1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
Documentation for LCL (Lazarus Component Library) and LazUtils (Lazarus
Utilities) are published under the Creative Commons Attribution-ShareAlike 4.0
International public license.
https://creativecommons.org/licenses/by-sa/4.0/legalcode.txt
https://gitlab.com/freepascal.org/lazarus/lazarus/-/blob/main/docs/cc-by-sa-4-0.txt
Copyright (c) 1997-2025, by the Lazarus Development Team.
-->
<fpdoc-descriptions>
<package name="lazutils">
<!--
====================================================================
GraphMath
====================================================================
-->
<module name="GraphMath">
<short>
A set of mathematical helper routines to simply cross-platform canvas
drawing.
</short>
<descr>
<p>
<file>graphmath.pp</file> contains math helper routines for use for
graphics drawing. It is used to simply cross-platform canvas drawing
operations. <file>graphmath.pp</file> is part of the <file>LazUtils</file>
package.
</p>
</descr>
<!-- unresolved references -->
<element name="Types"/>
<element name="Classes"/>
<element name="SysUtils"/>
<element name="Math"/>
<element name="GraphType"/>
<element name="LazUtilities"/>
<element name="TFloatPoint">
<short>
<var>TFloatPoint</var> is an extended precision record specifying the X and
Y coordinates of a point in a graphic environment.
</short>
<descr/>
<seealso/>
</element>
<element name="TFloatPoint.X">
<short>
Horizontal position for the coordinate.
</short>
</element>
<element name="TFloatPoint.Y">
<short>
Vertical position for the coordinate.
</short>
</element>
<element name="TBezier">
<short>
Array type used to store the coordinates for Bezier control points as
floating point values.
</short>
<descr>
<p>
<var>TBezier</var> allows up to 4 coordinates to be specified which represent
the control points for the parametric curve. Each coordinate is implemented
using the TFloatPoint type, and stored as elements in the array.
</p>
<p>
TBezier is the type returned by the Bezier function. The type is passed as an
argument to routines like: Arc2Bezier, Bezier2Polyline, BezierMidPoint, and
SplitBezier.
</p>
</descr>
<seealso>
<link id="Bezier"/>
<link id="Arc2Bezier"/>
<link id="Bezier2Polyline"/>
<link id="BezierMidPoint"/>
<link id="SplitBezier"/>
</seealso>
</element>
<element name="PPoint">
<short>
Pointer to the TPoint type.
</short>
<descr/>
<seealso>
<link id="#rtl.classes.TPoint">TPoint</link>
</seealso>
</element>
<element name="Angles2Coords">
<short>
Converts an Eccentric Angle and an Angle-Length, into the coordinates for
the Start and End radial Points.
</short>
<descr>
<p>
Use <var>Angles2Coords</var> to convert an Eccentric (Radial) angle and an
angle-length, such as are used in X-Windows and GTK, into the coordinates
for the Start and End radial Points. Like those used in the Arc, Pie, and
Chord routines from the Windows API.
</p>
<p>
The angles are specified in 1/16th of a degree. For example, a full circle
equals 5760 (16*360).
</p>
<p>
Positive values in Angle and AngleLength mean counter-clockwise, while
negative values mean clockwise direction. Zero degrees is at the 3
o'clock position.
</p>
</descr>
<seealso/>
</element>
<element name="Angles2Coords.X">
<short/>
</element>
<element name="Angles2Coords.Y">
<short/>
</element>
<element name="Angles2Coords.Width">
<short/>
</element>
<element name="Angles2Coords.Height">
<short/>
</element>
<element name="Angles2Coords.Angle1">
<short/>
</element>
<element name="Angles2Coords.Angle2">
<short/>
</element>
<element name="Angles2Coords.SX">
<short/>
</element>
<element name="Angles2Coords.SY">
<short/>
</element>
<element name="Angles2Coords.EX">
<short/>
</element>
<element name="Angles2Coords.EY">
<short/>
</element>
<element name="Arc2Bezier">
<short>
Converts an Arc and ArcLength into a Bezier Approximation of the Arc.
</short>
<descr>
<p>
Use <var>Arc2Bezier</var> to convert an Arc and ArcLength into a Bezier
approximation of the Arc. The Rotation parameter accepts a Rotation-Angle
for a rotated Ellipse. For a non-rotated ellipse this value would be 0, or
360. If the AngleLength is greater than 90 degrees, or is equal to 0, it
automatically exits, as Bezier cannot accurately approximate any angle
greater then 90 degrees, and in fact for best result no angle greater than
45 should be converted, instead an array of Bezier's should be created,
each Bezier describing a portion of the total arc no greater than 45
degrees.
