File: lbfgsb.f

package info (click to toggle)
lbfgsb 3.0+dfsg.3-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 1,096 kB
  • sloc: fortran: 1,978; f90: 342; sh: 61; makefile: 60
file content (3953 lines) | stat: -rw-r--r-- 130,753 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
c                                                                                      
c  L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License”        
c  or “3-clause license”)                                                              
c  Please read attached file License.txt                                               
c                                        
c===========   L-BFGS-B (version 3.0.  April 25, 2011  ===================
c
c     This is a modified version of L-BFGS-B. Minor changes in the updated 
c     code appear preceded by a line comment as follows 
c  
c     c-jlm-jn 
c
c     Major changes are described in the accompanying paper:
c
c         Jorge Nocedal and Jose Luis Morales, Remark on "Algorithm 778: 
c         L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained 
c         Optimization"  (2011). To appear in  ACM Transactions on 
c         Mathematical Software,
c
c     The paper describes an improvement and a correction to Algorithm 778. 
c     It is shown that the performance of the algorithm can be improved 
c     significantly by making a relatively simple modication to the subspace 
c     minimization phase. The correction concerns an error caused by the use 
c     of routine dpmeps to estimate machine precision. 
c
c     The total work space **wa** required by the new version is 
c 
c                  2*m*n + 11m*m + 5*n + 8*m 
c
c     the old version required 
c
c                  2*m*n + 12m*m + 4*n + 12*m 
c
c
c            J. Nocedal  Department of Electrical Engineering and
c                        Computer Science.
c                        Northwestern University. Evanston, IL. USA
c
c
c           J.L Morales  Departamento de Matematicas, 
c                        Instituto Tecnologico Autonomo de Mexico
c                        Mexico D.F. Mexico.
c
c                        March  2011    
c                                                 
c============================================================================= 
      subroutine setulb(n, m, x, l, u, nbd, f, g, factr, pgtol, wa, iwa,
     +                 task, iprint, csave, lsave, isave, dsave)
 
      character*60     task, csave
      logical          lsave(4)
      integer          n, m, iprint, 
     +                 nbd(n), iwa(3*n), isave(44)
      double precision f, factr, pgtol, x(n), l(n), u(n), g(n),
c
c-jlm-jn
     +                 wa(2*m*n + 5*n + 11*m*m + 8*m), dsave(29)
 
c     ************
c
c     Subroutine setulb
c
c     This subroutine partitions the working arrays wa and iwa, and 
c       then uses the limited memory BFGS method to solve the bound
c       constrained optimization problem by calling mainlb.
c       (The direct method will be used in the subspace minimization.)
c
c     n is an integer variable.
c       On entry n is the dimension of the problem.
c       On exit n is unchanged.
c
c     m is an integer variable.
c       On entry m is the maximum number of variable metric corrections
c         used to define the limited memory matrix.
c       On exit m is unchanged.
c
c     x is a double precision array of dimension n.
c       On entry x is an approximation to the solution.
c       On exit x is the current approximation.
c
c     l is a double precision array of dimension n.
c       On entry l is the lower bound on x.
c       On exit l is unchanged.
c
c     u is a double precision array of dimension n.
c       On entry u is the upper bound on x.
c       On exit u is unchanged.
c
c     nbd is an integer array of dimension n.
c       On entry nbd represents the type of bounds imposed on the
c         variables, and must be specified as follows:
c         nbd(i)=0 if x(i) is unbounded,
c                1 if x(i) has only a lower bound,
c                2 if x(i) has both lower and upper bounds, and
c                3 if x(i) has only an upper bound.
c       On exit nbd is unchanged.
c
c     f is a double precision variable.
c       On first entry f is unspecified.
c       On final exit f is the value of the function at x.
c
c     g is a double precision array of dimension n.
c       On first entry g is unspecified.
c       On final exit g is the value of the gradient at x.
c
c     factr is a double precision variable.
c       On entry factr >= 0 is specified by the user.  The iteration
c         will stop when
c
c         (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch
c
c         where epsmch is the machine precision, which is automatically
c         generated by the code. Typical values for factr: 1.d+12 for
c         low accuracy; 1.d+7 for moderate accuracy; 1.d+1 for extremely
c         high accuracy.
c       On exit factr is unchanged.
c
c     pgtol is a double precision variable.
c       On entry pgtol >= 0 is specified by the user.  The iteration
c         will stop when
c
c                 max{|proj g_i | i = 1, ..., n} <= pgtol
c
c         where pg_i is the ith component of the projected gradient.   
c       On exit pgtol is unchanged.
c
c     wa is a double precision working array of length 
c       (2mmax + 5)nmax + 12mmax^2 + 12mmax.
c
c     iwa is an integer working array of length 3nmax.
c
c     task is a working string of characters of length 60 indicating
c       the current job when entering and quitting this subroutine.
c
c     iprint is an integer variable that must be set by the user.
c       It controls the frequency and type of output generated:
c        iprint<0    no output is generated;
c        iprint=0    print only one line at the last iteration;
c        0<iprint<99 print also f and |proj g| every iprint iterations;
c        iprint=99   print details of every iteration except n-vectors;
c        iprint=100  print also the changes of active set and final x;
c        iprint>100  print details of every iteration including x and g;
c       When iprint > 0, the file iterate.dat will be created to
c                        summarize the iteration.
c
c     csave is a working string of characters of length 60.
c
c     lsave is a logical working array of dimension 4.
c       On exit with 'task' = NEW_X, the following information is 
c                                                             available:
c         If lsave(1) = .true.  then  the initial X has been replaced by
c                                     its projection in the feasible set;
c         If lsave(2) = .true.  then  the problem is constrained;
c         If lsave(3) = .true.  then  each variable has upper and lower
c                                     bounds;
c
c     isave is an integer working array of dimension 44.
c       On exit with 'task' = NEW_X, the following information is 
c                                                             available:
c         isave(22) = the total number of intervals explored in the 
c                         search of Cauchy points;
c         isave(26) = the total number of skipped BFGS updates before 
c                         the current iteration;
c         isave(30) = the number of current iteration;
c         isave(31) = the total number of BFGS updates prior the current
c                         iteration;
c         isave(33) = the number of intervals explored in the search of
c                         Cauchy point in the current iteration;
c         isave(34) = the total number of function and gradient 
c                         evaluations;
c         isave(36) = the number of function value or gradient
c                                  evaluations in the current iteration;
c         if isave(37) = 0  then the subspace argmin is within the box;
c         if isave(37) = 1  then the subspace argmin is beyond the box;
c         isave(38) = the number of free variables in the current
c                         iteration;
c         isave(39) = the number of active constraints in the current
c                         iteration;
c         n + 1 - isave(40) = the number of variables leaving the set of
c                           active constraints in the current iteration;
c         isave(41) = the number of variables entering the set of active
c                         constraints in the current iteration.
c
c     dsave is a double precision working array of dimension 29.
c       On exit with 'task' = NEW_X, the following information is
c                                                             available:
c         dsave(1) = current 'theta' in the BFGS matrix;
c         dsave(2) = f(x) in the previous iteration;
c         dsave(3) = factr*epsmch;
c         dsave(4) = 2-norm of the line search direction vector;
c         dsave(5) = the machine precision epsmch generated by the code;
c         dsave(7) = the accumulated time spent on searching for
c                                                         Cauchy points;
c         dsave(8) = the accumulated time spent on
c                                                 subspace minimization;
c         dsave(9) = the accumulated time spent on line search;
c         dsave(11) = the slope of the line search function at
c                                  the current point of line search;
c         dsave(12) = the maximum relative step length imposed in
c                                                           line search;
c         dsave(13) = the infinity norm of the projected gradient;
c         dsave(14) = the relative step length in the line search;
c         dsave(15) = the slope of the line search function at
c                                 the starting point of the line search;
c         dsave(16) = the square of the 2-norm of the line search
c                                                      direction vector.
c
c     Subprograms called:
c
c       L-BFGS-B Library ... mainlb.    
c
c
c     References:
c
c       [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c       memory algorithm for bound constrained optimization'',
c       SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c       [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: a
c       limited memory FORTRAN code for solving bound constrained
c       optimization problems'', Tech. Report, NAM-11, EECS Department,
c       Northwestern University, 1994.
c
c       (Postscript files of these papers are available via anonymous
c        ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************
c-jlm-jn 
      integer   lws,lr,lz,lt,ld,lxp,lwa,
     +          lwy,lsy,lss,lwt,lwn,lsnd

