1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
|
<?xml version="1.0" encoding="UTF-8"?>
<fpdoc-descriptions>
<package name="lazutils">
<!--
====================================================================
GraphMath
====================================================================
-->
<module name="GraphMath">
<short>
A set of mathematical helper routines to simply cross-platform canvas drawing.
</short>
<descr>
<p>
<file>graphmath.pp</file> contains math helper routines for use for graphics drawing. It is used to simply cross-platform canvas drawing operations.
This file is part of the LazUtils package.
</p>
</descr>
<!-- unresolved references -->
<element name="Types"/>
<element name="Classes"/>
<element name="SysUtils"/>
<element name="Math"/>
<element name="LazUtilities"/>
<element name="TFloatPoint">
<short>
<var>TFloatPoint</var> - an extended precision record specifying the X and Y coordinates of a point in a graphic environment.</short>
<descr/>
<seealso/>
</element>
<element name="TFloatPoint.X">
<short/>
</element>
<element name="TFloatPoint.Y">
<short/>
</element>
<element name="TBezier">
<short/>
<descr/>
<seealso/>
</element>
<element name="PPoint">
<short/>
<descr/>
<seealso/>
</element>
<element name="Angles2Coords">
<short>
Converts an Eccentric Angle and an Angle-Length, into the coords for Start and End radial Points.
</short>
<descr>
<p>
Use <var>Angles2Coords</var> to convert an Eccentric (Radial) angle and an angle-length, such as are used in X-Windows and GTK, into the coordinates for the Start and End radial Points. Like those used in the Arc, Pie, and Chord routines from the Windows API.
</p>
<p>
The angles are specified in 1/16th of a degree. For example, a full circle equals 5760 (16*360).
</p>
<p>
Positive values in Angle and AngleLength mean counter-clockwise, while negative values mean clockwise direction. Zero degrees is at the 3 o'clock position.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="Angles2Coords.X">
<short/>
</element>
<element name="Angles2Coords.Y">
<short/>
</element>
<element name="Angles2Coords.Width">
<short/>
</element>
<element name="Angles2Coords.Height">
<short/>
</element>
<element name="Angles2Coords.Angle1">
<short/>
</element>
<element name="Angles2Coords.Angle2">
<short/>
</element>
<element name="Angles2Coords.SX">
<short/>
</element>
<element name="Angles2Coords.SY">
<short/>
</element>
<element name="Angles2Coords.EX">
<short/>
</element>
<element name="Angles2Coords.EY">
<short/>
</element>
<element name="Arc2Bezier">
<short>
Converts an Arc and ArcLength into a Bezier Approximation of the Arc.
</short>
<descr>
<p>
Use <var>Arc2Bezier</var> to convert an Arc and ArcLength into a Bezier approximation of the Arc. The Rotation parameter accepts a Rotation-Angle for a rotated Ellipse. For a non-rotated ellipse this value would be 0, or 360. If the AngleLength is greater than 90 degrees, or is equal to 0, it automatically exits, as Bezier cannot accurately approximate any angle greater then 90 degrees, and in fact for best result no angle greater than 45 should be converted, instead an array of Bezier's should be created, each Bezier describing a portion of the total arc no greater than 45 degrees.
</p>
<p>
The angles are specified in 1/16th of a degree. For example, a full circle equals 5760 (16*360).
</p>
<p>
Positive values in Angle and AngleLength mean counter-clockwise while negative values mean clockwise direction. Zero degrees is at the 3 o'clock position.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="Arc2Bezier.X">
<short/>
</element>
<element name="Arc2Bezier.Y">
<short/>
</element>
<element name="Arc2Bezier.Width">
<short/>
</element>
<element name="Arc2Bezier.Height">
<short/>
</element>
<element name="Arc2Bezier.Angle1">
<short/>
</element>
<element name="Arc2Bezier.Angle2">
<short/>
</element>
<element name="Arc2Bezier.Rotation">
<short/>
</element>
<element name="Arc2Bezier.Points">
<short/>
</element>
<element name="Bezier">
<short>
<var>Bezier</var> - function to get a Bezier figure from the given points.
</short>
<descr/>
<errors/>
<seealso/>
</element>
<element name="Bezier.Result">
<short/>
</element>
<element name="Bezier.C1">
<short/>
</element>
<element name="Bezier.C2">
<short/>
</element>
<element name="Bezier.C3">
<short/>
</element>
<element name="Bezier.C4">
<short/>
</element>
<element name="Bezier2Polyline">
<short>
<var>Bezier2Polyline</var> - convert a 4-Point Bezier into a Pointer Array of TPoint and a Count variable.