</p>
<p>
The angles are specified in 1/16th of a degree. For example, a full circle
equals 5760 (16*360).
</p>
<p>
Positive values in Angle and AngleLength mean counter-clockwise while
negative values mean clockwise direction. Zero degrees is at the 3
o'clock position.
</p>
</descr>
<seealso/>
</element>
<element name="Arc2Bezier.X">
<short/>
</element>
<element name="Arc2Bezier.Y">
<short/>
</element>
<element name="Arc2Bezier.Width">
<short/>
</element>
<element name="Arc2Bezier.Height">
<short/>
</element>
<element name="Arc2Bezier.Angle1">
<short/>
</element>
<element name="Arc2Bezier.Angle2">
<short/>
</element>
<element name="Arc2Bezier.Rotation">
<short/>
</element>
<element name="Arc2Bezier.Points">
<short/>
</element>
<element name="Bezier">
<short>
Gets a TBezier instance representing the specified Bezier control points.
</short>
<descr/>
<seealso/>
</element>
<element name="Bezier.Result">
<short>
TBezier instance with the values in C1, C2, C3, and C4.
</short>
</element>
<element name="Bezier.C1">
<short>
Control point on the parametric curve. C1 is an endpoint.
</short>
</element>
<element name="Bezier.C2">
<short>
Control point on the parametric curve. C2 is a directional control point for
a Quadratic or Cubic Bezier.
</short>
</element>
<element name="Bezier.C3">
<short>
Control point on the parametric curve. C3 is a directional control point for
a Cubic Bezier.
</short>
</element>
<element name="Bezier.C4">
<short>
Control point on the parametric curve. C4 is an endpoint.
</short>
</element>
<element name="Bezier2Polyline">
<short>
<var>Bezier2Polyline</var> - convert a 4-Point Bezier into a Pointer Array
of TPoint and a Count variable.
</short>
<descr>
<p>
Use BezierToPolyline to convert a 4-Point Bezier into a Pointer Array of
TPoint and a Count variable which can then be used within either a
Polyline, or Polygon routine. It is primarily for use within
PolyBezier2Polyline.
</p>
<p>
If Points is not initialized or Count is less then 0, it is set to nil and
the array starts at 0, otherwise it tries to append points to the array
starting at Count. Points should ALWAYS be Freed when done by calling to
ReallocMem(Points, 0) or FreeMem.
</p>
</descr>
<seealso/>
</element>
<element name="Bezier2Polyline.Bezier">
<short/>
</element>
<element name="Bezier2Polyline.Points">
<short/>
</element>
<element name="Bezier2Polyline.Count">
<short/>
</element>
<element name="BezierArcPoints">
<short>
<var>BezierArcPoints</var> - convert an Arc and ArcLength into a Pointer
Array of TPoints for use with Polyline or Polygon.
</short>
<descr>
<p>
Use BezierArcPoints to convert an Arc and ArcLength into a Pointer Array of
TPoints for use with Polyline or Polygon. The Rotation parameter accepts a
Rotation-Angle for a rotated Ellipse. For a non-rotated ellipse this value
would be 0, or 360. The result is an Approximation based on 1 or more
Beziers.
</p>
<p>
If the AngleLength is greater than 90 degrees, it calls
PolyBezierArcPoints, otherwise it Converts the angles into a Bezier by
calling to Arc2Bezier, and then converts the Bezier into an array of Points
by calling to Bezier2Polyline.
</p>
<p>
The angles are specified in 1/16th of a degree. For example, a full circle
equals 5760 (16*360).
</p>
<p>
Positive values in Angle and AngleLength mean counter-clockwise while
negative values mean clockwise direction. Zero degrees is at the 3
o'clock position.
</p>
<p>
If Points is not initialized or Count is less then 0, it is set to nil and
the array starts at 0, otherwise it tries to append points to the array
starting at Count. Points should ALWAYS be Freed when done by calling
ReallocMem(Points, 0) or FreeMem.
