File: performance.txt

package info (click to toggle)
lazyarray 0.5.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 228 kB
  • sloc: python: 1,251; makefile: 109
file content (44 lines) | stat: -rw-r--r-- 2,001 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
===========
Performance
===========

The main aim of lazyarray is to improve performance (increased speed and
reduced memory use) in two scenarios:

    * arrays are used conditionally (i.e. there are cases in which the array is
      never used);
    * only parts of an array are used (for example in distributed computation,
      in which each MPI node operates on a subset of the elements of the array).
      
However, at the same time use of :class:`larray` objects should not be too much
slower than plain NumPy arrays in normal use.

Here we see that using a lazyarray adds minimal overhead compared to using a
plain array:

::

    >>> from timeit import repeat
    >>> repeat('np.fromfunction(lambda i,j: i*i + 2*i*j + 3, (5000, 5000))',
    ...        setup='import numpy as np', number=1, repeat=5)
    [1.9397640228271484, 1.92628812789917, 1.8796701431274414, 1.6766629219055176, 1.6844701766967773]
    >>> repeat('larray(lambda i,j: i*i + 2*i*j + 3, (5000, 5000)).evaluate()',
    ...        setup='from lazyarray import larray', number=1, repeat=5)
    [1.686661958694458, 1.6836578845977783, 1.6853220462799072, 1.6538069248199463, 1.645576000213623]
    
while if we only need to evaluate part of the array (perhaps because the other
parts are being evaluated on other nodes), there is a major gain from using a
lazy array.

::

    >>> repeat('np.fromfunction(lambda i,j: i*i + 2*i*j + 3, (5000, 5000))[:, 0:4999:10]',
    ...        setup='import numpy as np', number=1, repeat=5)
    [1.691796064376831, 1.668884038925171, 1.647057056427002, 1.6792259216308594, 1.652547836303711]
    >>> repeat('larray(lambda i,j: i*i + 2*i*j + 3, (5000, 5000))[:, 0:4999:10]',
    ...        setup='from lazyarray import larray', number=1, repeat=5)
    [0.23157119750976562, 0.16121792793273926, 0.1594078540802002, 0.16096210479736328, 0.16096997261047363]
    

.. note:: These timings were done on a MacBook Pro 2.8 GHz Intel Core 2 Duo
          with 4 GB RAM, Python 2.7 and NumPy 1.6.1.