File: test_lazyarray.py

package info (click to toggle)
lazyarray 0.5.2-3
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 228 kB
  • sloc: python: 1,251; makefile: 109
file content (857 lines) | stat: -rw-r--r-- 29,338 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
# encoding: utf-8
"""
Unit tests for ``larray`` class

Copyright Andrew P. Davison, Joël Chavas, Elodie Legouée (CNRS) and Ankur Sinha (UCL), 2012-2022
"""

from lazyarray import larray, VectorizedIterable, sqrt, partial_shape
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
import operator
from copy import deepcopy
import pytest
from scipy.sparse import bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dia_matrix, dok_matrix, lil_matrix



class MockRNG(VectorizedIterable):

    def __init__(self, start, delta):
        self.start = start
        self.delta = delta

    def next(self, n):
        s = self.start
        self.start += n * self.delta
        return s + self.delta * np.arange(n)


# test larray
def test_create_with_int():
    A = larray(3, shape=(5,))
    assert A.shape == (5,)
    assert A.evaluate(simplify=True) == 3


def test_create_with_int_and_dtype():
    A = larray(3, shape=(5,), dtype=float)
    assert A.shape == (5,)
    assert A.evaluate(simplify=True) == 3


def test_create_with_float():
    A = larray(3.0, shape=(5,))
    assert A.shape == (5,)
    assert A.evaluate(simplify=True) == 3.0


def test_create_with_list():
    A = larray([1, 2, 3], shape=(3,))
    assert A.shape == (3,)
    assert_array_equal(A.evaluate(), np.array([1, 2, 3]))


def test_create_with_array():
    A = larray(np.array([1, 2, 3]), shape=(3,))
    assert A.shape == (3,)
    assert_array_equal(A.evaluate(), np.array([1, 2, 3]))


def test_create_with_array_and_dtype():
    A = larray(np.array([1, 2, 3]), shape=(3,), dtype=int)
    assert A.shape == (3,)
    assert_array_equal(A.evaluate(), np.array([1, 2, 3]))


def test_create_with_generator():
    def plusone():
        i = 0
        while True:
            yield i
            i += 1
    A = larray(plusone(), shape=(5, 11))
    assert_array_equal(A.evaluate(),
                       np.arange(55).reshape((5, 11)))


def test_create_with_function1D():
    A = larray(lambda i: 99 - i, shape=(3,))
    assert_array_equal(A.evaluate(),
                       np.array([99, 98, 97]))


def test_create_with_function1D_and_dtype():
    A = larray(lambda i: 99 - i, shape=(3,), dtype=float)
    assert_array_equal(A.evaluate(),
                       np.array([99.0, 98.0, 97.0]))


def test_create_with_function2D():
    A = larray(lambda i, j: 3 * j - 2 * i, shape=(2, 3))
    assert_array_equal(A.evaluate(),
                       np.array([[0, 3, 6],
                                    [-2, 1, 4]]))


def test_create_inconsistent():
    pytest.raises(ValueError, larray, [1, 2, 3], shape=4)


def test_create_with_string():
    pytest.raises(TypeError, larray, "123", shape=3)


def test_create_with_larray():
    A = 3 + larray(lambda i: 99 - i, shape=(3,))
    B = larray(A, shape=(3,), dtype=int)
    assert_array_equal(B.evaluate(),
                       np.array([102, 101, 100]))


## For sparse matrices
def test_create_with_sparse_array():
    row = np.array([0, 2, 2, 0, 1, 2])
    col = np.array([0, 0, 1, 2, 2, 2])
    data = np.array([1, 2, 3, 4, 5, 6])
    bsr = larray(bsr_matrix((data, (row, col)), shape=(3, 3))) # For bsr_matrix
    coo = larray(coo_matrix((data, (row, col)), shape=(3, 3))) # For coo_matrix
    csc = larray(csc_matrix((data, (row, col)), shape=(3, 3))) # For csc_matrix
    csr = larray(csr_matrix((data, (row, col)), shape=(3, 3))) # For csr_matrix
    data_dia = np.array([[1, 2, 3, 4]]).repeat(3, axis=0) # For dia_matrix
    offsets_dia = np.array([0, -1, 2]) # For dia_matrix
    dia = larray(dia_matrix((data_dia, offsets_dia), shape=(4, 4))) # For dia_matrix
    dok = larray(dok_matrix(((row, col)), shape=(3, 3))) # For dok_matrix
    lil = larray(lil_matrix(data, shape=(3, 3))) # For lil_matrix
    assert bsr.shape == (3, 3)
    assert coo.shape == (3, 3)
    assert csc.shape == (3, 3)
    assert csr.shape == (3, 3)
    assert dia.shape == (4, 4)
    assert dok.shape == (2, 6)
    assert lil.shape == (1, 6)