      if (task .eq. 'START') then
         isave(1)  = m*n
         isave(2)  = m**2
         isave(3)  = 4*m**2
         isave(4)  = 1                      ! ws      m*n
         isave(5)  = isave(4)  + isave(1)   ! wy      m*n
         isave(6)  = isave(5)  + isave(1)   ! wsy     m**2
         isave(7)  = isave(6)  + isave(2)   ! wss     m**2
         isave(8)  = isave(7)  + isave(2)   ! wt      m**2
         isave(9)  = isave(8)  + isave(2)   ! wn      4*m**2
         isave(10) = isave(9)  + isave(3)   ! wsnd    4*m**2
         isave(11) = isave(10) + isave(3)   ! wz      n
         isave(12) = isave(11) + n          ! wr      n
         isave(13) = isave(12) + n          ! wd      n
         isave(14) = isave(13) + n          ! wt      n
         isave(15) = isave(14) + n          ! wxp     n
         isave(16) = isave(15) + n          ! wa      8*m
      endif
      lws  = isave(4)
      lwy  = isave(5)
      lsy  = isave(6)
      lss  = isave(7)
      lwt  = isave(8)
      lwn  = isave(9)
      lsnd = isave(10)
      lz   = isave(11)
      lr   = isave(12)
      ld   = isave(13)
      lt   = isave(14)
      lxp  = isave(15)
      lwa  = isave(16)

      call mainlb(n,m,x,l,u,nbd,f,g,factr,pgtol,
     +  wa(lws),wa(lwy),wa(lsy),wa(lss), wa(lwt),
     +  wa(lwn),wa(lsnd),wa(lz),wa(lr),wa(ld),wa(lt),wa(lxp),
     +  wa(lwa),
     +  iwa(1),iwa(n+1),iwa(2*n+1),task,iprint, 
     +  csave,lsave,isave(22),dsave)

      return

      end

c======================= The end of setulb =============================
 
      subroutine mainlb(n, m, x, l, u, nbd, f, g, factr, pgtol, ws, wy,
     +                  sy, ss, wt, wn, snd, z, r, d, t, xp, wa, 
     +                  index, iwhere, indx2, task,
     +                  iprint, csave, lsave, isave, dsave)
      implicit none
      character*60     task, csave
      logical          lsave(4)
      integer          n, m, iprint, nbd(n), index(n),
     +                 iwhere(n), indx2(n), isave(23)
      double precision f, factr, pgtol,
     +                 x(n), l(n), u(n), g(n), z(n), r(n), d(n), t(n), 
c-jlm-jn
     +                 xp(n), 
     +                 wa(8*m), 
     +                 ws(n, m), wy(n, m), sy(m, m), ss(m, m), 
     +                 wt(m, m), wn(2*m, 2*m), snd(2*m, 2*m), dsave(29)

c     ************
c
c     Subroutine mainlb
c
c     This subroutine solves bound constrained optimization problems by
c       using the compact formula of the limited memory BFGS updates.
c       
c     n is an integer variable.
c       On entry n is the number of variables.
c       On exit n is unchanged.
c
c     m is an integer variable.
c       On entry m is the maximum number of variable metric
c          corrections allowed in the limited memory matrix.
c       On exit m is unchanged.
c
c     x is a double precision array of dimension n.
c       On entry x is an approximation to the solution.
c       On exit x is the current approximation.
c
c     l is a double precision array of dimension n.
c       On entry l is the lower bound of x.
c       On exit l is unchanged.
c
c     u is a double precision array of dimension n.
c       On entry u is the upper bound of x.
c       On exit u is unchanged.
c
c     nbd is an integer array of dimension n.
c       On entry nbd represents the type of bounds imposed on the
c         variables, and must be specified as follows:
c         nbd(i)=0 if x(i) is unbounded,
c                1 if x(i) has only a lower bound,
c                2 if x(i) has both lower and upper bounds,
c                3 if x(i) has only an upper bound.
c       On exit nbd is unchanged.
c
c     f is a double precision variable.
c       On first entry f is unspecified.
c       On final exit f is the value of the function at x.
c
c     g is a double precision array of dimension n.
c       On first entry g is unspecified.
c       On final exit g is the value of the gradient at x.
c
c     factr is a double precision variable.
c       On entry factr >= 0 is specified by the user.  The iteration
c         will stop when
c
c         (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch
c
c         where epsmch is the machine precision, which is automatically
c         generated by the code.
c       On exit factr is unchanged.
c
c     pgtol is a double precision variable.
c       On entry pgtol >= 0 is specified by the user.  The iteration
c         will stop when
c
c                 max{|proj g_i | i = 1, ..., n} <= pgtol
c
c         where pg_i is the ith component of the projected gradient.
c       On exit pgtol is unchanged.
c
c     ws, wy, sy, and wt are double precision working arrays used to
c       store the following information defining the limited memory
c          BFGS matrix:
c          ws, of dimension n x m, stores S, the matrix of s-vectors;
c          wy, of dimension n x m, stores Y, the matrix of y-vectors;
c          sy, of dimension m x m, stores S'Y;
c          ss, of dimension m x m, stores S'S;
c          yy, of dimension m x m, stores Y'Y;
c          wt, of dimension m x m, stores the Cholesky factorization
c                                  of (theta*S'S+LD^(-1)L'); see eq.
c                                  (2.26) in [3].
c
c     wn is a double precision working array of dimension 2m x 2m
c       used to store the LEL^T factorization of the indefinite matrix
c                 K = [-D -Y'ZZ'Y/theta     L_a'-R_z'  ]
c                     [L_a -R_z           theta*S'AA'S ]
c
c       where     E = [-I  0]
c                     [ 0  I]
c
c     snd is a double precision working array of dimension 2m x 2m
c       used to store the lower triangular part of
c                 N = [Y' ZZ'Y   L_a'+R_z']
c                     [L_a +R_z  S'AA'S   ]
c            
c     z(n),r(n),d(n),t(n), xp(n),wa(8*m) are double precision working arrays.
c       z  is used at different times to store the Cauchy point and
c          the Newton point.
c       xp is used to safeguard the projected Newton direction
c
c     sg(m),sgo(m),yg(m),ygo(m) are double precision working arrays. 
c
c     index is an integer working array of dimension n.
c       In subroutine freev, index is used to store the free and fixed
c          variables at the Generalized Cauchy Point (GCP).
c
c     iwhere is an integer working array of dimension n used to record
c       the status of the vector x for GCP computation.
c       iwhere(i)=0 or -3 if x(i) is free and has bounds,
c                 1       if x(i) is fixed at l(i), and l(i) .ne. u(i)
c                 2       if x(i) is fixed at u(i), and u(i) .ne. l(i)
c                 3       if x(i) is always fixed, i.e.,  u(i)=x(i)=l(i)
c                -1       if x(i) is always free, i.e., no bounds on it.
c
c     indx2 is an integer working array of dimension n.
c       Within subroutine cauchy, indx2 corresponds to the array iorder.
c       In subroutine freev, a list of variables entering and leaving
c       the free set is stored in indx2, and it is passed on to
c       subroutine formk with this information.
c
c     task is a working string of characters of length 60 indicating
c       the current job when entering and leaving this subroutine.
c
c     iprint is an INTEGER variable that must be set by the user.
c       It controls the frequency and type of output generated:
c        iprint<0    no output is generated;
c        iprint=0    print only one line at the last iteration;
c        0<iprint<99 print also f and |proj g| every iprint iterations;
c        iprint=99   print details of every iteration except n-vectors;
c        iprint=100  print also the changes of active set and final x;
c        iprint>100  print details of every iteration including x and g;
c       When iprint > 0, the file iterate.dat will be created to
c                        summarize the iteration.
c
c     csave is a working string of characters of length 60.
c
c     lsave is a logical working array of dimension 4.
c
c     isave is an integer working array of dimension 23.
c
c     dsave is a double precision working array of dimension 29.
c
c
c     Subprograms called
c
c       L-BFGS-B Library ... cauchy, subsm, lnsrlb, formk, 
c
c        errclb, prn1lb, prn2lb, prn3lb, active, projgr,
c
c        freev, cmprlb, matupd, formt.
c
c       Minpack2 Library ... timer
c
c       Linpack Library ... dcopy, ddot.
c
c
c     References:
c
c       [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c       memory algorithm for bound constrained optimization'',
c       SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c       [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN
c       Subroutines for Large Scale Bound Constrained Optimization''
c       Tech. Report, NAM-11, EECS Department, Northwestern University,
c       1994.
c 
c       [3] R. Byrd, J. Nocedal and R. Schnabel "Representations of
c       Quasi-Newton Matrices and their use in Limited Memory Methods'',
c       Mathematical Programming 63 (1994), no. 4, pp. 129-156.
c
c       (Postscript files of these papers are available via anonymous
c        ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************
 
      logical          prjctd,cnstnd,boxed,updatd,wrk
      character*3      word
      integer          i,k,nintol,itfile,iback,nskip,
     +                 head,col,iter,itail,iupdat,
     +                 nseg,nfgv,info,ifun,
     +                 iword,nfree,nact,ileave,nenter
      double precision theta,fold,ddot,dr,rr,tol,
     +                 xstep,sbgnrm,ddum,dnorm,dtd,epsmch,
     +                 cpu1,cpu2,cachyt,sbtime,lnscht,time1,time2,
     +                 gd,gdold,stp,stpmx,time
      double precision one,zero
      parameter        (one=1.0d0,zero=0.0d0)
      
      if (task .eq. 'START') then

         epsmch = epsilon(one)

         call timer(time1)

c        Initialize counters and scalars when task='START'.

