1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
|
{
fpvutils.pas
Vector graphics document
License: The same modified LGPL as the Free Pascal RTL
See the file COPYING.modifiedLGPL for more details
AUTHORS: Felipe Monteiro de Carvalho
Pedro Sol Pegorini L de Lima
}
unit fpvutils;
{$define USE_LCL_CANVAS}
{.$define FPVECTORIAL_BEZIERTOPOINTS_DEBUG}
{.$define FPVECTORIAL_DEFLATE_DEBUG}
{$ifdef fpc}
{$mode delphi}
{$endif}
interface
uses
Classes, SysUtils, Math, Types,
{$ifdef USE_LCL_CANVAS}
Graphics, LCLIntf, LCLType,
{$endif}
base64,
fpvectorial, fpimage, zstream;
type
T10Strings = array[0..9] of shortstring;
// TPointsArray = array of TPoint;
TFPVUByteArray = array of Byte;
TNumericalEquation = function (AParameter: Double): Double of object; // return the error
TFPVUDebugOutCallback = procedure (AStr: string) of object;
// Color Conversion routines
function FPColorToRGBHexString(AColor: TFPColor): string;
function RGBToFPColor(AR, AG, AB: byte): TFPColor; inline;
function MixColors(AColor1, AColor2: TFPColor; APos, AMax: Double): TFPColor;
function GradientColor(AColors: TvGradientColors; AValue: Double): TFPColor;
function AlphaBlendColor(AColorBase, AColor: TFPColor): TFPColor;
// Coordinate Conversion routines
function CanvasCoordsToFPVectorial(AY: Integer; AHeight: Integer): Integer; inline;
function CanvasTextPosToFPVectorial(AY: Integer; ACanvasHeight, ATextHeight: Integer): Integer;
function CoordToCanvasX(ACoord: Double; ADestX: Integer; AMulX: Double): Integer; inline;
function CoordToCanvasY(ACoord: Double; ADestY: Integer; AMulY: Double): Integer; inline;
function FPVSizeToCanvas(ASize, AMul: Double): Integer;
// Other routines
function SeparateString(AString: string; ASeparator: char): T10Strings;
procedure SeparateStringInTwo(AString: string; ASeparator: char; out AStart, AEnd: string);
function Make3DPoint(AX, AY, AZ: Double): T3DPoint; overload; inline;
function Make3DPoint(AX, AY: Double): T3DPoint; overload; inline;
function Point2D(AX, AY: Double): T2DPoint; inline;
function IsGradientBrush(ABrush: TvBrush): Boolean;
// Mathematical routines
function LineEquation_GetPointAndTangentForLength(AStart, AEnd: T3DPoint; ADistance: Double; out AX, AY, ATangentAngle: Double): Boolean;
procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint);
procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint);
procedure AddBezierToPoints(P1, P2, P3, P4: T3DPoint; var Points: TPointsArray);
function BezierEquation_GetPoint(t: Double; P1, P2, P3, P4: T3DPoint): T3DPoint;
function BezierEquation_GetTangent(t: Double; P1, P2, P3, P4: T3DPoint): Double;
function BezierEquation_GetLength(P1, P2, P3, P4: T3DPoint; AMaxT: Double = 1; ASteps: Integer = 30): Double;
function BezierEquation_GetT_ForLength(P1, P2, P3, P4: T3DPoint; ALength: Double; ASteps: Integer = 30): Double;
function BezierEquation_GetPointAndTangentForLength(P1, P2, P3, P4: T3DPoint;
ADistance: Double; out AX, AY, ATangentAngle: Double; ASteps: Integer = 30): Boolean;
function CalcEllipseCenter(x1,y1, x2,y2, rx,ry, phi: Double; fa, fs: Boolean;
out cx,cy, lambda: Double): Boolean;
function CalcEllipsePointAngle(x,y, rx,ry, cx,cy, phi: Double): Double;
procedure CalcEllipsePoint(t, rx,ry, cx,cy, phi: Double; out x,y: Double);
procedure ConvertPathToPolygons(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double;
var PolygonPoints: TPointsArray; var PolygonStartIndexes: TIntegerDynArray);
procedure ConvertPathToPoints(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double; var Points: TPointsArray);
function GetLinePolygonIntersectionPoints(ACoord: Double;
const APoints: T2DPointsArray; const APolyStarts: TIntegerDynArray;
ACoordIsX: Boolean): T2DPointsArray; overload;
function GetLinePolygonIntersectionPoints(ACoord: Double;
const APoints: T2DPointsArray; ACoordIsX: Boolean): T2DPointsArray; overload;
function Offset3DPoint(P, Delta: T3DPoint): T3DPoint;
function Rotate2DPoint(P, RotCenter: TPoint; alpha:double): TPoint;
function Rotate3DPointInXY(P, RotCenter: T3DPoint; alpha:double): T3DPoint;
function SamePoint(P1, P2: T3DPoint; Epsilon: Double = 0.0): Boolean; overload;
function SamePoint(P1, P2: TPoint): Boolean; overload;
procedure NormalizeRect(var ARect: TRect);
// Transformation matrix operations
// See http://www.useragentman.com/blog/2011/01/07/css3-matrix-transform-for-the-mathematically-challenged/
procedure ConvertTransformationMatrixToOperations(AA, AB, AC, AD, AE, AF: Double; out ATranslateX, ATranslateY, AScaleX, AScaleY, ASkewX, ASkewY, ARotate: Double);
procedure InvertMatrixOperations(var ATranslateX, ATranslateY, AScaleX, AScaleY, ASkewX, ASkewY, ARotate: Double);
// Numerical Calculus
function SolveNumericallyAngle(ANumericalEquation: TNumericalEquation;
ADesiredMaxError: Double; ADesiredMaxIterations: Integer = 10): Double;
// Compression/Decompression
procedure DeflateBytes(var ASource, ADest: TFPVUByteArray);
procedure DeflateStream(ASource, ADest: TStream);
// Binary to Text encodings
procedure DecodeASCII85(ASource: string; var ADest: TFPVUByteArray);
procedure DecodeBase64(ASource: string; ADest: TStream);
// Byte array to stream conversion
procedure ByteArrayToStream(ASource: TFPVUByteArray; ADest: TStream);
// Debug
procedure FPVUDebug(AStr: string);
procedure FPVUDebugLn(AStr: string);
// LCL-related routines
{$ifdef USE_LCL_CANVAS}
function ConvertPathToRegion(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double): HRGN;
{$endif}
procedure AddStringToArray(var A: TStringArray; const B: String);
procedure AddStringsToArray(var A: TStringArray; const B: TStringArray);
var
FPVUDebugOutCallback: TFPVUDebugOutCallback; // executes DebugLn
FPVDebugBuffer: string;
ScreenDpiX: Integer = 96;
ScreenDpiY: Integer = 96;
implementation
{@@ This function is utilized by the SVG writer and some other places, so
it shouldn't be changed.