    def test_evaluate_with_sparse_array():
        assert_array_equal(bsr.evaluate(), bsr_matrix((data, (row, col))).toarray()) # For bsr_matrix
        assert_array_equal(coo.evaluate(), coo_matrix((data, (row, col))).toarray()) # For coo_matrix
        assert_array_equal(csc.evaluate(), csc_matrix((data, (row, col))).toarray()) # For csc_matrix
        assert_array_equal(csr.evaluate(), csr_matrix((data, (row, col))).toarray()) # For csr_matrix
        assert_array_equal(dia.evaluate(), dia_matrix((data_dia, (row, col))).toarray()) # For dia_matrix
        assert_array_equal(dok.evaluate(), dok_matrix((data, (row, col))).toarray()) # For dok_matrix
        assert_array_equal(lil.evaluate(), lil_matrix((data, (row, col))).toarray()) # For lil_matrix

    def test_multiple_operations_with_sparse_array():
        # For bsr_matrix
        bsr0 = bsr /100.0
        bsr1 = 0.2 + bsr0
        assert_array_almost_equal(bsr0.evaluate(), np.array([[0.01, 0., 0.04], [0., 0., 0.05], [0.02, 0.03, 0.06]]))
        assert_array_almost_equal(bsr0.evaluate(), np.array([[0.21, 0.2, 0.24], [0.2, 0.2, 0.25], [0.22, 0.23, 0.26]]))
        # For coo_matrix
        coo0 = coo /100.0
        coo1 = 0.2 + coo0
        assert_array_almost_equal(coo0.evaluate(), np.array([[0.01, 0., 0.04], [0., 0., 0.05], [0.02, 0.03, 0.06]]))
        assert_array_almost_equal(coo0.evaluate(), np.array([[0.21, 0.2, 0.24], [0.2, 0.2, 0.25], [0.22, 0.23, 0.26]]))
        # For csc_matrix
        csc0 = csc /100.0
        csc1 = 0.2 + csc0
        assert_array_almost_equal(csc0.evaluate(), np.array([[0.01, 0., 0.04], [0., 0., 0.05], [0.02, 0.03, 0.06]]))
        assert_array_almost_equal(csc0.evaluate(), np.array([[0.21, 0.2, 0.24], [0.2, 0.2, 0.25], [0.22, 0.23, 0.26]]))
        # For csr_matrix
        csr0 = csr /100.0
        csr1 = 0.2 + csr0
        assert_array_almost_equal(csc0.evaluate(), np.array([[0.01, 0., 0.04], [0., 0., 0.05], [0.02, 0.03, 0.06]]))
        assert_array_almost_equal(csc0.evaluate(), np.array([[0.21, 0.2, 0.24], [0.2, 0.2, 0.25], [0.22, 0.23, 0.26]]))
        # For dia_matrix
        dia0 = dia /100.0
        dia1 = 0.2 + dia0
        assert_array_almost_equal(dia0.evaluate(), np.array([[0.01, 0.02, 0.03, 0.04]]))
        assert_array_almost_equal(dia1.evaluate(), np.array([[0.21, 0.22, 0.23, 0.24]]))
         # For dok_matrix
        dok0 = dok /100.0
        dok1 = 0.2 + dok0
        assert_array_almost_equal(dok0.evaluate(), np.array([[0., 0.02, 0.02, 0., 0.01, 0.02], [0., 0., 0.01, 0.02, 0.02, 0.02]]))
        assert_array_almost_equal(dok1.evaluate(), np.array([[0.2, 0.22, 0.22, 0.2, 0.21, 0.22], [0.2, 0.2, 0.21, 0.22, 0.22, 0.22]]))
         # For lil_matrix
        lil0 = lil /100.0
        lil1 = 0.2 + lil0
        assert_array_almost_equal(lil0.evaluate(), np.array([[0.01, 0.02, 0.03, 0.04, 0.05, 0.06]]))
        assert_array_almost_equal(lil1.evaluate(), np.array([[0.21, 0.22, 0.23, 0.24, 0.25, 0.26]]))


    def test_getitem_from_2D_sparse_array():
        pytest.raises(IndexError, bsr.__getitem__, (3, 0))
        pytest.raises(IndexError, coo.__getitem__, (3, 0))
        pytest.raises(IndexError, csc.__getitem__, (3, 0))
        pytest.raises(IndexError, csr.__getitem__, (3, 0))
        pytest.raises(IndexError, dia.__getitem__, (3, 0))
        pytest.raises(IndexError, dok.__getitem__, (3, 0))
        pytest.raises(IndexError, lil.__getitem__, (3, 0))