</p>
</descr>
<seealso/>
</element>
<element name="BezierArcPoints.X">
<short/>
</element>
<element name="BezierArcPoints.Y">
<short/>
</element>
<element name="BezierArcPoints.Width">
<short/>
</element>
<element name="BezierArcPoints.Height">
<short/>
</element>
<element name="BezierArcPoints.Angle1">
<short/>
</element>
<element name="BezierArcPoints.Angle2">
<short/>
</element>
<element name="BezierArcPoints.Rotation">
<short/>
</element>
<element name="BezierArcPoints.Points">
<short/>
</element>
<element name="BezierArcPoints.Count">
<short/>
</element>
<element name="BezierMidPoint">
<short>
<var>BezierMidPoint</var> - get the Mid-Point of any 4-Point Bezier. It is
primarily for use in SplitBezier.
</short>
<descr/>
<seealso/>
</element>
<element name="BezierMidPoint.Result">
<short/>
</element>
<element name="BezierMidPoint.Bezier">
<short/>
</element>
<element name="CenterPoint">
<short>
<var>CenterPoint</var> - get the Center-Point of any rectangle. It is
primarily for use with, and in, other routines such as Quadrant, and
RadialPoint.
</short>
<descr/>
<seealso/>
</element>
<element name="CenterPoint.Result">
<short/>
</element>
<element name="CenterPoint.Rect">
<short/>
</element>
<element name="CalculateLeftTopWidthHeight">
<short>
Calculates the values for the output variables in Left, Top, Width, and Height.
</short>
<descr>
<p>
<var>CalculateLeftTopWidthHeight</var> checks values in the X1, X2, Y1, and Y2
arguments and sets the values for the Left, Top, Width, and Height output
parameters accordingly.
</p>
<dl>
<dt>Left</dt>
<dd>
Set to the smaller of the two values in X1 and X2.
</dd>
<dt>Width</dt>
<dd>
Set to the difference between the X1 and X2 values. The value will be a
positive integer value or zero (0).
</dd>
<dt>Top</dt>
<dd>
Set to the smaller of the two values in Y1 and Y2.
</dd>
<dt>Height</dt>
<dd>
Set to the difference between Y1 and Y2. The value will be a positive integer
value or zero (0).
</dd>
</dl>
<p>
Used in the implementation of the Rectangle and Ellipse routines for the GTK
widgetset.
</p>
</descr>
<version>
Added in LazUtils version 3.0.
</version>
<seealso/>
</element>
<element name="CalculateLeftTopWidthHeight.X1">
<short>
Horizontal coordinate examined in the routine.
</short>
</element>
<element name="CalculateLeftTopWidthHeight.Y1">
<short>
Vertical coordinate examined in the routine.
</short>
</element>
<element name="CalculateLeftTopWidthHeight.X2">
<short>
Horizontal coordinate examined in the routine.
</short>
</element>
<element name="CalculateLeftTopWidthHeight.Y2">
<short>
Vertical coordinate examined in the routine.
</short>
</element>
<element name="CalculateLeftTopWidthHeight.Left">
<short>
Returns the left coordinate for the specified values.
</short>
</element>
<element name="CalculateLeftTopWidthHeight.Top">
<short>
Returns the top coordinate for the specified values.
</short>
</element>
<element name="CalculateLeftTopWidthHeight.Width">
<short>
Returns the width for the specified horizontal coordinates.
</short>
</element>
<element name="CalculateLeftTopWidthHeight.Height">
<short>
Returns the height for the specified vertical coordinates.
</short>
</element>
<element name="Coords2Angles">
<short>
<var>Coords2Angles</var> - convert the coords for Start and End Radial-
Points into an Eccentric counter clockwise Angle and an Angle-Length.
</short>
<descr>
<p>
Use Coords2Angles to convert the coords for Start and End Radial-Points,
such as are used in the Windows API Arc Pie and Chord routines, into an
Eccentric (aka Radial) counter clockwise Angle and an Angle-Length, such as
are used in X-Windows and GTK.
</p>
<p>
The angles angle1 and angle2 are returned in 1/16th of a degree. For
example, a full circle equals 5760 (16*360).
</p>
<p>
Zero degrees is at the 3 o'clock position.
</p>
</descr>
<seealso/>
</element>
<element name="Coords2Angles.X">
<short/>
</element>
<element name="Coords2Angles.Y">
<short/>
</element>
<element name="Coords2Angles.Width">
<short/>
</element>
<element name="Coords2Angles.Height">
<short/>
</element>
<element name="Coords2Angles.SX">
<short/>
</element>
<element name="Coords2Angles.SY">
<short/>
</element>
<element name="Coords2Angles.EX">
<short/>
</element>
<element name="Coords2Angles.EY">
<short/>
</element>
<element name="Coords2Angles.Angle1">
<short/>
</element>
<element name="Coords2Angles.Angle2">
<short/>
</element>
<element name="Distance">
<short>
Gets the distance between two points, or the distance of a point from a
specified line.