}
function FPColorToRGBHexString(AColor: TFPColor): string;
begin
Result := Format('%.2x%.2x%.2x', [AColor.Red shr 8, AColor.Green shr 8, AColor.Blue shr 8]);
end;
function RGBToFPColor(AR, AG, AB: byte): TFPColor; inline;
begin
Result.Red := (AR shl 8) + AR;
Result.Green := (AG shl 8) + AG;
Result.Blue := (AB shl 8) + AB;
Result.Alpha := $FFFF;
end;
{@@ Returns AColor1 if APos = 0, AColor2 if APos = AMax, or interpolates between }
function MixColors(AColor1, AColor2: TFPColor; APos, AMax: Double): TFPColor;
var
f1, f2: Double;
begin
f1 := (AMax - APos) / AMax;
f2 := APos / AMax;
Result.Alpha := Round(AColor1.Alpha * f1 + AColor2.Alpha * f2);
Result.Red := Round(AColor1.Red * f1 + AColor2.Red * f2);
Result.Green := Round(AColor1.Green * f1 + AColor2.Green * f2);
Result.Blue := Round(AColor1.Blue * f1 + AColor2.Blue * f2);
end;
{@@ Assigns a color to the specified value. The color is interpolated between
the colors defined in AColors.
}
function GradientColor(AColors: TvGradientColors; AValue: Double): TFPColor;
var
i: Integer;
c1, c2: TFPColor;
p1, p2: Double;
begin
// Return first color if AValue is below the first color position
if AValue <= AColors[0].Position then
Result := AColors[0].Color
else
// Return last color if AValue is above the last color position
if AValue >= AColors[High(AColors)].Position then
Result := AColors[High(AColors)].Color
else
// Find pair of colors positions which bracket the specified value and
// interpolate color
for i:= High(AColors)-1 downto 0 do
if AValue >= AColors[i].Position then
begin
c1 := AColors[i].Color;
c2 := AColors[i+1].Color;
p1 := AColors[i].Position;
p2 := AColors[i+1].Position;
Result := MixColors(c1, c2, AValue - p1, p2 - p1);
exit;
end;
end;
function AlphaBlendColor(AColorBase, AColor: TFPColor): TFPColor;
var
f1, f2: Double;
begin
f2 := AColor.Alpha / alphaOpaque;
f1 := 1 - f2;
Result.Alpha := Round(AColorBase.Alpha * f1 + AColor.Alpha * f2);
Result.Red := Round(AColorBase.Red * f1 + AColor.Red * f2);
Result.Green := Round(AColorBase.Green * f1 + AColor.Green * f2);
Result.Blue := Round(AColorBase.Blue * f1 + AColor.Blue * f2);
end;
{@@ Converts the coordinate system from a TCanvas to FPVectorial
The basic difference is that the Y axis is positioned differently and
points upwards in FPVectorial and downwards in TCanvas.
The X axis doesn't change. The fix is trivial and requires only the Height of
the Canvas as extra info.
@param AHeight Should receive TCanvas.Height
}
function CanvasCoordsToFPVectorial(AY: Integer; AHeight: Integer): Integer; inline;
begin
Result := AHeight - AY;
end;
{@@
LCL Text is positioned based on the top-left corner of the text.
Besides that, one also needs to take the general coordinate change into account too.
@param ACanvasHeight Should receive TCanvas.Height
@param ATextHeight Should receive TFont.Size
}
function CanvasTextPosToFPVectorial(AY: Integer; ACanvasHeight, ATextHeight: Integer): Integer;
begin
Result := CanvasCoordsToFPVectorial(AY, ACanvasHeight) - ATextHeight;
end;
function CoordToCanvasX(ACoord: Double; ADestX: Integer; AMulX: Double): Integer;
begin
Result := Round(ADestX + AmulX * ACoord);
end;
function CoordToCanvasY(ACoord: Double; ADestY: Integer; AMulY: Double): Integer;
begin
Result := Round(ADestY + AmulY * ACoord);
end;
function FPVSizeToCanvas(ASize, AMul: Double): Integer;
begin
Result := Round(ASize * abs(AMul));
end;
{@@
Reads a string and separates it in substring
using ASeparator to delimite them.