# def test_columnwise_iteration_with_flat_array():
# m = larray(5, shape=(4,3)) # 4 rows, 3 columns
#    cols = [col for col in m.by_column()]
#    assert cols == [5, 5, 5]
#
# def test_columnwise_iteration_with_structured_array():
#    input = np.arange(12).reshape((4,3))
# m = larray(input, shape=(4,3)) # 4 rows, 3 columns
#    cols = [col for col in m.by_column()]
#    assert_array_equal(cols[0], input[:,0])
#    assert_array_equal(cols[2], input[:,2])
#
# def test_columnwise_iteration_with_function():
#    input = lambda i,j: 2*i + j
#    m = larray(input, shape=(4,3))
#    cols = [col for col in m.by_column()]
#    assert_array_equal(cols[0], np.array([0, 2, 4, 6]))
#    assert_array_equal(cols[1], np.array([1, 3, 5, 7]))
#    assert_array_equal(cols[2], np.array([2, 4, 6, 8]))
#
# def test_columnwise_iteration_with_flat_array_and_mask():
# m = larray(5, shape=(4,3)) # 4 rows, 3 columns
#    mask = np.array([True, False, True])
#    cols = [col for col in m.by_column(mask=mask)]
#    assert cols == [5, 5]
#
# def test_columnwise_iteration_with_structured_array_and_mask():
#    input = np.arange(12).reshape((4,3))
# m = larray(input, shape=(4,3)) # 4 rows, 3 columns
#    mask = np.array([False, True, True])
#    cols = [col for col in m.by_column(mask=mask)]
#    assert_array_equal(cols[0], input[:,1])
#    assert_array_equal(cols[1], input[:,2])


def test_size_related_properties():
    m1 = larray(1, shape=(9, 7))
    m2 = larray(1, shape=(13,))
    m3 = larray(1)
    assert m1.nrows == 9
    assert m1.ncols == 7
    assert m1.size == 63
    assert m2.nrows == 13
    assert m2.ncols == 1
    assert m2.size == 13
    pytest.raises(ValueError, lambda: m3.nrows)
    pytest.raises(ValueError, lambda: m3.ncols)
    pytest.raises(ValueError, lambda: m3.size)


def test_evaluate_with_flat_array():
    m = larray(5, shape=(4, 3))
    assert_array_equal(m.evaluate(), 5 * np.ones((4, 3)))


def test_evaluate_with_structured_array():
    input = np.arange(12).reshape((4, 3))
    m = larray(input, shape=(4, 3))
    assert_array_equal(m.evaluate(), input)


def test_evaluate_with_functional_array():
    input = lambda i, j: 2 * i + j
    m = larray(input, shape=(4, 3))
    assert_array_equal(m.evaluate(),
                       np.array([[0, 1, 2],
                                    [2, 3, 4],
                                    [4, 5, 6],
                                    [6, 7, 8]]))


def test_evaluate_with_vectorized_iterable():
    input = MockRNG(0, 1)
    m = larray(input, shape=(7, 3))
    assert_array_equal(m.evaluate(),
                       np.arange(21).reshape((7, 3)))


def test_evaluate_twice_with_vectorized_iterable():
    input = MockRNG(0, 1)
    m1 = larray(input, shape=(7, 3)) + 3
    m2 = larray(input, shape=(7, 3)) + 17
    assert_array_equal(m1.evaluate(),
                       np.arange(3, 24).reshape((7, 3)))
    assert_array_equal(m2.evaluate(),
                       np.arange(38, 59).reshape((7, 3)))


def test_evaluate_structured_array_size_1_simplify():
    m = larray([5.0], shape=(1,))
    assert m.evaluate(simplify=True) == 5.0
    n = larray([2.0], shape=(1,))
    assert (m/n).evaluate(simplify=True) == 2.5


def test_iadd_with_flat_array():
    m = larray(5, shape=(4, 3))
    m += 2
    assert_array_equal(m.evaluate(), 7 * np.ones((4, 3)))
    assert m.base_value == 5
    assert m.evaluate(simplify=True) == 7