</short>
<descr>
<p>
Use BezierToPolyline to convert a 4-Point Bezier into a Pointer Array of TPoint and a Count variable which can then be used within either a Polyline, or Polygon routine. It is primarily for use within PolyBezier2Polyline.
</p>
<p>
If Points is not initialized or Count is less then 0, it is set to nil and the array starts at 0, otherwise it tries to append points to the array starting at Count. Points should ALWAYS be Freed when done by calling to ReallocMem(Points, 0) or FreeMem.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="Bezier2Polyline.Bezier">
<short/>
</element>
<element name="Bezier2Polyline.Points">
<short/>
</element>
<element name="Bezier2Polyline.Count">
<short/>
</element>
<element name="BezierArcPoints">
<short>
<var>BezierArcPoints</var> - convert an Arc and ArcLength into a Pointer Array of TPoints for use with Polyline or Polygon.
</short>
<descr>
<p>
Use BezierArcPoints to convert an Arc and ArcLength into a Pointer Array of TPoints for use with Polyline or Polygon. The Rotation parameter accepts a Rotation-Angle for a rotated Ellipse'- for a non-rotated ellipse this value would be 0, or 360. The result is an Approximation based on 1 or more Beziers.
</p>
<p>
If the AngleLength is greater than 90 degrees, it calls PolyBezierArcPoints, otherwise it Converts the angles into a Bezier by calling to Arc2Bezier, and then converts the Bezier into an array of Points by calling to Bezier2Polyline.
</p>
<p>
The angles are specified in 1/16th of a degree. For example, a full circle equals 5760 (16*360).
</p>
<p>
Positive values in Angle and AngleLength mean counter-clockwise while negative values mean clockwise direction. Zero degrees is at the 3 o'clock position.
</p>
<p>
If Points is not initialized or Count is less then 0, it is set to nil and the array starts at 0, otherwise it tries to append points to the array starting at Count. Points should ALWAYS be Freed when done by calling ReallocMem(Points, 0) or FreeMem.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="BezierArcPoints.X">
<short/>
</element>
<element name="BezierArcPoints.Y">
<short/>
</element>
<element name="BezierArcPoints.Width">
<short/>
</element>
<element name="BezierArcPoints.Height">
<short/>
</element>
<element name="BezierArcPoints.Angle1">
<short/>
</element>
<element name="BezierArcPoints.Angle2">
<short/>
</element>
<element name="BezierArcPoints.Rotation">
<short/>
</element>
<element name="BezierArcPoints.Points">
<short/>
</element>
<element name="BezierArcPoints.Count">
<short/>
</element>
<element name="BezierMidPoint">
<short>
<var>BezierMidPoint</var> - get the Mid-Point of any 4-Point Bezier. It is primarily for use in SplitBezier.
</short>
<descr/>
<errors/>
<seealso/>
</element>
<element name="BezierMidPoint.Result">
<short/>
</element>
<element name="BezierMidPoint.Bezier">
<short/>
</element>
<element name="CenterPoint">
<short>
<var>CenterPoint</var> - get the Center-Point of any rectangle. It is primarily for use with, and in, other routines such as Quadrant, and RadialPoint.
</short>
<descr/>
<errors/>
<seealso/>
</element>
<element name="CenterPoint.Result">
<short/>
</element>
<element name="CenterPoint.Rect">
<short/>
</element>
<element name="Coords2Angles">
<short>
<var>Coords2Angles</var> - convert the coords for Start and End Radial-Points into an Eccentric counter clockwise Angle and an Angle-Length.
</short>
<descr>
<p>
Use Coords2Angles to convert the coords for Start and End Radial-Points, such as are used in the Windows API Arc Pie and Chord routines, into an Eccentric (aka Radial) counter clockwise Angle and an Angle-Length, such as are used in X-Windows and GTK.
</p>
<p>
The angles angle1 and angle2 are returned in 1/16th of a degree. For example, a full circle equals 5760 (16*360).