Limits:
Number of substrings: 10 (indexed 0 to 9)
Length of each substring: 255 (they are shortstrings)
}
function SeparateString(AString: string; ASeparator: char): T10Strings;
var
i, CurrentPart: integer;
begin
CurrentPart := 0;
{ Clears the result }
for i := 0 to 9 do
Result[i] := '';
{ Iterates through the string, filling strings }
for i := 1 to Length(AString) do
begin
if Copy(AString, i, 1) = ASeparator then
begin
Inc(CurrentPart);
{ Verifies if the string capacity wasn't exceeded }
if CurrentPart > 9 then
Exit;
end
else
Result[CurrentPart] := Result[CurrentPart] + Copy(AString, i, 1);
end;
end;
function Point2D(AX, AY: Double): T2DPoint;
begin
Result.X := AX;
Result.Y := AY;
end;
procedure SeparateStringInTwo(AString: string; ASeparator: char; out AStart,
AEnd: string);
var
lPosSep: SizeInt;
begin
lPosSep := Pos(ASeparator, AString);
AStart := Copy(AString, 0, lPosSep-1);
AEnd := Copy(AString, lPosSep+1, Length(AString));
end;
function Make3DPoint(AX, AY, AZ: Double): T3DPoint;
begin
Result.X := AX;
Result.Y := AY;
Result.Z := AZ;
end;
function Make3DPoint(AX, AY: Double): T3DPoint;
begin
Result.X := AX;
Result.Y := AY;
Result.Z := 0;
end;
function IsGradientBrush(ABrush: TvBrush): Boolean;
begin
Result := ABrush.Kind in [bkHorizontalGradient, bkVerticalGradient,
bkOtherLinearGradient, bkRadialGradient];
end;
{ Considering a counter-clockwise arc, elliptical and alligned to the axises
An elliptical Arc can be converted to
the following Cubic Bezier control points:
P1 = E(startAngle) <- start point
P2 = P1+alfa * dE(startAngle) <- control point
P3 = P4−alfa * dE(endAngle) <- control point
P4 = E(endAngle) <- end point
source: http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
The equation of an elliptical arc is:
X(t) = Xc + Rx * cos(t)
Y(t) = Yc + Ry * sin(t)
dX(t)/dt = - Rx * sin(t)
dY(t)/dt = + Ry * cos(t)
}
procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double;
var P1, P2, P3, P4: T3DPoint);
var
halfLength, arcLength, alfa: Double;
sinStartAngle, cosStartAngle, sinEndAngle, cosEndAngle: Double;
begin
arcLength := endAngle - startAngle;
halfLength := (endAngle - startAngle) / 2;
alfa := sin(arcLength) * (Sqrt(4 + 3*sqr(tan(halfLength))) - 1) / 3;
// Start point
SinCos(startAngle, sinStartAngle, cosStartAngle);
P1.X := Xc + Rx * cosStartAngle;
P1.Y := Yc + Ry * sinStartAngle;
// End point
SinCos(endAngle, sinEndAngle, cosEndAngle);
P4.X := Xc + Rx * cosEndAngle;
P4.Y := Yc + Ry * sinEndAngle;
// Control points
P2.X := P1.X + alfa * -1 * Rx * sinStartAngle;
P2.Y := P1.Y + alfa * Ry * cosStartAngle;
P3.X := P4.X - alfa * -1 * Rx * sinEndAngle;
P3.Y := P4.Y - alfa * Ry * cosEndAngle;
end;
// (x2,y2)=(x1+L⋅cos(a),y1+L⋅sin(a)).
// ATangentAngle - in Radians
function LineEquation_GetPointAndTangentForLength(AStart, AEnd: T3DPoint; ADistance: Double; out AX, AY, ATangentAngle: Double): Boolean;
var
lLineAngle: Double; // to X axis
sinAngle, cosAngle: Double;
begin
Result := False;
// lLineAngle := arctan((AEnd.Y-AStart.Y) / (AEnd.X - AStart.X));
lLineAngle := arctan2(AEnd.Y - AStart.Y, AEnd.X - AStart.X);
SinCos(lLineAngle, sinAngle, cosAngle);
AX := AStart.X + ADistance * cosAngle;
AY := AStart.Y + ADistance * sinAngle;
end;
procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1,
P2, P3, P4: T3DPoint);
begin
EllipticalArcToBezier(Xc, Yc, R, R, startAngle, endAngle, P1, P2, P3, P4);
end;
{ This routine converts a Bezier to a Polygon and adds the points of this polygon
to the end of the provided Points output variables }
procedure AddBezierToPoints(P1, P2, P3, P4: T3DPoint; var Points: TPointsArray);
var
CurveLength, k, LastPoint: Integer;
CurPoint: T3DPoint;
t: Double;
begin
{$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG}
Write(Format('[AddBezierToPoints] P1=%f,%f P2=%f,%f P3=%f,%f P4=%f,%f =>', [P1.X, P1.Y, P2.X, P2.Y, P3.X, P3.Y, P4.X, P4.Y]));
{$endif}
// there is no problem here using a number larger than the real one
// so to be fast, just connect the 4 points...
CurveLength :=
Round(sqrt(sqr(P2.X - P1.X) + sqr(P2.Y - P1.Y))) +
Round(sqrt(sqr(P3.X - P2.X) + sqr(P3.Y - P2.Y))) +
Round(sqrt(sqr(P4.X - P4.X) + sqr(P4.Y - P3.Y)));
LastPoint := Length(Points)-1;
SetLength(Points, Length(Points)+CurveLength);
for k := 1 to CurveLength do
begin
t := k / CurveLength;
CurPoint := BezierEquation_GetPoint(t, P1, P2, P3, P4);
Points[LastPoint+k].X := Round(CurPoint.X);
Points[LastPoint+k].Y := Round(CurPoint.Y);
{$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG}
Write(Format(' P=%d,%d', [CurPoint.X, CurPoint.Y]));
{$endif}
end;
{$ifdef FPVECTORIAL_BEZIERTOPOINTS_DEBUG}
WriteLn(Format(' CurveLength=%d', [CurveLength]));
{$endif}
end;
// B(t) = (1-t)³ [Prev.X, Prev.Y] + 3 (1-t)² t [X2, Y2] + 3 (1-t) t² [X3, Y3] + t³ [X,Y], 0<=t<=1
function BezierEquation_GetPoint(t: Double; P1, P2, P3, P4: T3DPoint): T3DPoint;
begin
Result.X := sqr(1 - t) * (1 - t) * P1.X + 3 * t * sqr(1 - t) * P2.X + 3 * t * t * (1 - t) * P3.X + t * t * t * P4.X;