def test_add_with_flat_array():
    m0 = larray(5, shape=(4, 3))
    m1 = m0 + 2
    assert m1.evaluate(simplify=True) == 7
    assert m0.evaluate(simplify=True) == 5


def test_lt_with_flat_array():
    m0 = larray(5, shape=(4, 3))
    m1 = m0 < 10
    assert m1.evaluate(simplify=True) is True
    assert m0.evaluate(simplify=True) == 5


def test_lt_with_structured_array():
    input = np.arange(12).reshape((4, 3))
    m0 = larray(input, shape=(4, 3))
    m1 = m0 < 5
    assert_array_equal(m1.evaluate(simplify=True), input < 5)


def test_structured_array_lt_array():
    input = np.arange(12).reshape((4, 3))
    m0 = larray(input, shape=(4, 3))
    comparison = 5 * np.ones((4, 3))
    m1 = m0 < comparison
    assert_array_equal(m1.evaluate(simplify=True), input < comparison)


def test_rsub_with_structured_array():
    m = larray(np.arange(12).reshape((4, 3)))
    assert_array_equal((11 - m).evaluate(),
                       np.arange(11, -1, -1).reshape((4, 3)))


def test_inplace_mul_with_structured_array():
    m = larray((3 * x for x in range(4)), shape=(4,))
    m *= 7
    assert_array_equal(m.evaluate(),
                       np.arange(0, 84, 21))


def test_abs_with_structured_array():
    m = larray(lambda i, j: i - j, shape=(3, 4))
    assert_array_equal(abs(m).evaluate(),
                       np.array([[0, 1, 2, 3],
                                    [1, 0, 1, 2],
                                    [2, 1, 0, 1]]))


def test_multiple_operations_with_structured_array():
    input = np.arange(12).reshape((4, 3))
    m0 = larray(input, shape=(4, 3))
    m1 = (m0 + 2) < 5
    m2 = (m0 < 5) + 2
    assert_array_equal(m1.evaluate(simplify=True), (input + 2) < 5)
    assert_array_equal(m2.evaluate(simplify=True), (input < 5) + 2)
    assert_array_equal(m0.evaluate(simplify=True), input)


def test_multiple_operations_with_functional_array():
    m = larray(lambda i: i, shape=(5,))
    m0 = m / 100.0
    m1 = 0.2 + m0
    assert_array_almost_equal(m0.evaluate(), np.array([0.0, 0.01, 0.02, 0.03, 0.04]), decimal=12)
    assert_array_almost_equal(m1.evaluate(), np.array([0.20, 0.21, 0.22, 0.23, 0.24]), decimal=12)
    assert m1[0] == 0.2


def test_operations_combining_constant_and_structured_arrays():
    m0 = larray(10, shape=(5,))
    m1 = larray(np.arange(5))
    m2 = m0 + m1
    assert_array_almost_equal(m2.evaluate(), np.arange(10, 15))


def test_apply_function_to_constant_array():
    f = lambda m: 2 * m + 3
    m0 = larray(5, shape=(4, 3))
    m1 = f(m0)
    assert isinstance(m1, larray)
    assert m1.evaluate(simplify=True) == 13
    # the following tests the internals, not the behaviour
    # it is just to check I understand what's going on
    assert m1.operations == [(operator.mul, 2), (operator.add, 3)]


def test_apply_function_to_structured_array():
    f = lambda m: 2 * m + 3
    input = np.arange(12).reshape((4, 3))
    m0 = larray(input, shape=(4, 3))
    m1 = f(m0)
    assert isinstance(m1, larray)
    assert_array_equal(m1.evaluate(simplify=True), input * 2 + 3)


def test_apply_function_to_functional_array():
    input = lambda i, j: 2 * i + j
    m0 = larray(input, shape=(4, 3))
    f = lambda m: 2 * m + 3
    m1 = f(m0)
    assert_array_equal(m1.evaluate(),
                       np.array([[3, 5, 7],
                                    [7, 9, 11],
                                    [11, 13, 15],
                                    [15, 17, 19]]))


def test_add_two_constant_arrays():
    m0 = larray(5, shape=(4, 3))
    m1 = larray(7, shape=(4, 3))
    m2 = m0 + m1
    assert m2.evaluate(simplify=True) == 12
    # the following tests the internals, not the behaviour
    # it is just to check I understand what's going on
    assert m2.base_value == m0.base_value
    assert m2.operations == [(operator.add, m1)]