c           for the limited memory BFGS matrices:
         col    = 0
         head   = 1
         theta  = one
         iupdat = 0
         updatd = .false.
         iback  = 0
         itail  = 0
         iword  = 0
         nact   = 0
         ileave = 0
         nenter = 0
         fold   = zero
         dnorm  = zero
         cpu1   = zero
         gd     = zero
         stpmx  = zero
         sbgnrm = zero
         stp    = zero
         gdold  = zero
         dtd    = zero

c           for operation counts:
         iter   = 0
         nfgv   = 0
         nseg   = 0
         nintol = 0
         nskip  = 0
         nfree  = n
         ifun   = 0
c           for stopping tolerance:
         tol = factr*epsmch

c           for measuring running time:
         cachyt = 0
         sbtime = 0
         lnscht = 0
 
c           'word' records the status of subspace solutions.
         word = '---'

c           'info' records the termination information.
         info = 0

         itfile = 8
         if (iprint .ge. 1) then
c                                open a summary file 'iterate.dat'
            open (8, file = 'iterate.dat', status = 'unknown')
         endif            

c        Check the input arguments for errors.

         call errclb(n,m,factr,l,u,nbd,task,info,k)
         if (task(1:5) .eq. 'ERROR') then
            call prn3lb(n,x,f,task,iprint,info,itfile,
     +                  iter,nfgv,nintol,nskip,nact,sbgnrm,
     +                  zero,nseg,word,iback,stp,xstep,k,
     +                  cachyt,sbtime,lnscht)
            return
         endif

         call prn1lb(n,m,l,u,x,iprint,itfile,epsmch)
 
c        Initialize iwhere & project x onto the feasible set.
 
         call active(n,l,u,nbd,x,iwhere,iprint,prjctd,cnstnd,boxed) 

c        The end of the initialization.

      else
c          restore local variables.

         prjctd = lsave(1)
         cnstnd = lsave(2)
         boxed  = lsave(3)
         updatd = lsave(4)

         nintol = isave(1)
         itfile = isave(3)
         iback  = isave(4)
         nskip  = isave(5)
         head   = isave(6)
         col    = isave(7)
         itail  = isave(8)
         iter   = isave(9)
         iupdat = isave(10)
         nseg   = isave(12)
         nfgv   = isave(13)
         info   = isave(14)
         ifun   = isave(15)
         iword  = isave(16)
         nfree  = isave(17)
         nact   = isave(18)
         ileave = isave(19)
         nenter = isave(20)

         theta  = dsave(1)
         fold   = dsave(2)
         tol    = dsave(3)
         dnorm  = dsave(4)
         epsmch = dsave(5)
         cpu1   = dsave(6)
         cachyt = dsave(7)
         sbtime = dsave(8)
         lnscht = dsave(9)
         time1  = dsave(10)
         gd     = dsave(11)
         stpmx  = dsave(12)
         sbgnrm = dsave(13)
         stp    = dsave(14)
         gdold  = dsave(15)
         dtd    = dsave(16)
   
c        After returning from the driver go to the point where execution
c        is to resume.

         if (task(1:5) .eq. 'FG_LN') goto 666
         if (task(1:5) .eq. 'NEW_X') goto 777
         if (task(1:5) .eq. 'FG_ST') goto 111
         if (task(1:4) .eq. 'STOP') then
            if (task(7:9) .eq. 'CPU') then
c                                          restore the previous iterate.
               call dcopy(n,t,1,x,1)
               call dcopy(n,r,1,g,1)
               f = fold
            endif
            goto 999
         endif
      endif 

c     Compute f0 and g0.

      task = 'FG_START' 
c          return to the driver to calculate f and g; reenter at 111.
      goto 1000
 111  continue
      nfgv = 1
 
c     Compute the infinity norm of the (-) projected gradient.
 
      call projgr(n,l,u,nbd,x,g,sbgnrm)
  
      if (iprint .ge. 1) then
         write (6,1002) iter,f,sbgnrm
         write (itfile,1003) iter,nfgv,sbgnrm,f
      endif
      if (sbgnrm .le. pgtol) then
c                                terminate the algorithm.
         task = 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
         goto 999
      endif 
 
c ----------------- the beginning of the loop --------------------------
 
 222  continue
      if (iprint .ge. 99) write (6,1001) iter + 1
      iword = -1
c
      if (.not. cnstnd .and. col .gt. 0) then 
c                                            skip the search for GCP.
         call dcopy(n,x,1,z,1)
         wrk = updatd
         nseg = 0
         goto 333
      endif

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c     Compute the Generalized Cauchy Point (GCP).
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

      call timer(cpu1) 
      call cauchy(n,x,l,u,nbd,g,indx2,iwhere,t,d,z,
     +            m,wy,ws,sy,wt,theta,col,head,
     +            wa(1),wa(2*m+1),wa(4*m+1),wa(6*m+1),nseg,
     +            iprint, sbgnrm, info, epsmch)
      if (info .ne. 0) then 
c         singular triangular system detected; refresh the lbfgs memory.
         if(iprint .ge. 1) write (6, 1005)
         info   = 0
         col    = 0
         head   = 1
         theta  = one
         iupdat = 0
         updatd = .false.
         call timer(cpu2) 
         cachyt = cachyt + cpu2 - cpu1
         goto 222
      endif
      call timer(cpu2) 
      cachyt = cachyt + cpu2 - cpu1
      nintol = nintol + nseg

c     Count the entering and leaving variables for iter > 0; 
c     find the index set of free and active variables at the GCP.

      call freev(n,nfree,index,nenter,ileave,indx2,
     +           iwhere,wrk,updatd,cnstnd,iprint,iter)
      nact = n - nfree

 333  continue
 
c     If there are no free variables or B=theta*I, then
c                                        skip the subspace minimization.
 
      if (nfree .eq. 0 .or. col .eq. 0) goto 555
 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c     Subspace minimization.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

      call timer(cpu1) 

c     Form  the LEL^T factorization of the indefinite
c       matrix    K = [-D -Y'ZZ'Y/theta     L_a'-R_z'  ]
c                     [L_a -R_z           theta*S'AA'S ]
c       where     E = [-I  0]
c                     [ 0  I]

      if (wrk) call formk(n,nfree,index,nenter,ileave,indx2,iupdat,
     +                 updatd,wn,snd,m,ws,wy,sy,theta,col,head,info)
      if (info .ne. 0) then
c          nonpositive definiteness in Cholesky factorization;
c          refresh the lbfgs memory and restart the iteration.
         if(iprint .ge. 1) write (6, 1006)
         info   = 0
         col    = 0
         head   = 1
         theta  = one
         iupdat = 0
         updatd = .false.
         call timer(cpu2) 
         sbtime = sbtime + cpu2 - cpu1 
         goto 222
      endif 

c        compute r=-Z'B(xcp-xk)-Z'g (using wa(2m+1)=W'(xcp-x)
c                                                   from 'cauchy').
      call cmprlb(n,m,x,g,ws,wy,sy,wt,z,r,wa,index,
     +           theta,col,head,nfree,cnstnd,info)
      if (info .ne. 0) goto 444

c-jlm-jn   call the direct method. 