Result.Y := sqr(1 - t) * (1 - t) * P1.Y + 3 * t * sqr(1 - t) * P2.Y + 3 * t * t * (1 - t) * P3.Y + t * t * t * P4.Y;
end;
// B'(t) = 3 (1-t)² [X2-Prev.X, Y2-Prev.Y] + 6 (1-t) t [X3-X2, Y3-Y2] + 3 t² [X-X3,Y-Y3]
function BezierEquation_GetTangent(t: Double; P1, P2, P3, P4: T3DPoint): Double;
var
lDerivateVector: T3DPoint;
begin
lDerivateVector.X := 3 * sqr(1 - t) * (P2.X-P1.X) + 6 * t * (1 - t) * (P3.X-P2.X) + 3 * t * t * (P4.X - P3.X);
lDerivateVector.Y := 3 * sqr(1 - t) * (P2.Y-P1.Y) + 6 * t * (1 - t) * (P3.Y-P2.Y) + 3 * t * t * (P4.Y - P3.Y);
Result := arctan(lDerivateVector.Y / lDerivateVector.X)
end;
// See http://www.lemoda.net/maths/bezier-length/index.html
// See http://steve.hollasch.net/cgindex/curves/cbezarclen.html for a more complex method
function BezierEquation_GetLength(P1, P2, P3, P4: T3DPoint; AMaxT: Double; ASteps: Integer): Double;
var
lCurT, x_diff, y_diff: Double;
i, lCurStep: Integer;
lCurPoint, lPrevPoint: T3DPoint;
begin
Result := 0.0;
for i := 0 to ASteps do
begin
lCurT := i / ASteps;
if lCurT > AMaxT then Exit;
lCurPoint := BezierEquation_GetPoint(lCurT, P1, P2, P3, P4);
if i = 0 then
begin
lPrevPoint := lCurPoint;
Continue;
end;
x_diff := lCurPoint.x - lPrevPoint.x;
y_diff := lCurPoint.y - lPrevPoint.y;
Result := Result + sqrt(sqr(x_diff) + sqr(y_diff));
lPrevPoint := lCurPoint;
end;
end;
function BezierEquation_GetT_ForLength(P1, P2, P3, P4: T3DPoint; ALength: Double; ASteps: Integer): Double;
var
i: Integer;
LeftT, RightT: Double;
function IsLeftBetter(): Boolean;
var
lLeftLen, lRightLen: Double;
begin
lLeftLen := BezierEquation_GetLength(P1, P2, P3, P4, LeftT, ASteps);
lRightLen := BezierEquation_GetLength(P1, P2, P3, P4, RightT, ASteps);
Result := Abs(lLeftLen - ALength) < Abs(lRightLen - ALength);
end;
begin
LeftT := 0;
RightT := 1;
for i := 0 to ASteps do
begin
if IsLeftBetter() then
RightT := (RightT + LeftT) / 2
else
LeftT := (RightT + LeftT) / 2;
end;
if IsLeftBetter() then
Result := RightT
else
Result := LeftT;
end;
function BezierEquation_GetPointAndTangentForLength(P1, P2, P3, P4: T3DPoint;
ADistance: Double; out AX, AY, ATangentAngle: Double; ASteps: Integer): Boolean;
var
lCurT: Double;
lCurPoint: T3DPoint;
begin
Result := False;
lCurT := BezierEquation_GetT_ForLength(P1, P2, P3, P4, ADistance, ASteps);
lCurPoint := BezierEquation_GetPoint(lCurT, P1, P2, P3, P4);
AX := lCurPoint.X;
AY := lCurPoint.Y;
ATangentAngle := BezierEquation_GetTangent(lCurT, P1, P2, P3, P4);
Result := True;
end;
// Calculate center of ellipse defined by two points on its perimeter, the
// major and minor axes, and the "sweep" and "large-angle" flags.
// Calculation follows the SVG implementation notes
// see: http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
// - (x1, y1) absolute coordinates of start point of arc
// - (x2, y2) absolute coordinates of end point of arc
// - rx, ry: radii of major and minor ellipse axes. Must be > 0. Use abs() if necessary.
// - phi: rotation angle of ellipse
// - fa: large arc flag (false = small arc, true = large arc)
// - fs: sweep flag (false = counterclockwise, true = clockwise)
// - cx, cy: Center coordinates of ellipse
// - Function result is false if the center cannot be calculated
function CalcEllipseCenter(x1,y1, x2,y2, rx,ry, phi: Double; fa, fs: Boolean;
out cx,cy, lambda: Double): Boolean;
const
EPS = 1E-9;
var
sinphi, cosphi: Extended;
x1p, x2p, y1p, y2p: Double; // x1', x2', y1', y2'
cxp, cyp: Double; // cx', cy'
m: Double;
begin
Result := false;
if (rx = 0) or (ry = 0) then
exit;
rx := abs(rx); // only positive radii!
ry := abs(ry);
SinCos(phi, sinphi, cosphi);
// (F.6.5.1) in above document
x1p := ( cosphi*(x1-x2) + sinphi*(y1-y2)) / 2;
y1p := (-sinphi*(x1-x2) + cosphi*(y1-y2)) / 2;
lambda := sqr(x1p/rx) + sqr(y1p/ry);
if lambda > 1 then
begin
// If the distance of the points is too large in relation to the ellipse
// size there is no solution. SVG Implemantation Notes request in this case
// that the ellipse is magnified so much that a solution exists.
lambda := sqrt(lambda);
rx := rx * lambda;
ry := ry * lambda;
end else
lambda := 1.0;
// (F.6.5.2)
m := (sqr(rx*ry) - sqr(rx*y1p) - sqr(ry*x1p)) / (sqr(rx*y1p) + sqr(ry*x1p));
if SameValue(m, 0.0, EPS) then
// Prevent a crash caused by a tiny negative sqrt argument due to rounding error.
m := 0
else if m < 0 then
exit;
// Exit if point distance is too large and return "false" - but this
// should no happen after having applied lambda!
m := sqrt(m); // Positive root for fa <> fs
if fa = fs then m := -m; // Negative root for fa = fs.
cxp := m * rx / ry * y1p;
cyp := -m * ry / rx * x1p;
// (F.6.5.3)
cx := cosphi*cxp - sinphi*cyp + (x1 + x2) / 2;
cy := sinphi*cxp + cosphi*cyp + (y1 + y2) / 2;
// If the function gets here we have a valid ellipse center in cx,cy
Result := true;
end;
{ Calculates the arc angle (in radians) of the point (x,y) on the perimeter of
an ellipse with radii rx,ry and center cx,cy. phi is the rotation angle of
the ellipse major axis with the x axis.