</short>
<descr>
<p>
<var>Distance</var> is an overloaded function with variants that operate on
either two point coordinates, or on a point and a line defined by two
additional points values. The Distance() function is used primarily for
internal purposes (such as in Bezier2PolyLine and EccentricAngle)
but can be used for any purpose.
</p>
<p>
The return value is an Extended type with the calculated distance between the
argument values. The return value is always a positive value.
</p>
<p>
The variants using two point arguments (TPoint or TFloatPoint) calculates the
length of a straight line between the coordinates in PT1 and PT2 using the
Pythagorean theorem. The distance between identical points is always zero (0).
</p>
<p>
The variant with three TFloatPoint arguments calculates the distance between
the point Pt and the line represented by the points in SP and EP using
Euclidean geometry. The distance is derived by finding the length of an
imaginary line between Pt and the closest point that intersects the slope of
the line in SP and EP. The distance for a point which lies on the defined line
is always zero (0).
</p>
</descr>
<seealso/>
</element>
<element name="Distance.Result">
<short>
Straight-line distance between the specified coordinates or objects.
</short>
</element>
<element name="Distance.PT1">
<short>
Starting point for the calculated distance.
</short>
</element>
<element name="Distance.PT2">
<short>
Ending point for the calculated distance.
</short>
</element>
<element name="Distance.Pt">
<short>
Fixed point for the calculated distance.
</short>
</element>
<element name="Distance.SP">
<short>
Starting point for the line used in the distance calculation.
</short>
</element>
<element name="Distance.WP">
<short>
Ending point for the line used in the distance calculation.
</short>
</element>
<element name="EccentricAngle">
<short>
<var>EccentricAngle</var> - get the Eccentric Angle of a given point on any
non-rotated ellipse.
</short>
<descr>
<p>
Use EccentricAngle to get the Eccentric( aka Radial ) Angle of a given
point on any non-rotated ellipse. It is primarily for use in Coords2Angles.
The result is in 1/16th of a degree. For example, a full circle equals 5760
(16*360). Zero degrees is at the 3 o'clock position.
</p>
</descr>
<seealso/>
</element>
<element name="EccentricAngle.Result">
<short/>
</element>
<element name="EccentricAngle.PT">
<short/>
</element>
<element name="EccentricAngle.Rect">
<short/>
</element>
<element name="EllipseRadialLength">
<short>
<var>EllipseRadialLength</var> - Radial-Length of non-rotated ellipse at
any given Eccentric Angle.
</short>
<descr>
<p>
Use EllipseRadialLength to get the Radial-Length of non-rotated ellipse at
any given Eccentric( aka Radial ) Angle. It is primarily for use in other
routines such as RadialPoint. The Eccentric angle is in 1/16th of a degree.
For example, a full circle equals 5760 (16*360). Zero degrees is at the 3
o'clock position.
</p>
</descr>
<seealso/>
</element>
<element name="EllipseRadialLength.Result">
<short/>
</element>
<element name="EllipseRadialLength.Rect">
<short/>
</element>
<element name="EllipseRadialLength.EccentricAngle">
<short/>
</element>
<element name="EllipsePolygon">
<short>
Gets an array of points for a polygon which approximates an ellipse in the
specified rectangle.
</short>
<descr>
<p>
<var>EllipsePolygon</var> is a <var>TPointArray</var> function used to
calculate the array of points which approximate an ellipse bounded by the
rectangle specified in the ARect argument. In EllipsePolygon, the ellipse is
aligned to X and Y axes in the rectangle. It calculates the center point,
radii, and diameter for the ellipse using ARect as well as the minimum number
of points needed such that the distance between the edges of the rectangle and
the mathematical circle is less than the rounding error (0.5) and a smoother
stepping value of 0.4. The points for the polygon are calculated and stored in
the return value.
</p>
</descr>
<version>
Added in LCL version 4.0.
</version>
<seealso/>
</element>
<element name="EllipsePolygon.Result">
<short>
Array with the points for the polygon.
</short>
</element>
<element name="EllipsePolygon.ARect">
<short>
Rectangle instance with the bounds for an X- and Y-aligned ellipse.
</short>
</element>
<element name="FloatPoint">
<short>
<var>FloatPoint</var> - it is essentially like Classes.Point in use, except
that it accepts Extended Parameters. It is Primarily for use with and in
Bezier routines.