      call subsm( n, m, nfree, index, l, u, nbd, z, r, xp, ws, wy,
     +           theta, x, g, col, head, iword, wa, wn, iprint, info)
 444  continue
      if (info .ne. 0) then 
c          singular triangular system detected;
c          refresh the lbfgs memory and restart the iteration.
         if(iprint .ge. 1) write (6, 1005)
         info   = 0
         col    = 0
         head   = 1
         theta  = one
         iupdat = 0
         updatd = .false.
         call timer(cpu2) 
         sbtime = sbtime + cpu2 - cpu1 
         goto 222
      endif
 
      call timer(cpu2) 
      sbtime = sbtime + cpu2 - cpu1 
 555  continue
 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c     Line search and optimality tests.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
 
c     Generate the search direction d:=z-x.

      do 40 i = 1, n
         d(i) = z(i) - x(i)
  40  continue
      call timer(cpu1) 
 666  continue
      call lnsrlb(n,l,u,nbd,x,f,fold,gd,gdold,g,d,r,t,z,stp,dnorm,
     +            dtd,xstep,stpmx,iter,ifun,iback,nfgv,info,task,
     +            boxed,cnstnd,csave,isave(22),dsave(17))
      if (info .ne. 0 .or. iback .ge. 20) then
c          restore the previous iterate.
         call dcopy(n,t,1,x,1)
         call dcopy(n,r,1,g,1)
         f = fold
         if (col .eq. 0) then
c             abnormal termination.
            if (info .eq. 0) then
               info = -9
c                restore the actual number of f and g evaluations etc.
               nfgv = nfgv - 1
               ifun = ifun - 1
               iback = iback - 1
            endif
            task = 'ABNORMAL_TERMINATION_IN_LNSRCH'
            iter = iter + 1
            goto 999
         else
c             refresh the lbfgs memory and restart the iteration.
            if(iprint .ge. 1) write (6, 1008)
            if (info .eq. 0) nfgv = nfgv - 1
            info   = 0
            col    = 0
            head   = 1
            theta  = one
            iupdat = 0
            updatd = .false.
            task   = 'RESTART_FROM_LNSRCH'
            call timer(cpu2)
            lnscht = lnscht + cpu2 - cpu1
            goto 222
         endif
      else if (task(1:5) .eq. 'FG_LN') then
c          return to the driver for calculating f and g; reenter at 666.
         goto 1000
      else 
c          calculate and print out the quantities related to the new X.
         call timer(cpu2) 
         lnscht = lnscht + cpu2 - cpu1
         iter = iter + 1
 
c        Compute the infinity norm of the projected (-)gradient.
 
         call projgr(n,l,u,nbd,x,g,sbgnrm)
 
c        Print iteration information.

         call prn2lb(n,x,f,g,iprint,itfile,iter,nfgv,nact,
     +               sbgnrm,nseg,word,iword,iback,stp,xstep)
         goto 1000
      endif
 777  continue

c     Test for termination.

      if (sbgnrm .le. pgtol) then
c                                terminate the algorithm.
         task = 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
         goto 999
      endif 

      ddum = max(abs(fold), abs(f), one)
      if ((fold - f) .le. tol*ddum) then
c                                        terminate the algorithm.
         task = 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
         if (iback .ge. 10) info = -5
c           i.e., to issue a warning if iback>10 in the line search.
         goto 999
      endif 

c     Compute d=newx-oldx, r=newg-oldg, rr=y'y and dr=y's.
 
      do 42 i = 1, n
         r(i) = g(i) - r(i)
  42  continue
      rr = ddot(n,r,1,r,1)
      if (stp .eq. one) then  
         dr = gd - gdold
         ddum = -gdold
      else
         dr = (gd - gdold)*stp
         call dscal(n,stp,d,1)
         ddum = -gdold*stp
      endif
 
      if (dr .le. epsmch*ddum) then
c                            skip the L-BFGS update.
         nskip = nskip + 1
         updatd = .false.
         if (iprint .ge. 1) write (6,1004) dr, ddum
         goto 888
      endif 
 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c     Update the L-BFGS matrix.
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
 
      updatd = .true.
      iupdat = iupdat + 1

c     Update matrices WS and WY and form the middle matrix in B.

      call matupd(n,m,ws,wy,sy,ss,d,r,itail,
     +            iupdat,col,head,theta,rr,dr,stp,dtd)

c     Form the upper half of the pds T = theta*SS + L*D^(-1)*L';
c        Store T in the upper triangular of the array wt;
c        Cholesky factorize T to J*J' with
c           J' stored in the upper triangular of wt.

      call formt(m,wt,sy,ss,col,theta,info)
 
      if (info .ne. 0) then 
c          nonpositive definiteness in Cholesky factorization;
c          refresh the lbfgs memory and restart the iteration.
         if(iprint .ge. 1) write (6, 1007)
         info = 0
         col = 0
         head = 1
         theta = one
         iupdat = 0
         updatd = .false.
         goto 222
      endif

c     Now the inverse of the middle matrix in B is

c       [  D^(1/2)      O ] [ -D^(1/2)  D^(-1/2)*L' ]
c       [ -L*D^(-1/2)   J ] [  0        J'          ]

 888  continue
 
c -------------------- the end of the loop -----------------------------
 
      goto 222
 999  continue
      call timer(time2)
      time = time2 - time1
      call prn3lb(n,x,f,task,iprint,info,itfile,
     +            iter,nfgv,nintol,nskip,nact,sbgnrm,
     +            time,nseg,word,iback,stp,xstep,k,
     +            cachyt,sbtime,lnscht)
 1000 continue

c     Save local variables.

      lsave(1)  = prjctd
      lsave(2)  = cnstnd
      lsave(3)  = boxed
      lsave(4)  = updatd

      isave(1)  = nintol 
      isave(3)  = itfile 
      isave(4)  = iback 
      isave(5)  = nskip 
      isave(6)  = head 
      isave(7)  = col 
      isave(8)  = itail 
      isave(9)  = iter 
      isave(10) = iupdat 
      isave(12) = nseg
      isave(13) = nfgv 
      isave(14) = info 
      isave(15) = ifun 
      isave(16) = iword 
      isave(17) = nfree 
      isave(18) = nact 
      isave(19) = ileave 
      isave(20) = nenter 

      dsave(1)  = theta 
      dsave(2)  = fold 
      dsave(3)  = tol 
      dsave(4)  = dnorm 
      dsave(5)  = epsmch 
      dsave(6)  = cpu1 
      dsave(7)  = cachyt 
      dsave(8)  = sbtime 
      dsave(9)  = lnscht 
      dsave(10) = time1 
      dsave(11) = gd 
      dsave(12) = stpmx 
      dsave(13) = sbgnrm
      dsave(14) = stp
      dsave(15) = gdold
      dsave(16) = dtd  

 1001 format (//,'ITERATION ',i5)
 1002 format
     +  (/,'At iterate',i5,4x,'f= ',1p,d12.5,4x,'|proj g|= ',1p,d12.5)
 1003 format (2(1x,i4),5x,'-',5x,'-',3x,'-',5x,'-',5x,'-',8x,'-',3x,
     +        1p,2(1x,d10.3))
 1004 format ('  ys=',1p,e10.3,'  -gs=',1p,e10.3,' BFGS update SKIPPED')
 1005 format (/, 
     +' Singular triangular system detected;',/,
     +'   refresh the lbfgs memory and restart the iteration.')
 1006 format (/, 
     +' Nonpositive definiteness in Cholesky factorization in formk;',/,
     +'   refresh the lbfgs memory and restart the iteration.')
 1007 format (/, 
     +' Nonpositive definiteness in Cholesky factorization in formt;',/,
     +'   refresh the lbfgs memory and restart the iteration.')
 1008 format (/, 
     +' Bad direction in the line search;',/,
     +'   refresh the lbfgs memory and restart the iteration.')

      return   

      end
 
c======================= The end of mainlb =============================

      subroutine active(n, l, u, nbd, x, iwhere, iprint,
     +                  prjctd, cnstnd, boxed)

      logical          prjctd, cnstnd, boxed
      integer          n, iprint, nbd(n), iwhere(n)
      double precision x(n), l(n), u(n)

c     ************
c
c     Subroutine active
c
c     This subroutine initializes iwhere and projects the initial x to
c       the feasible set if necessary.
c
c     iwhere is an integer array of dimension n.
c       On entry iwhere is unspecified.
c       On exit iwhere(i)=-1  if x(i) has no bounds
c                         3   if l(i)=u(i)
c                         0   otherwise.
c       In cauchy, iwhere is given finer gradations.
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************

      integer          nbdd,i
      double precision zero
      parameter        (zero=0.0d0)

c     Initialize nbdd, prjctd, cnstnd and boxed.

      nbdd = 0
      prjctd = .false.
      cnstnd = .false.
      boxed = .true.