The result is in the range 0 .. 2pi}
function CalcEllipsePointAngle(x,y, rx,ry, cx,cy, phi: Double): Double;
var
p: T3DPoint;
begin
// Rotate ellipse back to align its major axis with the x axis
P := Rotate3dPointInXY(Make3dPoint(x-cx, y-cy, 0), Make3dPoint(0, 0, 0), phi);
// Correctly speaking, above line should use -phi, instead of phi. But
// Rotate3DPointInXY seems to define the angle in the opposite way.
Result := arctan2(P.Y/ry, P.X/rx);
if Result < 0 then Result := TWO_PI + Result;
end;
{ Calculates the x,y coordinates of a point on an ellipse defined by these
parameters:
- rx, ry: major and minor radius
- phi: rotation angle of the ellipse (angle between major axis and x axis)
- t: angle between x axis and line from ellipse center to point
parameterized:
x = cx + rx*cos(t)*cos(phi) - ry*sin(t)*sin(phi) [1]
y = cy + ry*sin(t)*cos(phi) + rx*cos(t)*sin(phi) [2] }
procedure CalcEllipsePoint(t, rx,ry, cx,cy, phi: Double; out x,y: Double);
var
P: T3dPoint;
cost, sint: Extended;
cosphi, sinphi: Extended;
begin
SinCos(t, sint, cost);
SinCos(phi, sinphi, cosphi);
x := cx + rx*cost*cosphi - ry*sint*sinphi;
y := cy + ry*sint*cosphi + rx*cost*sinphi;
end;
{ Converts a path to one or more polygons. The polygon vertices are returned
in "PolygonPoints"; they are given in canvas units (pixels).
Since the path can contain several polygons the start index of each polygon
is returned in "PolygonStartIndexes". }
procedure ConvertPathToPolygons(APath: TPath;
ADestX, ADestY: Integer; AMulX, AMulY: Double;
var PolygonPoints: TPointsArray;
var PolygonStartIndexes: TIntegerDynArray);
const
POINT_BUFFER = 100;
var
i, j: Integer;
numPoints: Integer;
numPolygons: Integer;
coordX, coordY: Integer;
coordX2, coordY2, coordX3, coordY3, coordX4, coordY4: Integer;
// temporary point arrays
pts: array of TPoint;
pts3D: T3dPointsArray;
// Segments
curSegment: TPathSegment;
cur2DSegment: T2DSegment absolute curSegment;
cur2DBSegment: T2DBezierSegment absolute curSegment;
cur2DArcSegment: T2DEllipticalArcSegment absolute curSegment;
begin
if (APath = nil) then
begin
SetLength(PolygonPoints, 0);
SetLength(PolygonStartIndexes, 0);
exit;
end;
SetLength(PolygonPoints, POINT_BUFFER);
SetLength(PolygonStartIndexes, POINT_BUFFER);
numPoints := 0;
numPolygons := 0;
APath.PrepareForSequentialReading;
for i := 0 to APath.Len - 1 do
begin
curSegment := TPathSegment(APath.Next);
if (i = 0) and (curSegment.SegmentType <> stMoveTo) then
raise Exception.Create('Path must start with a "MoveTo" command');
case curSegment.SegmentType of
stMoveTo:
begin
// Store current length of points array as polygon start index
if numPolygons >= Length(PolygonStartIndexes) then
SetLength(PolygonstartIndexes, Length(PolygonStartIndexes) + POINT_BUFFER);
PolygonStartIndexes[numPolygons] := numPoints;
inc(numPolygons);
// Store current point as first point of a new polygon
coordX := CoordToCanvasX(cur2DSegment.X, ADestX, AMulX);
coordY := CoordToCanvasY(cur2DSegment.Y, ADestY, AMulY);
if numPoints >= Length(PolygonPoints) then
SetLength(PolygonPoints, Length(PolygonPoints) + POINT_BUFFER);
PolygonPoints[numPoints] := Point(coordX, coordY);
inc(numPoints);
end;
st2DLine, st3DLine, st2DLineWithPen:
begin
// Add current point to current polygon
coordX := CoordToCanvasX(cur2DSegment.X, ADestX, AMulX);
coordY := CoordToCanvasY(cur2DSegment.Y, ADestY, AMulY);
if numPoints >= Length(PolygonPoints) then
SetLength(PolygonPoints, Length(PolygonPoints) + POINT_BUFFER);
PolygonPoints[numPoints] := Point(coordX, coordY);
inc(numPoints);
end;
st2DBezier, st3DBezier, st2DEllipticalArc:
begin
SetLength(PolygonPoints, numPoints);
curSegment.AddToPoints(ADestX, ADestY, AMulX, AMulY, PolygonPoints);
numPoints := Length(PolygonPoints);
end;
end;
end;
SetLength(PolygonPoints, numPoints);
SetLength(PolygonStartIndexes, numPolygons);
end;
procedure ConvertPathToPoints(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double; var Points: TPointsArray);
var
i, LastPoint: Integer;
CoordX, CoordY: Integer;
CoordX2, CoordY2, CoordX3, CoordY3, CoordX4, CoordY4: Integer;
// Segments
CurSegment: TPathSegment;
Cur2DSegment: T2DSegment absolute CurSegment;
Cur2DBSegment: T2DBezierSegment absolute CurSegment;
begin
APath.PrepareForSequentialReading;
SetLength(Points, 0);
for i := 0 to APath.Len - 1 do
begin
CurSegment := TPathSegment(APath.Next());
CoordX := CoordToCanvasX(Cur2DSegment.X, ADestX, AMulX);
CoordY := CoordToCanvasY(Cur2DSegment.Y, ADestY, AMulY);
case CurSegment.SegmentType of
st2DBezier, st3DBezier:
begin
LastPoint := Length(Points)-1;
CoordX4 := CoordX;
CoordY4 := CoordY;
