File: test_lazy_arrays_from_Sparse_Matrices.py

package info (click to toggle)
lazyarray 0.5.2-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 228 kB
  • sloc: python: 1,251; makefile: 109
file content (211 lines) | stat: -rw-r--r-- 6,143 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Support creating lazy arrays from SciPy sparse matrices
#
# 1 program for the 7 sparse matrices classes :
#
# csc_matrix(arg1[, shape, dtype, copy])	            Compressed Sparse Column matrix
# csr_matrix(arg1[, shape, dtype, copy])	            Compressed Sparse Row matrix
# bsr_matrix(arg1[, shape, dtype, copy, blocksize])	    Block Sparse Row matrix
# lil_matrix(arg1[, shape, dtype, copy])	            Row-based linked list sparse matrix
# dok_matrix(arg1[, shape, dtype, copy])	            Dictionary Of Keys based sparse matrix.
# coo_matrix(arg1[, shape, dtype, copy])	            A sparse matrix in COOrdinate format.
# dia_matrix(arg1[, shape, dtype, copy])	            Sparse matrix with DIAgonal storage
#


import numpy as np
from lazyarray import larray
from scipy import sparse
import random


################
# Random numbers
################
i = random.randint(-100, 100)
j = random.randint(-100, 100)
k = random.randint(-100, 100)
l = random.randint(-100, 100)
m = random.randint(-100, 100)
n = random.randint(-100, 100)
p = random.randint(-100, 100)
q = random.randint(-100, 100)
r = random.randint(-100, 100)

################
# An example
################
#i = 1
#j = 2
#k = 0
#l = 0
#m = 0
#n = 3
#p = 1
#q = 0
#r = 4

#print "i =", i
#print "j =", j
#print "k =", k
#print "l =", l
#print "m =", m
#print "n =", n
#print "p =", p
#print "q  =", q
#print "r =", r


##############################################################
# Definition of an array
##############################################################

def test_function_array_general():
    A = np.array([[i, j, k], [l, m, n], [p, q, r]])
    #print "A ="
    #print A
    return A


##############################################################
# Definition of 7 sparse matrices
##############################################################

def sparse_csc_matrices():
    csc = sparse.csc_matrix([[i, j, k], [l, m, n], [p, q, r]])
    #print "csc matrices ="
    #print csc
    return csc

def sparse_csr_matrices():
    csr = sparse.csr_matrix([[i, j, k], [l, m, n], [p, q, r]])
    #print "csr matrices ="
    #print csr
    return csr

def sparse_bsr_matrices():
    bsr = sparse.bsr_matrix([[i, j, k], [l, m, n], [p, q, r]])
    #print "bsr matrices ="
    #print bsr
    return bsr

def sparse_lil_matrices():
    lil = sparse.lil_matrix([[i, j, k], [l, m, n], [p, q, r]])
    #print "lil matrices ="
    #print lil
    return lil

def sparse_dok_matrices():
    dok = sparse.dok_matrix([[i, j, k], [l, m, n], [p, q, r]])
    #print "dok matrices ="
    #print dok
    return dok

def sparse_coo_matrices():
    coo = sparse.coo_matrix([[i, j, k], [l, m, n], [p, q, r]])
    #print "coo matrices ="
    #print coo
    return coo

def sparse_dia_matrices():
    dia = sparse.dia_matrix([[i, j, k], [l, m, n], [p, q, r]])
    #print "dia matrices ="
    #print dia
    return dia



if __name__ == "__main__":


##############################################################
# Call test_function_array_general
# Create a sparse matrix from array
# There are 7 sparse matrices
##############################################################

    #print "Array general ="
    test_function_array_general()
    #print "Array ="
    #print test_function_array_general()

#    print "----"

#    print "Sparse array csc general ="
    sA_csc_general = sparse.csc_matrix(test_function_array_general())
    #print ("sparse csc matrices", sparse.csc_matrix(test_function_array_general()))
    #print "sparse csc matrices ="
    #print sA_csc_general
#    print "----"
#    print "Sparse array csr general ="
    sA_csr = sparse.csr_matrix(test_function_array_general())
    #print ("sparse csr matrices", sparse.csr_matrix(test_function_array_general()))
    #print "sparse csr matrices ="
    #print sA_csr
#    print "----"
#    print "Sparse array bsr general  ="
    sA_bsr = sparse.bsr_matrix(test_function_array_general())
#    print ("sparse bsr matrices", sparse.bsr_matrix(test_function_array_general()))
#    print "sparse bsr matrices ="
#    print sA_bsr
#    print "----"
#    print "Sparse array lil general ="
    sA_lil = sparse.lil_matrix(test_function_array_general())
#    print ("sparse lil matrices", sparse.lil_matrix(test_function_array_general()))
#    print "sparse lil matrices ="
#    print sA_lil
#    print "----"
#    print "Sparse array dok general ="
    sA_dok = sparse.dok_matrix(test_function_array_general())
#    print ("sparse dok matrices", sparse.dok_matrix(test_function_array_general()))
#    print "sparse dok matrices ="
#    print sA_dok
#    print "----"
#    print "Sparse array coo general ="
    sA_coo = sparse.coo_matrix(test_function_array_general())
#    print ("sparse coo matrices", sparse.coo_matrix(test_function_array_general()))
#    print "sparse coo matrices ="
#    print sA_coo
#    print "----"
#    print "Sparse array dia general ="
    sA_dia = sparse.dia_matrix(test_function_array_general())
#    print ("sparse dia matrices", sparse.dia_matrix(test_function_array_general()))
#    print "sparse dia matrices ="
#    print sA_dia


#print "----------------------------------------------------------------------"


 ##############################################################
 # Call the sparse matrices
 # Create a lazy array from sparse matrices
 ##############################################################


Array_csc_matrices = sparse_csc_matrices().toarray()
#print "Array csc matrices ="
#print Array_csc_matrices

Array_csr_matrices = sparse_csr_matrices().toarray()
#print "Array csr matrices ="
#print Array_csr_matrices

Array_bsr_matrices = sparse_bsr_matrices().toarray()
#print "Array bsr matrices ="
#print Array_bsr_matrices

Array_lil_matrices = sparse_lil_matrices().toarray()
#print "Array lil matrices ="
#print Array_lil_matrices

Array_dok_matrices = sparse_dok_matrices().toarray()
#print "Array dok matrices ="
#print Array_dok_matrices

Array_coo_matrices = sparse_coo_matrices().toarray()
#print "Array coo matrices ="
#print Array_coo_matrices

Array_dia_matrices = sparse_dia_matrices().toarray()
#print "Array dia matrices ="
#print Array_dia_matrices