</p>
<p>
Zero degrees is at the 3 o'clock position.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="Coords2Angles.X">
<short/>
</element>
<element name="Coords2Angles.Y">
<short/>
</element>
<element name="Coords2Angles.Width">
<short/>
</element>
<element name="Coords2Angles.Height">
<short/>
</element>
<element name="Coords2Angles.SX">
<short/>
</element>
<element name="Coords2Angles.SY">
<short/>
</element>
<element name="Coords2Angles.EX">
<short/>
</element>
<element name="Coords2Angles.EY">
<short/>
</element>
<element name="Coords2Angles.Angle1">
<short/>
</element>
<element name="Coords2Angles.Angle2">
<short/>
</element>
<element name="Distance">
<short>
Get the <var>Distance</var> between any two Points. It is primarily for use in other routines such as EccentricAngle.
</short>
<descr/>
<errors/>
<seealso/>
</element>
<element name="Distance.Result">
<short/>
</element>
<element name="Distance.PT1">
<short/>
</element>
<element name="Distance.Pt2">
<short/>
</element>
<element name="EccentricAngle">
<short>
<var>EccentricAngle</var> - get the Eccentric Angle of a given point on any non-rotated ellipse.
</short>
<descr>
<p>
Use EccentricAngle to get the Eccentric( aka Radial ) Angle of a given point on any non-rotated ellipse. It is primarily for use in Coords2Angles. The result is in 1/16th of a degree. For example, a full circle equals 5760 (16*360). Zero degrees is at the 3 o'clock position.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="EccentricAngle.Result">
<short/>
</element>
<element name="EccentricAngle.PT">
<short/>
</element>
<element name="EccentricAngle.Rect">
<short/>
</element>
<element name="EllipseRadialLength">
<short>
<var>EllipseRadialLength</var> - Radial-Length of non-rotated ellipse at any given Eccentric Angle.
</short>
<descr>
<p>
Use EllipseRadialLength to get the Radial-Length of non-rotated ellipse at any given Eccentric( aka Radial ) Angle. It is primarily for use in other routines such as RadialPoint. The Eccentric angle is in 1/16th of a degree. For example, a full circle equals 5760 (16*360). Zero degrees is at the 3 o'clock position.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="EllipseRadialLength.Result">
<short/>
</element>
<element name="EllipseRadialLength.Rect">
<short/>
</element>
<element name="EllipseRadialLength.EccentricAngle">
<short/>
</element>
<element name="FloatPoint">
<short>
<var>FloatPoint</var> - it is essentially like Classes.Point in use, except that it accepts Extended Parameters. It is Primarily for use with and in Bezier routines.
</short>
<descr/>
<errors/>
<seealso/>
</element>
<element name="FloatPoint.Result">
<short/>
</element>
<element name="FloatPoint.AX">
<short/>
</element>
<element name="FloatPoint.AY">
<short/>
</element>
<element name="LineEndPoint">
<short>
<var>LineEndPoint</var> - get the End-Point of a line of any given Length at any given angle with any given Start-Point.
</short>
<descr>
<p>
Use LineEndPoint to get the End-Point of a line of any given Length at any given angle with any given Start-Point. It is primarily for use in other routines such as RadialPoint. The angle is in 1/16th of a degree. For example, a full circle equals 5760 (16*360). Zero degrees is at the 3 o'clock position.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="LineEndPoint.Result">
<short/>
</element>
<element name="LineEndPoint.StartPoint">
<short/>
</element>
<element name="LineEndPoint.Angle">
<short/>
</element>
<element name="LineEndPoint.Length">
<short/>
</element>
<element name="PolyBezier2Polyline">
<short>
<var>PolyBezier2Polyline</var> - convert an array of 4-Point Bezier into a Pointer Array of TPoint and a Count variable.
</short>
<descr>
<p>
Use BezierToPolyline to convert an array of 4-Point Bezier into a Pointer Array of TPoint and a Count variable which can then be used within either a Polyline, or Polygon routine. Points is automatically initialized, so any existing information is lost, and the array starts at 0. Points should ALWAYS be Freed when done by calling to ReallocMem(Points, 0).
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="PolyBezier2Polyline.Beziers">
<short/>
</element>
<element name="PolyBezier2Polyline.Points">
<short/>
</element>
<element name="PolyBezier2Polyline.Count">
<short/>
</element>
<element name="PolyBezierArcPoints">
<short>
<var>PolyBezierArcPoints</var> - convert an Arc and ArcLength into a Pointer Array of TPoints for use with Polyline or Polygon.