CoordX := Points[LastPoint].X;
CoordY := Points[LastPoint].Y;
CoordX2 := CoordToCanvasX(Cur2DBSegment.X2, ADestX, AMulX);
CoordY2 := CoordToCanvasY(Cur2DBSegment.Y2, ADestY, AMulY);
CoordX3 := CoordToCanvasX(Cur2DBSegment.X3, ADestX, AMulX);
CoordY3 := CoordToCanvasY(Cur2DBSegment.Y3, ADestY, AMulY);
AddBezierToPoints(
Make3DPoint(CoordX, CoordY, 0),
Make3DPoint(CoordX2, CoordY2, 0),
Make3DPoint(CoordX3, CoordY3, 0),
Make3DPoint(CoordX4, CoordY4, 0),
Points);
end;
else
LastPoint := Length(Points);
SetLength(Points, Length(Points)+1);
Points[LastPoint].X := CoordX;
Points[LastPoint].Y := CoordY;
end;
end;
end;
function CompareDbl(P1, P2: Pointer): Integer;
var
val1, val2: ^Double;
begin
val1 := P1;
val2 := P2;
Result := CompareValue(val1^, val2^);
end;
function GetLinePolygonIntersectionPoints(ACoord: Double;
const APoints: T2DPointsArray; ACoordIsX: Boolean): T2DPointsArray;
var
polystarts: TIntegerDynArray;
begin
SetLength(polystarts, 1);
polystarts[0] := 0;
Result := GetLinePolygonIntersectionPoints(ACoord, APoints, ACoordIsX);
end;
{@@ Calculates the intersection points of a vertical (ACoordIsX = true) or
horizontal (ACoordIsX = false) line with border of the polygon specified
by APoints. Returns the coordinates of the intersection points }
function GetLinePolygonIntersectionPoints(ACoord: Double;
const APoints: T2DPointsArray; const APolyStarts: TIntegerDynArray;
ACoordIsX: Boolean): T2DPointsArray;
const
EPS = 1e-9;
var
j, p: Integer;
firstj,lastj: Integer;
dx, dy: Double;
xval, yval: Double;
val: ^Double;
list: TFPList;
begin
list := TFPList.Create;
if ACoordIsX then
begin
for p := 0 to High(APolyStarts) do
begin
firstj := APolyStarts[p];
lastj := IfThen(p = High(APolyStarts), High(APoints), APolyStarts[p+1]-1);
// Skip non-closed polygons
if (APoints[firstj].X <> APoints[lastj].x) or (APoints[lastj].Y <> APoints[lastj].Y) then
continue;
for j := firstj to lastj-1 do
if ((APoints[j].X <= ACoord) and (ACoord < APoints[j+1].X)) or
((APoints[j+1].X <= ACoord) and (ACoord < APoints[j].X)) then
begin
dx := APoints[j+1].X - APoints[j].X; // can't be zero here
dy := APoints[j+1].Y - APoints[j].Y;
New(val);
val^ := APoints[j].Y + (ACoord - APoints[j].X) * dy / dx;
list.Add(val);
end;
end;
end else
begin
for p := 0 to High(APolyStarts) do begin
firstj := APolyStarts[p];
lastj := IfThen(p = High(APolyStarts), High(APoints), APolyStarts[p+1]-1);
// Skip non-closed polygons
if (APoints[firstj].X <> APoints[lastj].x) or (APoints[lastj].Y <> APoints[lastj].Y) then
continue;
for j := firstj to lastj-1 do
if ((APoints[j].Y <= ACoord) and (ACoord < APoints[j+1].Y)) or
((APoints[j+1].Y <= ACoord) and (ACoord < APoints[j].Y)) then
begin
dy := APoints[j+1].Y - APoints[j].Y; // can't be zero here
dx := APoints[j+1].X - APoints[j].X;
New(val);
val^ := APoints[j].X + (ACoord - APoints[j].Y) * dx / dy;
list.Add(val);
end;
end;
end;
// Sort intersection coordinates in ascending order
list.Sort(@CompareDbl);
// When scanning across an non-contiguous polygon the scan may produce an
// odd number of points where the scan finds irregular points due to interaction
// with the other polygon curves. I don't have a general solution, only for
// the case of 3 points.
(*
if list.Count = 3 then begin // this can't be --> use ony outer points
SetLength(Result, 2);
if ACoordIsX then begin
Result[0] := Point2D(ACoord, Double(list[0]^));
Result[1] := Point2D(ACoord, Double(list[2]^));
end else begin
Result[0] := Point2D(Double(list[0]^), ACoord);
Result[1] := Point2D(Double(list[2]^), ACoord);
end;
end else
*)
begin // regular case
SetLength(Result, list.Count);
if ACoordIsX then
for j:=0 to list.Count-1 do
Result[j] := Point2D(ACoord, Double(list[j]^))
else
for j:=0 to list.Count-1 do
Result[j] := Point2D(Double(list[j]^), ACoord);
end;
// Clean-up
for j:=list.Count-1 downto 0 do
begin
val := List[j];
Dispose(val);
end;
list.Free;
end;
// Offset the point P by the vector Delta
function Offset3DPoint(P, Delta: T3DPoint): T3DPoint;
begin
Result.x := P.x + Delta.x;
Result.y := P.y + Delta.y;
Result.z := P.z;
end;
// Rotates a point P around RotCenter
function Rotate2DPoint(P, RotCenter: TPoint; alpha:double): TPoint;
var
sinus, cosinus : Extended;
begin
SinCos(alpha, sinus, cosinus);
P.x := P.x - RotCenter.x;
P.y := P.y - RotCenter.y;
result.x := Round(p.x*cosinus + p.y*sinus) + RotCenter.x ;
result.y := Round(-p.x*sinus + p.y*cosinus) + RotCenter.y;
end;
// Rotates a point P around RotCenter
// alpha angle in radians
// Be CAREFUL: the angle used here grows in clockwise direction. This is
// against mathematical convention!