c     Project the initial x to the easible set if necessary.

      do 10 i = 1, n
         if (nbd(i) .gt. 0) then
            if (nbd(i) .le. 2 .and. x(i) .le. l(i)) then
               if (x(i) .lt. l(i)) then
                  prjctd = .true.
                  x(i) = l(i)
               endif
               nbdd = nbdd + 1
            else if (nbd(i) .ge. 2 .and. x(i) .ge. u(i)) then
               if (x(i) .gt. u(i)) then
                  prjctd = .true.
                  x(i) = u(i)
               endif
               nbdd = nbdd + 1
            endif
         endif
  10  continue

c     Initialize iwhere and assign values to cnstnd and boxed.

      do 20 i = 1, n
         if (nbd(i) .ne. 2) boxed = .false.
         if (nbd(i) .eq. 0) then
c                                this variable is always free
            iwhere(i) = -1

c           otherwise set x(i)=mid(x(i), u(i), l(i)).
         else
            cnstnd = .true.
            if (nbd(i) .eq. 2 .and. u(i) - l(i) .le. zero) then
c                   this variable is always fixed
               iwhere(i) = 3
            else 
               iwhere(i) = 0
            endif
         endif
  20  continue

      if (iprint .ge. 0) then
         if (prjctd) write (6,*)
     +   'The initial X is infeasible.  Restart with its projection.'
         if (.not. cnstnd)
     +      write (6,*) 'This problem is unconstrained.'
      endif

      if (iprint .gt. 0) write (6,1001) nbdd

 1001 format (/,'At X0 ',i9,' variables are exactly at the bounds') 

      return

      end

c======================= The end of active =============================
 
      subroutine bmv(m, sy, wt, col, v, p, info)

      integer m, col, info
      double precision sy(m, m), wt(m, m), v(2*col), p(2*col)

c     ************
c
c     Subroutine bmv
c
c     This subroutine computes the product of the 2m x 2m middle matrix 
c       in the compact L-BFGS formula of B and a 2m vector v;  
c       it returns the product in p.
c       
c     m is an integer variable.
c       On entry m is the maximum number of variable metric corrections
c         used to define the limited memory matrix.
c       On exit m is unchanged.
c
c     sy is a double precision array of dimension m x m.
c       On entry sy specifies the matrix S'Y.
c       On exit sy is unchanged.
c
c     wt is a double precision array of dimension m x m.
c       On entry wt specifies the upper triangular matrix J' which is 
c         the Cholesky factor of (thetaS'S+LD^(-1)L').
c       On exit wt is unchanged.
c
c     col is an integer variable.
c       On entry col specifies the number of s-vectors (or y-vectors)
c         stored in the compact L-BFGS formula.
c       On exit col is unchanged.
c
c     v is a double precision array of dimension 2col.
c       On entry v specifies vector v.
c       On exit v is unchanged.
c
c     p is a double precision array of dimension 2col.
c       On entry p is unspecified.
c       On exit p is the product Mv.
c
c     info is an integer variable.
c       On entry info is unspecified.
c       On exit info = 0       for normal return,
c                    = nonzero for abnormal return when the system
c                                to be solved by dtrsl is singular.
c
c     Subprograms called:
c
c       Linpack ... dtrsl.
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************
 
      integer          i,k,i2
      double precision sum
 
      if (col .eq. 0) return
 
c     PART I: solve [  D^(1/2)      O ] [ p1 ] = [ v1 ]
c                   [ -L*D^(-1/2)   J ] [ p2 ]   [ v2 ].

c       solve Jp2=v2+LD^(-1)v1.
      p(col + 1) = v(col + 1)
      do 20 i = 2, col
         i2 = col + i
         sum = 0.0d0
         do 10 k = 1, i - 1
            sum = sum + sy(i,k)*v(k)/sy(k,k)
  10     continue
         p(i2) = v(i2) + sum
  20  continue  
c     Solve the triangular system
      call dtrtrs('U', 'T', 'N', col, 1, wt, m, p(col+1), col, info)
      if (info .ne. 0) return
 
c       solve D^(1/2)p1=v1.
      do 30 i = 1, col
         p(i) = v(i)/sqrt(sy(i,i))
  30  continue 
 
c     PART II: solve [ -D^(1/2)   D^(-1/2)*L'  ] [ p1 ] = [ p1 ]
c                    [  0         J'           ] [ p2 ]   [ p2 ]. 
 
c       solve J^Tp2=p2. 
      call dtrtrs('U', 'N', 'N', col, 1, wt, m, p(col+1), col, info)
      if (info .ne. 0) return
 
c       compute p1=-D^(-1/2)(p1-D^(-1/2)L'p2)
c                 =-D^(-1/2)p1+D^(-1)L'p2.  
      do 40 i = 1, col
         p(i) = -p(i)/sqrt(sy(i,i))
  40  continue
      do 60 i = 1, col
         sum = 0.d0
         do 50 k = i + 1, col
            sum = sum + sy(k,i)*p(col+k)/sy(i,i)
  50     continue
         p(i) = p(i) + sum
  60  continue

      return

      end

c======================== The end of bmv ===============================

      subroutine cauchy(n, x, l, u, nbd, g, iorder, iwhere, t, d, xcp, 
     +                  m, wy, ws, sy, wt, theta, col, head, p, c, wbp, 
     +                  v, nseg, iprint, sbgnrm, info, epsmch)
      implicit none
      integer          n, m, head, col, nseg, iprint, info, 
     +                 nbd(n), iorder(n), iwhere(n)
      double precision theta, epsmch,
     +                 x(n), l(n), u(n), g(n), t(n), d(n), xcp(n),
     +                 wy(n, col), ws(n, col), sy(m, m),
     +                 wt(m, m), p(2*m), c(2*m), wbp(2*m), v(2*m)