</short>
<descr/>
<seealso/>
</element>
<element name="FloatPoint.Result">
<short/>
</element>
<element name="FloatPoint.AX">
<short/>
</element>
<element name="FloatPoint.AY">
<short/>
</element>
<element name="LineEndPoint">
<short>
<var>LineEndPoint</var> - get the End-Point of a line of any given Length
at any given angle with any given Start-Point.
</short>
<descr>
<p>
Use LineEndPoint to get the End-Point of a line of any given Length at any
given angle with any given Start-Point. It is primarily for use in other
routines such as RadialPoint. The angle is in 1/16th of a degree. For
example, a full circle equals 5760 (16*360). Zero degrees is at the 3
o'clock position.
</p>
</descr>
<seealso/>
</element>
<element name="LineEndPoint.Result">
<short/>
</element>
<element name="LineEndPoint.StartPoint">
<short/>
</element>
<element name="LineEndPoint.Angle">
<short/>
</element>
<element name="LineEndPoint.Length">
<short/>
</element>
<element name="MakeMinMax">
<short>
Ensures that the i1 argument is the smaller of the two Integer values.
</short>
<descr>
<p>
<var>MakeMinMax</var> swaps the values in i1 and i2 variable parameters when
i1 is larger than i2. No actions are performed in the routine if i1 is smaller
than i2, or the arguments have the same value.
</p>
</descr>
<version>
Added in LazUtils version 3.0.
</version>
<seealso/>
</element>
<element name="MakeMinMax.i1">
<short>
Integer value compared (and potentially updated) in the routine.
</short>
</element>
<element name="MakeMinMax.i2">
<short>
Integer value compared (and potentially updated) in the routine.
</short></element>
<element name="MoveRect">
<short>
Moves the specified rectangle to the origin in the x and y arguments.
</short>
<descr>
<p>
<var>MoveRect</var> sets the Left and Top members in ARect to the values
specified in x and y (respectively). The Right and Bottom members in ARect are
updated to reflect the relative distance from the original Top and Left on
entry.
</p>
</descr>
<version>
Added in LazUtils version 3.0.
</version>
<seealso/>
</element>
<element name="MoveRect.ARect">
<short>
TRect instance updated in the routine.
</short>
</element>
<element name="MoveRect.x">
<short>
New position for the Top coordinate in the rectangle.
</short>
</element>
<element name="MoveRect.y">
<short>
New position for the Left coordinate in the rectangle.
</short>
</element>
<element name="MoveRectToFit">
<short>
Moves and potentially resizes a rectangle to fit within the specified target
rectangle.
</short>
<descr>
<p>
<var>ARect</var> is the TRect instance repositioned in the routine. Values in
the Left, Right, Top, and Bottom members may be updated in the routine if the
rectangle is not located within the bounds for the target rectangle.
</p>
<p>
<var>MaxRect</var> is the TRectangle instance where ARect is repositioned. It
also establishes the maximum size for ARect after it has been repositioned. If
aRect is larger than MaxRect, ARect is resized to fit with in the constraints
in MaxRect.
</p>
<p>
MoveRectToFit is used in the implementation for the DoDock method in TControl.
</p>
</descr>
<version>
Added in LazUtils version 3.0.
</version>
<seealso/>
</element>
<element name="MoveRectToFit.ARect">
<short>
TRect instance moved and optionally resized in the routine.
</short>
</element>
<element name="MoveRectToFit.MaxRect">
<short>
TRect instance where the rectangle is relocated. It also specifies the maximum
size for the relocated rectangle.
</short>
</element>
<element name="SameRect">
<short>
Indicates whether member in the specified rectangles have the same values.
</short>
<descr>
<p>
<var>SameRect</var> is <var>Boolean</var> function used to determine whether
the <var>TRect</var> instances R1 and R2 represent the same rectangular areas.
It compares the values for the Left, Right, Top, and Bottom members in the
TRect instances. The return value is <b>True</b> when members in R1 have the
same values as the corresponding members in R2.
</p>
<p>
SameRect replaces the deprecated CompareRect routine in the
<file>lclproc.pas</file> unit in the LCL.
</p>
</descr>
<version>
Added in LazUtils version 3.99.
</version>
<seealso>
<link id="#lcl.lclproc.CompareRect">CompareRect</link>
<link id="#rtl.types.PRect">PRect</link>
<link id="#rtl.types.TRect">TRect</link>
</seealso>
</element>
<element name="SameRect.Result">
<short>
True when the specified rectangles have the same values in the members.