function Rotate3DPointInXY(P, RotCenter: T3DPoint; alpha:double): T3DPoint;
var
sinus, cosinus : Extended;
begin
SinCos(alpha, sinus, cosinus);
P.x := P.x - RotCenter.x;
P.y := P.y - RotCenter.y;
result.x := Round( p.x*cosinus + p.y*sinus) + RotCenter.x;
result.y := Round(-p.x*sinus + p.y*cosinus) + RotCenter.y;
result.z := P.z;
end;
function SamePoint(P1, P2: TPoint): Boolean;
begin
Result := (P1.X = P2.X) and (P1.Y = P2.Y);
end;
function SamePoint(P1, P2: T3DPoint; Epsilon: Double = 0.0): Boolean;
begin
Result := SameValue(P1.X, P2.X, Epsilon) and
SameValue(P1.Y, P2.Y, Epsilon) and
SameValue(P1.Z, P2.Z, Epsilon);
end;
procedure NormalizeRect(var ARect: TRect);
var
tmp: Integer;
begin
if ARect.Left > ARect.Right then
begin
tmp := ARect.Left;
ARect.left := ARect.Right;
ARect.Right := tmp;
end;
if ARect.Top > ARect.Bottom then
begin
tmp := ARect.Top;
ARect.Top := ARect.Bottom;
ARect.Bottom := tmp;
end;
end;
// Current Transformation Matrix
// This has 6 numbers, which means this:
// (a c e)
// [a, b, c, d, e, f] = (b d f)
// (0 0 1)
// scale(Num) => a,d=Num rest=0
// scaleX(Num) => a=Num d=1 rest=0
// scaleY(Num) => a=1 d=Num rest=0
// TranslateX(Num) => a,d=1 e=Num rest=0
// TranslateY(Num) => a,d=1 f=Num rest=0
// Translate(NumX,NumY) => a,d=1 e=NumX f=NumY rest=0
// skewX(TX) => a=1 b=0 c=tan(TX) d=1 rest=0
// skewY(TY) => a=1 b=tan(TY) c=0 d=1 rest=0
// skew(TX,TY) => a=1 b=tan(TY) c=tan(TX) d=1 rest=0
// rotate(T) => a=cos(T) b=sin(T) c=-sin(T) d=cos(T) rest=0
//
// Example:
// 0.860815 0 -0 1.07602 339.302 489.171
// Which has a Scale and Translate
//
procedure ConvertTransformationMatrixToOperations(AA, AB, AC, AD, AE,
AF: Double; out ATranslateX, ATranslateY, AScaleX, AScaleY, ASkewX, ASkewY,
ARotate: Double);
begin
ATranslateX := 0;
ATranslateY := 0;
AScaleX := 1;
AScaleY := 1;
ASkewX := 0;
ASkewY := 0;
ARotate := 0;
// This is valid if AB=AC=0
ATranslateX := AE;
ATranslateY := AF;
AScaleX := AA;
AScaleY := AD;
end;
{$ifdef USE_LCL_CANVAS}
procedure InvertMatrixOperations(var ATranslateX, ATranslateY, AScaleX,
AScaleY, ASkewX, ASkewY, ARotate: Double);
begin
ATranslateX := -1 * ATranslateX;
ATranslateY := -1 * ATranslateY;
AScaleX := 1 / AScaleX;
AScaleY := 1 / AScaleY;
ASkewX := -1 * ATranslateX;
ASkewY := -1 * ATranslateX;
ARotate := -1 * ATranslateX;
end;
function SolveNumericallyAngle(ANumericalEquation: TNumericalEquation;
ADesiredMaxError: Double; ADesiredMaxIterations: Integer = 10): Double;
var
lError, lErr1, lErr2, lErr3, lErr4: Double;
lParam1, lParam2: Double;
lCount: Integer;
begin
lErr1 := ANumericalEquation(0);
lErr2 := ANumericalEquation(Pi/2);
lErr3 := ANumericalEquation(Pi);
lErr4 := ANumericalEquation(3*Pi/2);
// Choose the place to start
if (lErr1 < lErr2) and (lErr1 < lErr3) and (lErr1 < lErr4) then
begin
lParam1 := -Pi/2;
lParam2 := Pi/2;
end
else if (lErr2 < lErr3) and (lErr2 < lErr4) then
begin
lParam1 := 0;
lParam2 := Pi;
end
else if (lErr2 < lErr3) and (lErr2 < lErr4) then // wp: same as above!
begin
lParam1 := Pi/2;
lParam2 := 3*Pi/2;
end
else
begin
lParam1 := Pi;
lParam2 := TWO_PI;
end;
// Iterate as many times necessary to get the best answer!