def test_add_incommensurate_arrays():
    m0 = larray(5, shape=(4, 3))
    m1 = larray(7, shape=(5, 3))
    pytest.raises(ValueError, m0.__add__, m1)


def test_getitem_from_2D_constant_array():
    m = larray(3, shape=(4, 3))
    assert m[0, 0] == m[3, 2] == m[-1, 2] == m[-4, 2] == m[2, -3] == 3
    pytest.raises(IndexError, m.__getitem__, (4, 0))
    pytest.raises(IndexError, m.__getitem__, (2, -4))


def test_getitem_from_1D_constant_array():
    m = larray(3, shape=(43,))
    assert m[0] == m[42] == 3


def test_getitem__with_slice_from_constant_array():
    m = larray(3, shape=(4, 3))
    assert_array_equal(m[:3, 0],
                       np.array([3, 3, 3]))


def test_getitem__with_thinslice_from_constant_array():
    m = larray(3, shape=(4, 3))
    assert m[2:3, 0:1] == 3


def test_getitem__with_mask_from_constant_array():
    m = larray(3, shape=(4, 3))
    assert_array_equal(m[1, (0, 2)],
                       np.array([3, 3]))


def test_getitem_with_numpy_integers_from_2D_constant_array():
    if not hasattr(np, "int64"):
        pytest.skip("test requires a 64-bit system")
    m = larray(3, shape=(4, 3))
    assert m[np.int64(0), np.int32(0)] == 3


def test_getslice_from_constant_array():
    m = larray(3, shape=(4, 3))
    assert_array_equal(m[:2],
                       np.array([[3, 3, 3],
                                    [3, 3, 3]]))


def test_getslice_past_bounds_from_constant_array():
    m = larray(3, shape=(5,))
    assert_array_equal(m[2:10],
                       np.array([3, 3, 3]))


def test_getitem_from_structured_array():
    m = larray(3 * np.ones((4, 3)), shape=(4, 3))
    assert m[0, 0] == m[3, 2] == m[-1, 2] == m[-4, 2] == m[2, -3] == 3
    pytest.raises(IndexError, m.__getitem__, (4, 0))
    pytest.raises(IndexError, m.__getitem__, (2, -4))


def test_getitem_from_2D_functional_array():
    m = larray(lambda i, j: 2 * i + j, shape=(6, 5))
    assert m[5, 4] == 14


def test_getitem_from_1D_functional_array():
    m = larray(lambda i: i ** 3, shape=(6,))
    assert m[5] == 125


def test_getitem_from_3D_functional_array():
    m = larray(lambda i, j, k: i + j + k, shape=(2, 3, 4))
    pytest.raises(NotImplementedError, m.__getitem__, (0, 1, 2))


def test_getitem_from_vectorized_iterable():
    input = MockRNG(0, 1)
    m = larray(input, shape=(7,))
    m3 = m[3]
    assert isinstance(m3, (int, np.integer))
    assert m3 == 0
    assert m[0] == 1


def test_getitem_with_slice_from_2D_functional_array():
    m = larray(lambda i, j: 2 * i + j, shape=(6, 5))
    assert_array_equal(m[2:5, 3:],
                       np.array([[7, 8],
                                    [9, 10],
                                    [11, 12]]))


def test_getitem_with_slice_from_2D_functional_array_2():
    def test_function(i, j):
        return i * i + 2 * i * j + 3
    m = larray(test_function, shape=(3, 15))
    assert_array_equal(m[:, 3:14:3],
                       np.fromfunction(test_function, shape=(3, 15))[:, 3:14:3])


def test_getitem_with_mask_from_2D_functional_array():
    a = np.arange(30).reshape((6, 5))
    m = larray(lambda i, j: 5 * i + j, shape=(6, 5))
    assert_array_equal(a[[2, 3], [3, 4]],
                       np.array([13, 19]))
    assert_array_equal(m[[2, 3], [3, 4]],
                       np.array([13, 19]))


def test_getitem_with_mask_from_1D_functional_array():
    m = larray(lambda i: np.sqrt(i), shape=(10,))
    assert_array_equal(m[[0, 1, 4, 9]],
                       np.array([0, 1, 2, 3]))


def test_getitem_with_boolean_mask_from_1D_functional_array():
    m = larray(lambda i: np.sqrt(i), shape=(10,))
    assert_array_equal(m[np.array([1, 1, 0, 0, 1, 0, 0, 0, 0, 1], dtype=bool)],
                       np.array([0, 1, 2, 3]))