c     ************
c
c     Subroutine cauchy
c
c     For given x, l, u, g (with sbgnrm > 0), and a limited memory
c       BFGS matrix B defined in terms of matrices WY, WS, WT, and
c       scalars head, col, and theta, this subroutine computes the
c       generalized Cauchy point (GCP), defined as the first local
c       minimizer of the quadratic
c
c                  Q(x + s) = g's + 1/2 s'Bs
c
c       along the projected gradient direction P(x-tg,l,u).
c       The routine returns the GCP in xcp. 
c       
c     n is an integer variable.
c       On entry n is the dimension of the problem.
c       On exit n is unchanged.
c
c     x is a double precision array of dimension n.
c       On entry x is the starting point for the GCP computation.
c       On exit x is unchanged.
c
c     l is a double precision array of dimension n.
c       On entry l is the lower bound of x.
c       On exit l is unchanged.
c
c     u is a double precision array of dimension n.
c       On entry u is the upper bound of x.
c       On exit u is unchanged.
c
c     nbd is an integer array of dimension n.
c       On entry nbd represents the type of bounds imposed on the
c         variables, and must be specified as follows:
c         nbd(i)=0 if x(i) is unbounded,
c                1 if x(i) has only a lower bound,
c                2 if x(i) has both lower and upper bounds, and
c                3 if x(i) has only an upper bound. 
c       On exit nbd is unchanged.
c
c     g is a double precision array of dimension n.
c       On entry g is the gradient of f(x).  g must be a nonzero vector.
c       On exit g is unchanged.
c
c     iorder is an integer working array of dimension n.
c       iorder will be used to store the breakpoints in the piecewise
c       linear path and free variables encountered. On exit,
c         iorder(1),...,iorder(nleft) are indices of breakpoints
c                                which have not been encountered; 
c         iorder(nleft+1),...,iorder(nbreak) are indices of
c                                     encountered breakpoints; and
c         iorder(nfree),...,iorder(n) are indices of variables which
c                 have no bound constraits along the search direction.
c
c     iwhere is an integer array of dimension n.
c       On entry iwhere indicates only the permanently fixed (iwhere=3)
c       or free (iwhere= -1) components of x.
c       On exit iwhere records the status of the current x variables.
c       iwhere(i)=-3  if x(i) is free and has bounds, but is not moved
c                 0   if x(i) is free and has bounds, and is moved
c                 1   if x(i) is fixed at l(i), and l(i) .ne. u(i)
c                 2   if x(i) is fixed at u(i), and u(i) .ne. l(i)
c                 3   if x(i) is always fixed, i.e.,  u(i)=x(i)=l(i)
c                 -1  if x(i) is always free, i.e., it has no bounds.
c
c     t is a double precision working array of dimension n. 
c       t will be used to store the break points.
c
c     d is a double precision array of dimension n used to store
c       the Cauchy direction P(x-tg)-x.
c
c     xcp is a double precision array of dimension n used to return the
c       GCP on exit.
c
c     m is an integer variable.
c       On entry m is the maximum number of variable metric corrections 
c         used to define the limited memory matrix.
c       On exit m is unchanged.
c
c     ws, wy, sy, and wt are double precision arrays.
c       On entry they store information that defines the
c                             limited memory BFGS matrix:
c         ws(n,m) stores S, a set of s-vectors;
c         wy(n,m) stores Y, a set of y-vectors;
c         sy(m,m) stores S'Y;
c         wt(m,m) stores the
c                 Cholesky factorization of (theta*S'S+LD^(-1)L').
c       On exit these arrays are unchanged.
c
c     theta is a double precision variable.
c       On entry theta is the scaling factor specifying B_0 = theta I.
c       On exit theta is unchanged.
c
c     col is an integer variable.
c       On entry col is the actual number of variable metric
c         corrections stored so far.
c       On exit col is unchanged.
c
c     head is an integer variable.
c       On entry head is the location of the first s-vector (or y-vector)
c         in S (or Y).
c       On exit col is unchanged.
c
c     p is a double precision working array of dimension 2m.
c       p will be used to store the vector p = W^(T)d.
c
c     c is a double precision working array of dimension 2m.
c       c will be used to store the vector c = W^(T)(xcp-x).
c
c     wbp is a double precision working array of dimension 2m.
c       wbp will be used to store the row of W corresponding
c         to a breakpoint.
c
c     v is a double precision working array of dimension 2m.
c
c     nseg is an integer variable.
c       On exit nseg records the number of quadratic segments explored
c         in searching for the GCP.
c
c     sg and yg are double precision arrays of dimension m.
c       On entry sg  and yg store S'g and Y'g correspondingly.
c       On exit they are unchanged. 
c 
c     iprint is an INTEGER variable that must be set by the user.
c       It controls the frequency and type of output generated:
c        iprint<0    no output is generated;
c        iprint=0    print only one line at the last iteration;
c        0<iprint<99 print also f and |proj g| every iprint iterations;
c        iprint=99   print details of every iteration except n-vectors;
c        iprint=100  print also the changes of active set and final x;
c        iprint>100  print details of every iteration including x and g;
c       When iprint > 0, the file iterate.dat will be created to
c                        summarize the iteration.
c
c     sbgnrm is a double precision variable.
c       On entry sbgnrm is the norm of the projected gradient at x.
c       On exit sbgnrm is unchanged.
c
c     info is an integer variable.
c       On entry info is 0.
c       On exit info = 0       for normal return,
c                    = nonzero for abnormal return when the the system
c                              used in routine bmv is singular.
c
c     Subprograms called:
c 
c       L-BFGS-B Library ... hpsolb, bmv.
c
c       Linpack ... dscal dcopy, daxpy.
c
c
c     References:
c
c       [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c       memory algorithm for bound constrained optimization'',
c       SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c       [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: FORTRAN
c       Subroutines for Large Scale Bound Constrained Optimization''
c       Tech. Report, NAM-11, EECS Department, Northwestern University,
c       1994.
c
c       (Postscript files of these papers are available via anonymous
c        ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************

      logical          xlower,xupper,bnded
      integer          i,j,col2,nfree,nbreak,pointr,
     +                 ibp,nleft,ibkmin,iter
      double precision f1,f2,dt,dtm,tsum,dibp,zibp,dibp2,bkmin,
     +                 tu,tl,wmc,wmp,wmw,ddot,tj,tj0,neggi,sbgnrm,
     +                 f2_org
      double precision one,zero
      parameter        (one=1.0d0,zero=0.0d0)
 
c     Check the status of the variables, reset iwhere(i) if necessary;
c       compute the Cauchy direction d and the breakpoints t; initialize
c       the derivative f1 and the vector p = W'd (for theta = 1).
 
      if (sbgnrm .le. zero) then
         if (iprint .ge. 0) write (6,*) 'Subgnorm = 0.  GCP = X.'
         call dcopy(n,x,1,xcp,1)
         return
      endif 
      bnded = .true.
      nfree = n + 1
      nbreak = 0
      ibkmin = 0
      bkmin = zero
      col2 = 2*col
      f1 = zero
      if (iprint .ge. 99) write (6,3010)

c     We set p to zero and build it up as we determine d.

      do 20 i = 1, col2
         p(i) = zero
  20  continue 

c     In the following loop we determine for each variable its bound
c        status and its breakpoint, and update p accordingly.
c        Smallest breakpoint is identified.

      do 50 i = 1, n 
         neggi = -g(i)      
         if (iwhere(i) .ne. 3 .and. iwhere(i) .ne. -1) then
c             if x(i) is not a constant and has bounds,
c             compute the difference between x(i) and its bounds.
            if (nbd(i) .le. 2) tl = x(i) - l(i)
            if (nbd(i) .ge. 2) tu = u(i) - x(i)

c           If a variable is close enough to a bound
c             we treat it as at bound.
            xlower = nbd(i) .le. 2 .and. tl .le. zero
            xupper = nbd(i) .ge. 2 .and. tu .le. zero

c              reset iwhere(i).
            iwhere(i) = 0
            if (xlower) then
               if (neggi .le. zero) iwhere(i) = 1
            else if (xupper) then
               if (neggi .ge. zero) iwhere(i) = 2
            else
               if (abs(neggi) .le. zero) iwhere(i) = -3
            endif
         endif 
         pointr = head
         if (iwhere(i) .ne. 0 .and. iwhere(i) .ne. -1) then
            d(i) = zero
         else
            d(i) = neggi
            f1 = f1 - neggi*neggi
c             calculate p := p - W'e_i* (g_i).
            do 40 j = 1, col
               p(j) = p(j) +  wy(i,pointr)* neggi
               p(col + j) = p(col + j) + ws(i,pointr)*neggi
               pointr = mod(pointr,m) + 1
  40        continue 
            if (nbd(i) .le. 2 .and. nbd(i) .ne. 0
     +                        .and. neggi .lt. zero) then
c                                 x(i) + d(i) is bounded; compute t(i).
               nbreak = nbreak + 1
               iorder(nbreak) = i
               t(nbreak) = tl/(-neggi)
               if (nbreak .eq. 1 .or. t(nbreak) .lt. bkmin) then
                  bkmin = t(nbreak)
                  ibkmin = nbreak
               endif
            else if (nbd(i) .ge. 2 .and. neggi .gt. zero) then
c                                 x(i) + d(i) is bounded; compute t(i).
               nbreak = nbreak + 1
               iorder(nbreak) = i
               t(nbreak) = tu/neggi
               if (nbreak .eq. 1 .or. t(nbreak) .lt. bkmin) then
                  bkmin = t(nbreak)
                  ibkmin = nbreak
               endif
            else
c                x(i) + d(i) is not bounded.
               nfree = nfree - 1
               iorder(nfree) = i
               if (abs(neggi) .gt. zero) bnded = .false.
            endif
         endif
  50  continue 
 
c     The indices of the nonzero components of d are now stored
c       in iorder(1),...,iorder(nbreak) and iorder(nfree),...,iorder(n).
c       The smallest of the nbreak breakpoints is in t(ibkmin)=bkmin.
 
      if (theta .ne. one) then
c                   complete the initialization of p for theta not= one.
         call dscal(col,theta,p(col+1),1)
      endif
 
c     Initialize GCP xcp = x.

      call dcopy(n,x,1,xcp,1)

      if (nbreak .eq. 0 .and. nfree .eq. n + 1) then
c                  is a zero vector, return with the initial xcp as GCP.
         if (iprint .gt. 100) write (6,1010) (xcp(i), i = 1, n)
         return
      endif    
 
c     Initialize c = W'(xcp - x) = 0.
  
      do 60 j = 1, col2
         c(j) = zero
  60  continue 
 
c     Initialize derivative f2.
 
      f2 =  -theta*f1 
      f2_org  =  f2
      if (col .gt. 0) then
         call bmv(m,sy,wt,col,p,v,info)
         if (info .ne. 0) return
         f2 = f2 - ddot(col2,v,1,p,1)
      endif
      dtm = -f1/f2
      tsum = zero
      nseg = 1
      if (iprint .ge. 99) 
     +   write (6,*) 'There are ',nbreak,'  breakpoints '
 
c     If there are no breakpoints, locate the GCP and return. 
 