</short>
<descr>
<p>
Use PolyBezierArcPoints to convert an Arc and ArcLength into a Pointer Array of TPoints for use with Polyline or Polygon. The Rotation parameter accepts a Rotation-Angle for a rotated Ellipse - for a non-rotated ellipse this value would be 0, or 360. The result is an Approximation based on 1 or more Beziers. If the AngleLength is greater than 45 degrees, it recursively breaks the Arc into Arcs of 45 degrees or less, and converts them into Beziers with BezierArcPoints.
</p>
<p>
The angles are specified in 1/16th of a degree. For example, a full circle equals 5760 (16*360).
</p>
<p>
Positive values in Angle and AngleLength mean counter-clockwise while negative values mean clockwise direction. Zero degrees is at the 3 o'clock position.
</p>
<p>
Points is automatically initialized, so any existing information is lost, and the array starts at 0. Points should ALWAYS be Freed when done by calling to ReallocMem(Points, 0).
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="PolyBezierArcPoints.X">
<short/>
</element>
<element name="PolyBezierArcPoints.Y">
<short/>
</element>
<element name="PolyBezierArcPoints.Width">
<short/>
</element>
<element name="PolyBezierArcPoints.Height">
<short/>
</element>
<element name="PolyBezierArcPoints.Angle1">
<short/>
</element>
<element name="PolyBezierArcPoints.Angle2">
<short/>
</element>
<element name="PolyBezierArcPoints.Rotation">
<short/>
</element>
<element name="PolyBezierArcPoints.Points">
<short/>
</element>
<element name="PolyBezierArcPoints.Count">
<short/>
</element>
<element name="Quadrant">
<short>Determine the <var>Quadrant</var> of any point, given the Center.</short>
<descr>
<p>
Use Quadrant to determine the Quadrant of any point, given the Center. It is primarily for use in other routines such as EccentricAngle. A result of 1-4 represents the primary 4 quadrants. A result of 5-8 means the point lies on one of the Axis, 5 = -Y Axis, 6 = +X Axis, 7 = +Y Axis, and 8 = -X Axis. A result of -1 means that it does not fall in any quadrant, that is, it is the Center.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="Quadrant.Result">
<short/>
</element>
<element name="Quadrant.PT">
<short/>
</element>
<element name="Quadrant.Center">
<short/>
</element>
<element name="RadialPoint">
<short>
Get the <var>RadialPoint</var> at any given Eccentric angle on any non-rotated ellipse.
</short>
<descr>
<p>
Use RadialPoint to get the Radial-Point at any given Eccentric( aka Radial ) angle on any non-rotated ellipse. It is primarily for use in Angles2Coords. The EccentricAngle is in 1/16th of a degree. For example, a full circle equals 5760 (16*360). Zero degrees is at the 3 o'clock position.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="RadialPoint.Result">
<short/>
</element>
<element name="RadialPoint.EccentricAngle">
<short/>
</element>
<element name="RadialPoint.Rect">
<short/>
</element>
<element name="SplitBezier">
<short>
<var>SplitBezier</var> - split any 4-Point Bezier into two 4-Point Beziers: a 'Left' and a 'Right'
</short>
<descr>
<p>
Use SplitBezier to split any 4-Point Bezier into two 4-Point Beziers: a 'Left' and a 'Right'. It is primarily for use in Bezier2Polyline.
</p>
</descr>
<errors/>
<seealso/>
</element>
<element name="SplitBezier.Bezier">
<short/>
</element>
<element name="SplitBezier.Left">
<short/>
</element>
<element name="SplitBezier.Right">
<short/>
</element>
<topic name="GraphMathOperators">
<short>
<b>GraphMath Operators</b>.
</short>
<descr>
<p>
This Unit contains a number of routines for calculating and converting series of graphic points from one coordinate system to another.
</p>
<p>
A fundamental type is introduced, called TFloatPoint. It is an extended precision record containing an X and a Y coordinate for a graphic point. Its structure is as follows:
</p>
<code>Type
TFloatPoint = Record
X, Y : Extended;
end;</code>
<p>
The Unit contains definitions for mathematical operators which extend the normal definitions of addition, subtraction, multiplication, division and comparison to cover manipulations with TFloatPoints, allowing, for example, addition or multiplication of two TFloatPoints, a TFloatPoint and a TPoint, or a TFloatPoint and an Extended Precision number.
</p>
</descr>
</topic>
</module>
<!-- GraphMath -->
</package>
</fpdoc-descriptions>
|