the Center.

------------------------------------------------------------------------------}
function Quadrant(Pt,Center : TPoint) : Integer;
var
  X,Y,CX,CY : Longint;
begin
  X  := Pt.X;
  Y  := Pt.Y;
  CX := Center.X;
  CY := Center.Y;
  Result := -1;
  If (Y < CY) then begin
    If (X > CX) then begin
      Result := 1;
    end
    else
      If (X < CX) then begin
        Result := 2;
      end
    else begin
      Result := 5;
    end;
  end
  else
    If (Y > CY) then begin
      If (X < CX) then begin
        Result := 3;
      end
      else
        If (X > CX) then begin
          Result := 4;
        end
      else begin
        Result := 7;
      end;
    end
  else
    If (Y = CY) then begin
      If (X > CX) then begin
        Result := 6;
      end
      else
        If (X < CX) then begin
          Result := 8;
        end;
    end;
end;

{------------------------------------------------------------------------------
  Method:   RadialPointAngle
  Params:   EccentricAngle, Rect
  Returns:  TPoint

  Use RadialPoint to get the Radial-Point at any given Eccentric( aka Radial )
  angle on any non-rotated ellipse. It is primarily for use in Angles2Coords.
  The EccentricAngle is in 1/16th of a degree. For example, a full circle
  equals 5760 (16*360).  Zero degrees is at the 3'o clock position.

------------------------------------------------------------------------------}
function RadialPoint(EccentricAngle : Extended; Rect : TRect) : TPoint;
var
  R : Longint;
Begin
  R := EllipseRadialLength(Rect,EccentricAngle);
  Result := LineEndPoint(CenterPoint(Rect), EccentricAngle, R);
end;

{------------------------------------------------------------------------------
  Method:   SplitBezier
  Params:   Bezier, Left, Right
  Returns:  Nothing

  Use SplitBezier to split any 4-Point Bezier into two 4-Point Bezier's :
  a 'Left' and a 'Right'. It is primarily for use in Bezier2Polyline.

------------------------------------------------------------------------------}
procedure SplitBezier(Bezier : TBezier; var Left, Right : TBezier);
var
  Tmp : TFloatPoint;
begin
  Tmp := (Bezier[1] + Bezier[2]) / 2;

  left[0]  := Bezier[0];
  Left[1]  := (Bezier[0] + Bezier[1]) / 2;
  left[2]  := (Left[1] + Tmp) / 2;
  Left[3]  := BezierMidPoint(Bezier);

  right[3] := Bezier[3];
  right[2] := (Bezier[2] + Bezier[3]) / 2;
  Right[1] := (Right[2] + Tmp) / 2;
  right[0] := BezierMidPoint(Bezier);
end;

end.