      if (nbreak .eq. 0) goto 888
             
      nleft = nbreak
      iter = 1
 
 
      tj = zero
 
c------------------- the beginning of the loop -------------------------
 
 777  continue
 
c     Find the next smallest breakpoint;
c       compute dt = t(nleft) - t(nleft + 1).
 
      tj0 = tj
      if (iter .eq. 1) then
c         Since we already have the smallest breakpoint we need not do
c         heapsort yet. Often only one breakpoint is used and the
c         cost of heapsort is avoided.
         tj = bkmin
         ibp = iorder(ibkmin)
      else
         if (iter .eq. 2) then
c             Replace the already used smallest breakpoint with the
c             breakpoint numbered nbreak > nlast, before heapsort call.
            if (ibkmin .ne. nbreak) then
               t(ibkmin) = t(nbreak)
               iorder(ibkmin) = iorder(nbreak)
            endif 
c        Update heap structure of breakpoints
c           (if iter=2, initialize heap).
         endif
         call hpsolb(nleft,t,iorder,iter-2)
         tj = t(nleft)
         ibp = iorder(nleft)  
      endif 
         
      dt = tj - tj0
 
      if (dt .ne. zero .and. iprint .ge. 100) then
         write (6,4011) nseg,f1,f2
         write (6,5010) dt
         write (6,6010) dtm
      endif          
 
c     If a minimizer is within this interval, locate the GCP and return. 
 
      if (dtm .lt. dt) goto 888
 
c     Otherwise fix one variable and
c       reset the corresponding component of d to zero.
    
      tsum = tsum + dt
      nleft = nleft - 1
      iter = iter + 1
      dibp = d(ibp)
      d(ibp) = zero
      if (dibp .gt. zero) then
         zibp = u(ibp) - x(ibp)
         xcp(ibp) = u(ibp)
         iwhere(ibp) = 2
      else
         zibp = l(ibp) - x(ibp)
         xcp(ibp) = l(ibp)
         iwhere(ibp) = 1
      endif
      if (iprint .ge. 100) write (6,*) 'Variable  ',ibp,'  is fixed.'
      if (nleft .eq. 0 .and. nbreak .eq. n) then
c                                             all n variables are fixed,
c                                                return with xcp as GCP.
         dtm = dt
         goto 999
      endif
 
c     Update the derivative information.
 
      nseg = nseg + 1
      dibp2 = dibp**2
 
c     Update f1 and f2.
 
c        temporarily set f1 and f2 for col=0.
      f1 = f1 + dt*f2 + dibp2 - theta*dibp*zibp
      f2 = f2 - theta*dibp2

      if (col .gt. 0) then
c                          update c = c + dt*p.
         call daxpy(col2,dt,p,1,c,1)
 
c           choose wbp,
c           the row of W corresponding to the breakpoint encountered.
         pointr = head
         do 70 j = 1,col
            wbp(j) = wy(ibp,pointr)
            wbp(col + j) = theta*ws(ibp,pointr)
            pointr = mod(pointr,m) + 1
  70     continue 
 
c           compute (wbp)Mc, (wbp)Mp, and (wbp)M(wbp)'.
         call bmv(m,sy,wt,col,wbp,v,info)
         if (info .ne. 0) return
         wmc = ddot(col2,c,1,v,1)
         wmp = ddot(col2,p,1,v,1) 
         wmw = ddot(col2,wbp,1,v,1)
 
c           update p = p - dibp*wbp. 
         call daxpy(col2,-dibp,wbp,1,p,1)
 
c           complete updating f1 and f2 while col > 0.
         f1 = f1 + dibp*wmc
         f2 = f2 + 2.0d0*dibp*wmp - dibp2*wmw
      endif

      f2 = max(epsmch*f2_org,f2)
      if (nleft .gt. 0) then
         dtm = -f1/f2
         goto 777
c                 to repeat the loop for unsearched intervals. 
      else if(bnded) then
         f1 = zero
         f2 = zero
         dtm = zero
      else
         dtm = -f1/f2
      endif 

c------------------- the end of the loop -------------------------------
 
 888  continue
      if (iprint .ge. 99) then
         write (6,*)
         write (6,*) 'GCP found in this segment'
         write (6,4010) nseg,f1,f2
         write (6,6010) dtm
      endif 
      if (dtm .le. zero) dtm = zero
      tsum = tsum + dtm
 
c     Move free variables (i.e., the ones w/o breakpoints) and 
c       the variables whose breakpoints haven't been reached.
 
      call daxpy(n,tsum,d,1,xcp,1)
 
 999  continue
 
c     Update c = c + dtm*p = W'(x^c - x) 
c       which will be used in computing r = Z'(B(x^c - x) + g).
 
      if (col .gt. 0) call daxpy(col2,dtm,p,1,c,1)
      if (iprint .gt. 100) write (6,1010) (xcp(i),i = 1,n)
      if (iprint .ge. 99) write (6,2010)

 1010 format ('Cauchy X =  ',/,(4x,1p,6(1x,d11.4)))
 2010 format (/,'---------------- exit CAUCHY----------------------',/)
 3010 format (/,'---------------- CAUCHY entered-------------------')
 4010 format ('Piece    ',i3,' --f1, f2 at start point ',1p,2(1x,d11.4))
 4011 format (/,'Piece    ',i3,' --f1, f2 at start point ',
     +        1p,2(1x,d11.4))
 5010 format ('Distance to the next break point =  ',1p,d11.4)
 6010 format ('Distance to the stationary point =  ',1p,d11.4) 
 
      return
 
      end

c====================== The end of cauchy ==============================

      subroutine cmprlb(n, m, x, g, ws, wy, sy, wt, z, r, wa, index, 
     +                 theta, col, head, nfree, cnstnd, info)
 
      logical          cnstnd
      integer          n, m, col, head, nfree, info, index(n)
      double precision theta, 
     +                 x(n), g(n), z(n), r(n), wa(4*m), 
     +                 ws(n, m), wy(n, m), sy(m, m), wt(m, m)

c     ************
c
c     Subroutine cmprlb 
c
c       This subroutine computes r=-Z'B(xcp-xk)-Z'g by using 
c         wa(2m+1)=W'(xcp-x) from subroutine cauchy.
c
c     Subprograms called:
c
c       L-BFGS-B Library ... bmv.
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************
 
      integer          i,j,k,pointr
      double precision a1,a2

      if (.not. cnstnd .and. col .gt. 0) then 
         do 26 i = 1, n
            r(i) = -g(i)
  26     continue
      else
         do 30 i = 1, nfree
            k = index(i)
            r(i) = -theta*(z(k) - x(k)) - g(k)
  30     continue
         call bmv(m,sy,wt,col,wa(2*m+1),wa(1),info)
         if (info .ne. 0) then
            info = -8
            return
         endif
         pointr = head 
         do 34 j = 1, col
            a1 = wa(j)
            a2 = theta*wa(col + j)
            do 32 i = 1, nfree
               k = index(i)
               r(i) = r(i) + wy(k,pointr)*a1 + ws(k,pointr)*a2
  32        continue
            pointr = mod(pointr,m) + 1
  34     continue
      endif

      return

      end

c======================= The end of cmprlb =============================

      subroutine errclb(n, m, factr, l, u, nbd, task, info, k)
 
      character*60     task
      integer          n, m, info, k, nbd(n)
      double precision factr, l(n), u(n)

c     ************
c
c     Subroutine errclb
c
c     This subroutine checks the validity of the input data.
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************

      integer          i
      double precision one,zero
      parameter        (one=1.0d0,zero=0.0d0)

c     Check the input arguments for errors.

      if (n .le. 0) task = 'ERROR: N .LE. 0'
      if (m .le. 0) task = 'ERROR: M .LE. 0'
      if (factr .lt. zero) task = 'ERROR: FACTR .LT. 0'

c     Check the validity of the arrays nbd(i), u(i), and l(i).