def test_getslice_from_2D_functional_array():
    m = larray(lambda i, j: 2 * i + j, shape=(6, 5))
    assert_array_equal(m[1:3],
                       np.array([[2, 3, 4, 5, 6],
                                    [4, 5, 6, 7, 8]]))


def test_getitem_from_iterator_array():
    m = larray(iter([1, 2, 3]), shape=(3,))
    pytest.raises(NotImplementedError, m.__getitem__, 2)


def test_getitem_from_array_with_operations():
    a1 = np.array([[1, 3, 5], [7, 9, 11]])
    m1 = larray(a1)
    f = lambda i, j: np.sqrt(i * i + j * j)
    a2 = np.fromfunction(f, shape=(2, 3))
    m2 = larray(f, shape=(2, 3))
    a3 = 3 * a1 + a2
    m3 = 3 * m1 + m2
    assert_array_equal(a3[:, (0, 2)],
                       m3[:, (0, 2)])


def test_evaluate_with_invalid_base_value():
    m = larray(range(5))
    m.base_value = "foo"
    pytest.raises(ValueError, m.evaluate)


def test_partially_evaluate_with_invalid_base_value():
    m = larray(range(5))
    m.base_value = "foo"
    pytest.raises(ValueError, m._partially_evaluate, 3)


def test_check_bounds_with_invalid_address():
    m = larray([[1, 3, 5], [7, 9, 11]])
    pytest.raises(TypeError, m.check_bounds, (object(), 1))


def test_check_bounds_with_invalid_address2():
    m = larray([[1, 3, 5], [7, 9, 11]])
    pytest.raises(ValueError, m.check_bounds, ([], 1))


def test_partially_evaluate_constant_array_with_one_element():
    m = larray(3, shape=(1,))
    a = 3 * np.ones((1,))
    m1 = larray(3, shape=(1, 1))
    a1 = 3 * np.ones((1, 1))
    m2 = larray(3, shape=(1, 1, 1))
    a2 = 3 * np.ones((1, 1, 1))
    assert a[0] == m[0]
    assert a.shape == m.shape
    assert a[:].shape == m[:].shape
    assert a == m.evaluate()
    assert a1.shape == m1.shape
    assert a1[0, :].shape == m1[0, :].shape
    assert a1[:].shape == m1[:].shape
    assert a1 == m1.evaluate()
    assert a2.shape == m2.shape
    assert a2[:, 0, :].shape == m2[:, 0, :].shape
    assert a2[:].shape == m2[:].shape
    assert a2 == m2.evaluate()


def test_partially_evaluate_constant_array_with_boolean_index():
    m = larray(3, shape=(4, 5))
    a = 3 * np.ones((4, 5))
    addr_bool = np.array([True, True, False, False, True])
    addr_int = np.array([0, 1, 4])
    assert a[::2, addr_bool].shape == a[::2, addr_int].shape
    assert a[::2, addr_int].shape == m[::2, addr_int].shape
    assert a[::2, addr_bool].shape == m[::2, addr_bool].shape


def test_partially_evaluate_constant_array_with_all_boolean_indices_false():
    m = larray(3, shape=(3,))
    a = 3 * np.ones((3,))
    addr_bool = np.array([False, False, False])
    assert a[addr_bool].shape == m[addr_bool].shape


def test_partially_evaluate_constant_array_with_only_one_boolean_indice_true():
    m = larray(3, shape=(3,))
    a = 3 * np.ones((3,))
    addr_bool = np.array([False, True, False])
    assert a[addr_bool].shape == m[addr_bool].shape
    assert m[addr_bool][0] == a[0]


def test_partially_evaluate_constant_array_with_boolean_indice_as_random_valid_ndarray():
    m = larray(3, shape=(3,))
    a = 3 * np.ones((3,))
    addr_bool = np.random.rand(3) > 0.5
    while not addr_bool.any():
        # random array, but not [False, False, False]
        addr_bool = np.random.rand(3) > 0.5
    assert a[addr_bool].shape == m[addr_bool].shape
    assert m[addr_bool][0] == a[addr_bool][0]


def test_partially_evaluate_constant_array_size_one_with_boolean_index_true():
    m = larray(3, shape=(1,))
    a = np.array([3])
    addr_bool = np.array([True])
    m1 = larray(3, shape=(1, 1))
    a1 = 3 * np.ones((1, 1))
    addr_bool1 = np.array([[True]], ndmin=2)
    assert m[addr_bool][0] == a[0]
    assert m[addr_bool] == a[addr_bool]
    assert m[addr_bool].shape == a[addr_bool].shape
    assert m1[addr_bool1][0] == a1[addr_bool1][0]
    assert m1[addr_bool1].shape == a1[addr_bool1].shape