</short>
</element>
<element name="SameRect.R1">
<short>
Pointer to a TRect instance examined in the routine.
</short>
</element>
<element name="SameRect.R2">
<short>
Pointer to a TRect instance examined in the routine.
</short>
</element>
<element name="PolyBezier2Polyline">
<short>
<var>PolyBezier2Polyline</var> - convert an array of 4-Point Bezier into a
Pointer Array of TPoint and a Count variable.
</short>
<descr>
<p>
Use BezierToPolyline to convert an array of 4-Point Bezier into a Pointer
Array of TPoint and a Count variable which can then be used within either a
Polyline, or Polygon routine. Points is automatically initialized, so any
existing information is lost, and the array starts at 0. Points should
ALWAYS be Freed when done by calling to ReallocMem(Points, 0).
</p>
</descr>
<seealso/>
</element>
<element name="PolyBezier2Polyline.Beziers">
<short/>
</element>
<element name="PolyBezier2Polyline.Points">
<short/>
</element>
<element name="PolyBezier2Polyline.Count">
<short/>
</element>
<element name="PolyBezierArcPoints">
<short>
<var>PolyBezierArcPoints</var> - convert an Arc and ArcLength into a
Pointer Array of TPoints for use with Polyline or Polygon.
</short>
<descr>
<p>
Use PolyBezierArcPoints to convert an arc between two angles Angle1 and Angle2
into a pointer array of TPoints for use with Polyline or Polygon.
The Rotation parameter accepts a rotation angle for a rotated ellipse - for
a non-rotated ellipse this value would be 0, or 360*16.
</p>
<p>
The result is an approximation based on 1 or more Beziers. If the angle length
is greater than 45*16 degrees, it recursively breaks the arc into arcs of
45*16 degrees or less, and converts them into beziers with BezierArcPoints.
The angles are 1/16th of a degree. For example, a full circle equals
5760 (16*360).
</p>
<p>
Positive values in Angle1 and Angle2 mean counter-clockwise while negative
values mean clockwise direction. Zero degrees is at the 3'o clock position.
Points is automatically initialized, so any existing information is lost,
and the array starts at 0. Points should ALWAYS be freed when done by calling
to ReallocMem(Points, 0).
</p>
</descr>
<seealso/>
</element>
<element name="PolyBezierArcPoints.X">
<short/>
</element>
<element name="PolyBezierArcPoints.Y">
<short/>
</element>
<element name="PolyBezierArcPoints.Width">
<short/>
</element>
<element name="PolyBezierArcPoints.Height">
<short/>
</element>
<element name="PolyBezierArcPoints.Angle1">
<short/>
</element>
<element name="PolyBezierArcPoints.Angle2">
<short/>
</element>
<element name="PolyBezierArcPoints.Rotation">
<short/>
</element>
<element name="PolyBezierArcPoints.Points">
<short/>
</element>
<element name="PolyBezierArcPoints.Count">
<short/>
</element>
<element name="Quadrant">
<short>
Determine the <var>Quadrant</var> of any point, given the Center.
</short>
<descr>
<p>
Use Quadrant to determine the Quadrant of any point, given the Center. It
is primarily for use in other routines such as EccentricAngle. A result of
1-4 represents the primary 4 quadrants. A result of 5-8 means the point
lies on one of the Axis, 5 = -Y Axis, 6 = +X Axis, 7 = +Y Axis, and 8 = -X
Axis. A result of -1 means that it does not fall in any quadrant, that is,
it is the Center.
</p>
</descr>
<seealso/>
</element>
<element name="Quadrant.Result">
<short/>
</element>
<element name="Quadrant.PT">
<short/>
</element>
<element name="Quadrant.Center">
<short/>
</element>
<element name="RadialPoint">
<short>
Get the <var>RadialPoint</var> at any given Eccentric angle on any non-
rotated ellipse.
</short>
<descr>
<p>
Use RadialPoint to get the Radial-Point at any given Eccentric(aka Radial)
angle on any non-rotated ellipse. It is primarily for use in Angles2Coords.
The EccentricAngle is in 1/16th of a degree. For example, a full circle
equals 5760 (16*360). Zero degrees is at the 3 o'clock position.
</p>
</descr>
<seealso/>
</element>
<element name="RadialPoint.Result">
<short/>
</element>
<element name="RadialPoint.EccentricAngle">
<short/>
</element>
<element name="RadialPoint.Rect">
<short/>
</element>
<element name="RotatePoint">
<short>
Rotates a point around the origin by the specified angle (in radians).