lCount := 0;
lError := $FFFFFFFF;
while ((ADesiredMaxError < 0 ) or (lError > ADesiredMaxError))
and (lParam1 <> lParam2)
and ((ADesiredMaxIterations < 0) or (lCount < ADesiredMaxIterations)) do
begin
lErr1 := ANumericalEquation(lParam1);
lErr2 := ANumericalEquation(lParam2);
if lErr1 < lErr2 then
lParam2 := (lParam1+lParam2)/2
else
lParam1 := (lParam1+lParam2)/2;
lError := Min(lErr1, lErr2);
Inc(lCount);
end;
// Choose the best of the last two
if lErr1 < lErr2 then
Result := lParam1
else
Result := lParam2
end;
procedure DeflateBytes(var ASource, ADest: TFPVUByteArray);
var
SourceMem, DestMem: TMemoryStream;
i: Integer;
begin
SourceMem := TMemoryStream.Create;
DestMem := TMemoryStream.Create;
try
// copy the source to the stream
{$ifdef FPVECTORIAL_DEFLATE_DEBUG}
FPVUDebug('[DeflateBytes] ASource= ');
{$endif}
for i := 0 to Length(ASource)-1 do
begin
SourceMem.WriteByte(ASource[i]);
{$ifdef FPVECTORIAL_DEFLATE_DEBUG}
FPVUDebug(Format('%.2x ', [ASource[i]]));
{$endif}
end;
{$ifdef FPVECTORIAL_DEFLATE_DEBUG}
FPVUDebugLn('');
{$endif}
SourceMem.Position := 0;
DeflateStream(SourceMem, DestMem);
// copy the dest from the stream
DestMem.Position := 0;
SetLength(ADest, DestMem.Size);
for i := 0 to DestMem.Size-1 do
ADest[i] := DestMem.ReadByte();
finally
SourceMem.Free;
DestMem.Free;
end;
end;
procedure DeflateStream(ASource, ADest: TStream);
var
DeCompressionStream: TDecompressionStream;
readCount: Integer;
Buf: array[0..1023]of Byte;
FirstChar: Char;
begin
ASource.Read(FirstChar, 1);
if FirstChar <> #120 then
raise Exception.Create('File is not a zLib archive');
ASource.Position := 0;
DecompressionStream := TDecompressionStream.Create(ASource);
repeat
readCount := DecompressionStream.Read(Buf, SizeOf(Buf));
if readCount <> 0 then ADest.Write(Buf, readCount);
until readCount < SizeOf(Buf);
DecompressionStream.Free;
end;
procedure DecodeASCII85(ASource: string; var ADest: TFPVUByteArray);
var
CurSrcPos, CurDestPos: Integer;
lDataDWordPtr: PCardinal;
lDataCurChar: Char;
begin
SetLength(ADest, 0);
CurDestPos := 0;
CurSrcPos := 1;
while CurSrcPos <= Length(ASource) do
begin
lDataCurChar := ASource[CurSrcPos];
// Compressed block of zeroes
if lDataCurChar = 'z' then
begin
SetLength(ADest, Length(ADest)+4);
ADest[CurDestPos] := 0;
ADest[CurDestPos+1] := 0;
ADest[CurDestPos+2] := 0;
ADest[CurDestPos+3] := 0;
Inc(CurDestPos, 4);
Inc(CurSrcPos, 1);
Continue;
end;
// Common block of data: 5 input bytes generate 4 output bytes
SetLength(ADest, Length(ADest)+4);
lDataDWordPtr := @(ADest[CurDestPos]);
if CurSrcPos+4 <= Length(ASource) then
begin
lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85
+ (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte(ASource[CurSrcPos+2])-33)*85*85
+ (Byte(ASource[CurSrcPos+3])-33)*85 + (Byte(ASource[CurSrcPos+4])-33);
lDataDWordPtr^ := NToBE(lDataDWordPtr^);
end
else if CurSrcPos+3 <= Length(ASource) then
begin
lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85
+ (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte(ASource[CurSrcPos+2])-33)*85*85
+ (Byte(ASource[CurSrcPos+3])-33)*85 + (Byte('u')-33);
lDataDWordPtr^ := NToBE(lDataDWordPtr^);
SetLength(ADest, Length(ADest)-1);
end
else if CurSrcPos+2 <= Length(ASource) then
begin
lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85
+ (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte(ASource[CurSrcPos+2])-33)*85*85
+ (Byte('u')-33)*85 + (Byte('u')-33);
lDataDWordPtr^ := NToBE(lDataDWordPtr^);
SetLength(ADest, Length(ADest)-2);
end
else if CurSrcPos+1 <= Length(ASource) then
begin
lDataDWordPtr^ := (Byte(ASource[CurSrcPos])-33)*85*85*85*85
+ (Byte(ASource[CurSrcPos+1])-33)*85*85*85 + (Byte('u')-33)*85*85
+ (Byte('u')-33)*85 + (Byte('u')-33);
lDataDWordPtr^ := NToBE(lDataDWordPtr^);
SetLength(ADest, Length(ADest)-3);
end
else
begin
raise Exception.Create('[DecodeASCII85] Too few bytes remaining to decode!');
end;
Inc(CurDestPos, 4);
Inc(CurSrcPos, 5);
end;
end;
procedure DecodeBase64(ASource: string; ADest: TStream);
var
lSourceStream: TStringStream;
lDecoder: TBase64DecodingStream;
begin
lSourceStream := TStringStream.Create(ASource);
lDecoder := TBase64DecodingStream.Create(lSourceStream);
try
ADest.CopyFrom(lDecoder, lDecoder.Size);
finally
lDecoder.Free;
lSourceStream.Free;
end;
end;
procedure ByteArrayToStream(ASource: TFPVUByteArray; ADest: TStream);
var
i: Integer;
begin
for i := 0 to Length(ASource)-1 do
ADest.WriteByte(ASource[i]);
end;
procedure FPVUDebug(AStr: string);
begin
FPVDebugBuffer := FPVDebugBuffer + AStr;
end;
procedure FPVUDebugLn(AStr: string);
begin
if Assigned(FPVUDebugOutCallback) then
FPVUDebugOutCallback(FPVDebugBuffer + AStr);
FPVDebugBuffer := '';
end;
function ConvertPathToRegion(APath: TPath; ADestX, ADestY: Integer; AMulX, AMulY: Double): HRGN;
var
WindingMode: Integer;
Points: array of TPoint;
begin
APath.PrepareForSequentialReading;
SetLength(Points, 0);
ConvertPathToPoints(APath, ADestX, ADestY, AMulX, AMulY, Points);
if APath.ClipMode = vcmEvenOddRule then WindingMode := LCLType.ALTERNATE
else WindingMode := LCLType.WINDING;
Result := LCLIntf.CreatePolygonRgn(@Points[0], Length(Points), WindingMode);
end;
{$endif}
procedure AddStringToArray(var A: TStringArray; const B: String);
begin
SetLength(A, Length(A) + 1);
A[High(A)] := B;
end;
procedure AddStringsToArray(var A: TStringArray; const B: TStringArray);
var
n, i: Integer;
begin
n := Length(A);
SetLength(A, n + Length(B));
for i:=0 to High(B) do
A[i + n] := B[i];
end;
end.
|