def test_partially_evaluate_constant_array_size_two_with_boolean_index_true():
    m2 = larray(3, shape=(1, 2))
    a2 = 3 * np.ones((1, 2))
    addr_bool2 = np.ones((1, 2), dtype=bool)
    assert m2[addr_bool2][0] == a2[addr_bool2][0]
    assert m2[addr_bool2].shape == a2[addr_bool2].shape


def test_partially_evaluate_constant_array_size_one_with_boolean_index_false():
    m = larray(3, shape=(1,))
    m1 = larray(3, shape=(1, 1))
    a = np.array([3])
    a1 = np.array([[3]], ndmin=2)
    addr_bool = np.array([False])
    addr_bool1 = np.array([[False]], ndmin=2)
    addr_bool2 = np.array([False])
    assert m[addr_bool].shape == a[addr_bool].shape
    assert m1[addr_bool1].shape == a1[addr_bool1].shape


def test_partially_evaluate_constant_array_size_with_empty_boolean_index():
    m = larray(3, shape=(1,))
    a = np.array([3])
    addr_bool = np.array([], dtype='bool')
    assert m[addr_bool].shape == a[addr_bool].shape
    assert m[addr_bool].shape == (0,)


def test_partially_evaluate_functional_array_with_boolean_index():
    m = larray(lambda i, j: 5 * i + j, shape=(4, 5))
    a = np.arange(20.0).reshape((4, 5))
    addr_bool = np.array([True, True, False, False, True])
    addr_int = np.array([0, 1, 4])
    assert a[::2, addr_bool].shape == a[::2, addr_int].shape
    assert a[::2, addr_int].shape == m[::2, addr_int].shape
    assert a[::2, addr_bool].shape == m[::2, addr_bool].shape


def test_getslice_with_vectorized_iterable():
    input = MockRNG(0, 1)
    m = larray(input, shape=(7, 3))
    assert_array_equal(m[::2, (0, 2)],
                       np.arange(8).reshape((4, 2)))


def test_equality_with_lazyarray():
    m1 = larray(42.0, shape=(4, 5)) / 23.0 + 2.0
    m2 = larray(42.0, shape=(4, 5)) / 23.0 + 2.0
    assert m1 == m2


def test_equality_with_number():
    m1 = larray(42.0, shape=(4, 5))
    m2 = larray([42, 42, 42])
    m3 = larray([42, 42, 43])
    m4 = larray(42.0, shape=(4, 5)) + 2
    assert m1 == 42.0
    assert m2 == 42
    assert m3 != 42
    pytest.raises(Exception, m4.__eq__, 44.0)


def test_equality_with_array():
    m1 = larray(42.0, shape=(4, 5))
    target = 42.0 * np.ones((4, 5))
    pytest.raises(TypeError, m1.__eq__, target)


def test_deepcopy():
    m1 = 3 * larray(lambda i, j: 5 * i + j, shape=(4, 5)) + 2
    m2 = deepcopy(m1)
    m1.shape = (3, 4)
    m3 = deepcopy(m1)
    assert m1.shape == m3.shape == (3, 4)
    assert m2.shape == (4, 5)
    assert_array_equal(m1.evaluate(), m3.evaluate())


def test_deepcopy_with_ufunc():
    m1 = sqrt(larray([x ** 2 for x in range(5)]))
    m2 = deepcopy(m1)
    m1.base_value[0] = 49
    assert_array_equal(m1.evaluate(), np.array([7, 1, 2, 3, 4]))
    assert_array_equal(m2.evaluate(), np.array([0, 1, 2, 3, 4]))


def test_set_shape():
    m = larray(42) + larray(lambda i: 3 * i)
    assert m.shape is None
    m.shape = (5,)
    assert_array_equal(m.evaluate(), np.array([42, 45, 48, 51, 54]))


def test_call():
    A = larray(np.array([1, 2, 3]), shape=(3,)) - 1
    B = 0.5 * larray(lambda i: 2 * i, shape=(3,))
    C = B(A)
    assert_array_equal(C.evaluate(), np.array([0, 1, 2]))
    assert_array_equal(A.evaluate(), np.array([0, 1, 2]))  # A should be unchanged


def test_call2():
    positions = np.array(
        [[0.,  2.,  4.,  6.,  8.],
         [0.,  0.,  0.,  0.,  0.],
         [0.,  0.,  0.,  0.,  0.]])