</short>
<descr>
<p>
Rotates a point around the origin (0,0) by the angle in AAngle. The angle is
in radians and positive for counter-clockwise rotation.
Note that y points downwards.
</p>
</descr>
<seealso/>
</element>
<element name="RotatePoint.Result">
<short>TPoint with the coordinates after rotation.</short>
</element>
<element name="RotatePoint.APoint">
<short>TPoint with coordinates rotated in the routine.</short>
</element>
<element name="RotatePoint.AAngle">
<short>Rotation angle in radians.</short>
</element>
<element name="RotateRect">
<short>
Rotates a rectangle with the specified dimensions by the specified angle
(in radians).
</short>
<descr>
<p>
Rotates the rectangle (0, 0, AWidth, AHeight) around its top-left corner
(0,0) by the angle in AAngle (in radians).
Note that y points downwards.
</p>
</descr>
<seealso/>
</element>
<element name="RotateRect.Result">
<short>The smallest TRect which contains the rotated rectangle.</short>
</element>
<element name="RotateRect.AWidth">
<short>Width for the rectangle.</short>
</element>
<element name="RotateRect.AHeight">
<short>Height for the rectangle.</short>
</element>
<element name="RotateRect.AAngle">
<short>Rotation angle in radians.</short>
</element>
<element name="SplitBezier">
<short>
<var>SplitBezier</var> - split any 4-Point Bezier into two 4-Point Beziers:
a 'Left' and a 'Right'
</short>
<descr>
<p>
Use SplitBezier to split any 4-Point Bezier into two 4-Point Beziers: a
'Left' and a 'Right'. It is primarily for use in Bezier2Polyline.
</p>
</descr>
<seealso/>
</element>
<element name="SplitBezier.Bezier">
<short/>
</element>
<element name="SplitBezier.Left">
<short/>
</element>
<element name="SplitBezier.Right">
<short/>
</element>
<element name="operator +(TFloatPoint,TFloatPoint):TFloatPoint">
<short>
Implements the Add operator (+) for values using the TFloatPoint type.
</short>
<descr>
<p>
Values for the X and Y members in the addends are summed and stored in the
corresponding members in the TFloatPoint result.
</p>
</descr>
</element>
<element name="operator +(TFloatPoint,Extended):TFloatPoint">
<short>
Implements the Add operator (+) for values using the TFloatPoint and Extended
types.
</short>
<descr>
<p>
The Extended value is added to both the X and Y members in the TFloatPoint
type and used in the result for the operator.
</p>
</descr>
<seealso/>
</element>
<element name="operator +(Extended,TFloatPoint):TFloatPoint">
<short>
Implements the Add operator (+) for values using the Extended and TFloatPoint
types.
</short>
<descr>
<p>
The Extended value is added to both the X and Y members in the TFloatPoint
type and used in the result for the operator.
</p>
</descr>
<seealso/>
</element>
<element name="operator +(TFloatPoint,TPoint):TFloatPoint">
<short>
Implements the Add operator (+) for values using the TFloatPoint and TPoint
types.
</short>
<descr/>
<seealso/>
</element>
<element name="operator +(TPoint,TFloatPoint):TFloatPoint">
<short>
Implements the Add operator (+) for values using the TPoint and TFloatPoint
types.
</short>
<descr/>
<seealso/>
</element>
<element name="operator -(TFloatPoint,Extended):TFloatPoint">
<short>
Implements the Subtract operator (-) for values using the TFloatPoint and
Extended types.
</short>
<descr>
<p>
The value in the Extended type is subtracted from both the X and Y members in
the TFloatPoint type and used in the result for the operator.
</p>
</descr>
</element>
<element name="operator -(TFloatPoint,TFloatPoint):TFloatPoint">
<short>
Implements the Subtract operator (-) for values using the TFloatPoint type.
</short>
<descr/>
</element>
<element name="operator -(TFloatPoint,TPoint):TFloatPoint">
<short>
Implements the Subtract operator (-) for values using the TFloatPoint and
TPoint types.
</short>
<descr/>
</element>
<element name="operator -(TPoint,TFloatPoint):TFloatPoint">
<short>
Implements the Subtract operator (-) for values using the TPoint and
TFloatPoint types.
</short>
<descr/>
</element>
<element name="operator *(TFloatPoint,TFloatPoint):TFloatPoint">
<short>
Implements the Multiply operator (*) for values using the TFloatPoint type.