    def position_generator(i):
        return positions.T[i]

    def distances(A, B):
        d = A - B
        d **= 2
        d = np.sum(d, axis=-1)
        np.sqrt(d, d)
        return d

    def distance_generator(f, g):
        def distance_map(i, j):
            return distances(f(i), g(j))
        return distance_map
    distance_map = larray(distance_generator(position_generator, position_generator),
                          shape=(4, 5))
    f_delay = 1000 * larray(lambda d: 0.1 * (1 + d), shape=(4, 5))
    assert_array_almost_equal(
        f_delay(distance_map).evaluate(),
        np.array([[100, 300, 500, 700, 900],
                     [300, 100, 300, 500, 700],
                     [500, 300, 100, 300, 500],
                     [700, 500, 300, 100, 300]], dtype=float),
        decimal=12)
    # repeat, should be idempotent
    assert_array_almost_equal(
        f_delay(distance_map).evaluate(),
        np.array([[100, 300, 500, 700, 900],
                     [300, 100, 300, 500, 700],
                     [500, 300, 100, 300, 500],
                     [700, 500, 300, 100, 300]], dtype=float),
        decimal=12)


def test__issue4():
    # In order to avoid the errors associated with version changes of numpy, mask1 and mask2 no longer contain boolean values ​​but integer values
    a = np.arange(12).reshape((4, 3))
    b = larray(np.arange(12).reshape((4, 3)))
    mask1 = (slice(None), int(True))
    mask2 = (slice(None), np.array([int(True)]))
    assert b[mask1].shape == partial_shape(mask1, b.shape) == a[mask1].shape
    assert b[mask2].shape == partial_shape(mask2, b.shape) == a[mask2].shape


def test__issue3():
    a = np.arange(12).reshape((4, 3))
    b = larray(a)
    c = larray(lambda i, j: 3*i + j, shape=(4, 3))
    assert_array_equal(a[(1, 3), :][:, (0, 2)], b[(1, 3), :][:, (0, 2)])
    assert_array_equal(b[(1, 3), :][:, (0, 2)], c[(1, 3), :][:, (0, 2)])
    assert_array_equal(a[(1, 3), (0, 2)], b[(1, 3), (0, 2)])
    assert_array_equal(b[(1, 3), (0, 2)], c[(1, 3), (0, 2)])


def test_partial_shape():
    a = np.arange(12).reshape((4, 3))
    test_cases = [
        (slice(None), (4, 3)),
        ((slice(None), slice(None)), (4, 3)),
        (slice(1, None, 2), (2, 3)),
        (1, (3,)),
        ((1, slice(None)), (3,)),
        ([0, 2, 3], (3, 3)),
        (np.array([0, 2, 3]), (3, 3)),
        ((np.array([0, 2, 3]), slice(None)), (3, 3)),
        (np.array([True, False, True, True]), (3, 3)),
        #(np.array([True, False]), (1, 3)),  # not valid with NumPy 1.13
        (np.array([[True, False, False], [False, False, False], [True, True, False], [False, True, False]]), (4,)),
        #(np.array([[True, False, False], [False, False, False], [True, True, False]]), (3,)),  # not valid with NumPy 1.13
        ((3, 1), tuple()),
        ((slice(None), 1), (4,)),
        ((slice(None), slice(1, None, 3)), (4, 1)),
        ((np.array([0, 3]), 2), (2,)),
        ((np.array([0, 3]), np.array([1, 2])), (2,)),
        ((slice(None), np.array([2])), (4, 1)),
        (((1, 3), (0, 2)), (2,)),
        (np.array([], bool), (0, 3)),
    ]
    for mask, expected_shape in test_cases:
        assert partial_shape(mask, a.shape) == a[mask].shape
        assert partial_shape(mask, a.shape) == expected_shape
    b = np.arange(5)
    test_cases = [
        (np.arange(5), (5,))
    ]
    for mask, expected_shape in test_cases:
        assert partial_shape(mask, b.shape) == b[mask].shape
        assert partial_shape(mask, b.shape) == expected_shape

def test_is_homogeneous():
    m0 = larray(10, shape=(5,))
    m1 = larray(np.arange(1, 6))
    m2 = m0 + m1
    m3 = 9 + m0 / m1
    assert m0.is_homogeneous
    assert not m1.is_homogeneous
    assert not m2.is_homogeneous
    assert not m3.is_homogeneous