</short>
<descr/>
</element>
<element name="operator *(TFloatPoint,Extended):TFloatPoint">
<short>
Implements the Multiply operator (*) for values using the TFloatPoint and
Extended types.
</short>
<descr>
<p>
The value in the Extended type is applied to both the X and Y members in the TFloatPoint type and used in the result for the operator.
</p>
</descr>
</element>
<element name="operator *(Extended,TFloatPoint):TFloatPoint">
<short>
Implements the Multiply operator (*) for values using the Extended and
TFloatPoint types.
</short>
<descr>
<p>
The value in the Extended type is applied to both the X and Y members in the TFloatPoint type and used in the result for the operator.
</p>
</descr>
</element>
<element name="operator *(TFloatPoint,TPoint):TFloatPoint">
<short>
Implements the Multiply operator (*) for values using the TFloatPoint and
TPoint types.
</short>
<descr/>
</element>
<element name="operator *(TPoint,TFloatPoint):TFloatPoint">
<short>
Implements the Multiply operator (*) for values using the TPoint and
TFloatPoint types.
</short>
<descr/>
</element>
<element name="operator /(TFloatPoint,TFloatPoint):TFloatPoint">
<short>
Implements the Divide operator (/) for values using the TFloatPoint type.
</short>
<descr/>
</element>
<element name="operator /(TFloatPoint,Extended):TFloatPoint">
<short>
Implements the Divide operator (/) for values using the TFloatPoint and
Extended types.
</short>
<descr>
<p>
The value in the Extended type is applied to both the X and Y members in the
TFloatPoint type and used in the result for the operator. No validation is
performed for the divisor in the operator.
</p>
</descr>
</element>
<element name="operator /(TFloatPoint,TPoint):TFloatPoint">
<short>
Implements the Divide operator (/) for values using the TFloatPoint and
TPoint types.
</short>
<descr/>
</element>
<element name="operator /(TPoint,TFloatPoint):TFloatPoint">
<short>
Implements the Divide operator (/) for values using the TPoint and
TFloatPoint types.
</short>
<descr/>
</element>
<element name="operator =(TPoint,TPoint):Boolean">
<short>
Implements the Equal operator (=) to compare values using the TPoint type.
</short>
<descr>
<p>
The result is <b>True</b> when the X and Y members in the compared values are
the same.
</p>
</descr>
</element>
<element name="operator =(TFloatPoint,TFloatPoint):Boolean">
<short>
Implements the Equal operator (=) to compare values using the TFloatPoint type.
</short>
<descr>
<p>
The result is <b>True</b> when the X and Y members in the compared values are
the same.
</p>
</descr>
</element>
<element name="operator =(TRect,TRect):Boolean">
<short>
Implements the Equal operator (=) to compare values using the TRect type.
</short>
<descr>
<p>
The result is <b>True</b> when the Left, Top, Right, and Bottom members in the
compared values are the same.
</p>
</descr>
</element>
<element name="operator :=(TFloatPoint):TPoint">
<short>
Implements the Assign operator (=) to store a value using the TFloatPoint type
to a TPoint instance.
</short>
<descr>
<p>
<var>SimpleRoundTo</var> in the RTL <file>math.pp</file> unit is called to
round both the X and Y members to a Double value with 0 decimals in the
precision. The Double values are truncated and stored to the Longint types
used for the X and Y members in the result for the operator.
</p>
</descr>
</element>
<element name="operator :=(TPoint):TFloatPoint">
<short>
Implements the Assign operator (=) to store a value using the TPoint type to a
TFloatPoint instance.
</short>
<descr/>
</element>
<topic name="GraphMathOperators">
<short>
<b>GraphMath Operators</b>.
</short>
<descr>
<p>
This Unit contains a number of routines for calculating and converting
series of graphic points from one coordinate system to another.
</p>
<p>
A fundamental type is introduced, called TFloatPoint. It is an extended
precision record containing an X and a Y coordinate for a graphic point.
Its structure is as follows:
</p>
<code>
type
TFloatPoint = record
X, Y: Extended;
end;
</code>
<p>
The Unit contains definitions for mathematical operators which extend the
normal definitions of addition, subtraction, multiplication, division and
comparison to cover manipulations with TFloatPoints, allowing, for example,
addition or multiplication of two TFloatPoints, a TFloatPoint and a TPoint,
or a TFloatPoint and an Extended precision number.
</p>
</descr>
</topic>
</module>
<!-- GraphMath -->
</package>
</fpdoc-descriptions>
|