      do 10 i = 1, n
         if (nbd(i) .lt. 0 .or. nbd(i) .gt. 3) then
c                                                   return
            task = 'ERROR: INVALID NBD'
            info = -6
            k = i
         endif
         if (nbd(i) .eq. 2) then
            if (l(i) .gt. u(i)) then
c                                    return
               task = 'ERROR: NO FEASIBLE SOLUTION'
               info = -7
               k = i
            endif
         endif
  10  continue

      return

      end

c======================= The end of errclb =============================
 
      subroutine formk(n, nsub, ind, nenter, ileave, indx2, iupdat, 
     +                 updatd, wn, wn1, m, ws, wy, sy, theta, col,
     +                 head, info)

      integer          n, nsub, m, col, head, nenter, ileave, iupdat,
     +                 info, ind(n), indx2(n)
      double precision theta, wn(2*m, 2*m), wn1(2*m, 2*m),
     +                 ws(n, m), wy(n, m), sy(m, m)
      logical          updatd

c     ************
c
c     Subroutine formk 
c
c     This subroutine forms  the LEL^T factorization of the indefinite
c
c       matrix    K = [-D -Y'ZZ'Y/theta     L_a'-R_z'  ]
c                     [L_a -R_z           theta*S'AA'S ]
c                                                    where E = [-I  0]
c                                                              [ 0  I]
c     The matrix K can be shown to be equal to the matrix M^[-1]N
c       occurring in section 5.1 of [1], as well as to the matrix
c       Mbar^[-1] Nbar in section 5.3.
c
c     n is an integer variable.
c       On entry n is the dimension of the problem.
c       On exit n is unchanged.
c
c     nsub is an integer variable
c       On entry nsub is the number of subspace variables in free set.
c       On exit nsub is not changed.
c
c     ind is an integer array of dimension nsub.
c       On entry ind specifies the indices of subspace variables.
c       On exit ind is unchanged. 
c
c     nenter is an integer variable.
c       On entry nenter is the number of variables entering the 
c         free set.
c       On exit nenter is unchanged. 
c
c     ileave is an integer variable.
c       On entry indx2(ileave),...,indx2(n) are the variables leaving
c         the free set.
c       On exit ileave is unchanged. 
c
c     indx2 is an integer array of dimension n.
c       On entry indx2(1),...,indx2(nenter) are the variables entering
c         the free set, while indx2(ileave),...,indx2(n) are the
c         variables leaving the free set.
c       On exit indx2 is unchanged. 
c
c     iupdat is an integer variable.
c       On entry iupdat is the total number of BFGS updates made so far.
c       On exit iupdat is unchanged. 
c
c     updatd is a logical variable.
c       On entry 'updatd' is true if the L-BFGS matrix is updatd.
c       On exit 'updatd' is unchanged. 
c
c     wn is a double precision array of dimension 2m x 2m.
c       On entry wn is unspecified.
c       On exit the upper triangle of wn stores the LEL^T factorization
c         of the 2*col x 2*col indefinite matrix
c                     [-D -Y'ZZ'Y/theta     L_a'-R_z'  ]
c                     [L_a -R_z           theta*S'AA'S ]
c
c     wn1 is a double precision array of dimension 2m x 2m.
c       On entry wn1 stores the lower triangular part of 
c                     [Y' ZZ'Y   L_a'+R_z']
c                     [L_a+R_z   S'AA'S   ]
c         in the previous iteration.
c       On exit wn1 stores the corresponding updated matrices.
c       The purpose of wn1 is just to store these inner products
c       so they can be easily updated and inserted into wn.
c
c     m is an integer variable.
c       On entry m is the maximum number of variable metric corrections
c         used to define the limited memory matrix.
c       On exit m is unchanged.
c
c     ws, wy, sy, and wtyy are double precision arrays;
c     theta is a double precision variable;
c     col is an integer variable;
c     head is an integer variable.
c       On entry they store the information defining the
c                                          limited memory BFGS matrix:
c         ws(n,m) stores S, a set of s-vectors;
c         wy(n,m) stores Y, a set of y-vectors;
c         sy(m,m) stores S'Y;
c         wtyy(m,m) stores the Cholesky factorization
c                                   of (theta*S'S+LD^(-1)L')
c         theta is the scaling factor specifying B_0 = theta I;
c         col is the number of variable metric corrections stored;
c         head is the location of the 1st s- (or y-) vector in S (or Y).
c       On exit they are unchanged.
c
c     info is an integer variable.
c       On entry info is unspecified.
c       On exit info =  0 for normal return;
c                    = -1 when the 1st Cholesky factorization failed;
c                    = -2 when the 2st Cholesky factorization failed.
c
c     Subprograms called:
c
c       Linpack ... dcopy, dpofa, dtrsl.
c
c
c     References:
c       [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c       memory algorithm for bound constrained optimization'',
c       SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c       [2] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ``L-BFGS-B: a
c       limited memory FORTRAN code for solving bound constrained
c       optimization problems'', Tech. Report, NAM-11, EECS Department,
c       Northwestern University, 1994.
c
c       (Postscript files of these papers are available via anonymous
c        ftp to eecs.nwu.edu in the directory pub/lbfgs/lbfgs_bcm.)
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************

      integer          m2,ipntr,jpntr,iy,is,jy,js,is1,js1,k1,i,k,
     +                 col2,pbegin,pend,dbegin,dend,upcl
      double precision ddot,temp1,temp2,temp3,temp4
      double precision one,zero
      parameter        (one=1.0d0,zero=0.0d0)

c     Form the lower triangular part of
c               WN1 = [Y' ZZ'Y   L_a'+R_z'] 
c                     [L_a+R_z   S'AA'S   ]
c        where L_a is the strictly lower triangular part of S'AA'Y
c              R_z is the upper triangular part of S'ZZ'Y.
      
      if (updatd) then
         if (iupdat .gt. m) then 
c                                 shift old part of WN1.
            do 10 jy = 1, m - 1
               js = m + jy
               call dcopy(m-jy,wn1(jy+1,jy+1),1,wn1(jy,jy),1)
               call dcopy(m-jy,wn1(js+1,js+1),1,wn1(js,js),1)
               call dcopy(m-1,wn1(m+2,jy+1),1,wn1(m+1,jy),1)
  10        continue
         endif
 
c          put new rows in blocks (1,1), (2,1) and (2,2).
         pbegin = 1
         pend = nsub
         dbegin = nsub + 1
         dend = n
         iy = col
         is = m + col
         ipntr = head + col - 1
         if (ipntr .gt. m) ipntr = ipntr - m    
         jpntr = head
         do 20 jy = 1, col
            js = m + jy
            temp1 = zero
            temp2 = zero
            temp3 = zero
c             compute element jy of row 'col' of Y'ZZ'Y
            do 15 k = pbegin, pend
               k1 = ind(k)
               temp1 = temp1 + wy(k1,ipntr)*wy(k1,jpntr)
  15        continue
c             compute elements jy of row 'col' of L_a and S'AA'S
            do 16 k = dbegin, dend
               k1 = ind(k)
               temp2 = temp2 + ws(k1,ipntr)*ws(k1,jpntr)
               temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr)
  16        continue
            wn1(iy,jy) = temp1
            wn1(is,js) = temp2
            wn1(is,jy) = temp3
            jpntr = mod(jpntr,m) + 1
  20     continue
 
c          put new column in block (2,1).
         jy = col       
         jpntr = head + col - 1
         if (jpntr .gt. m) jpntr = jpntr - m
         ipntr = head
         do 30 i = 1, col
            is = m + i
            temp3 = zero
c             compute element i of column 'col' of R_z
            do 25 k = pbegin, pend
               k1 = ind(k)
               temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr)
  25        continue 
            ipntr = mod(ipntr,m) + 1
            wn1(is,jy) = temp3
  30     continue
         upcl = col - 1
      else
         upcl = col
      endif
 
c       modify the old parts in blocks (1,1) and (2,2) due to changes
c       in the set of free variables.
      ipntr = head      
      do 45 iy = 1, upcl
         is = m + iy
         jpntr = head
         do 40 jy = 1, iy
            js = m + jy
            temp1 = zero
            temp2 = zero
            temp3 = zero
            temp4 = zero
            do 35 k = 1, nenter
               k1 = indx2(k)
               temp1 = temp1 + wy(k1,ipntr)*wy(k1,jpntr)
               temp2 = temp2 + ws(k1,ipntr)*ws(k1,jpntr)
  35        continue
            do 36 k = ileave, n
               k1 = indx2(k)
               temp3 = temp3 + wy(k1,ipntr)*wy(k1,jpntr)
               temp4 = temp4 + ws(k1,ipntr)*ws(k1,jpntr)
  36        continue
            wn1(iy,jy) = wn1(iy,jy) + temp1 - temp3 
            wn1(is,js) = wn1(is,js) - temp2 + temp4 
            jpntr = mod(jpntr,m) + 1
  40     continue
         ipntr = mod(ipntr,m) + 1
  45  continue
 
c       modify the old parts in block (2,1).
      ipntr = head      
      do 60 is = m + 1, m + upcl
         jpntr = head 
         do 55 jy = 1, upcl
            temp1 = zero
            temp3 = zero
            do 50 k = 1, nenter
               k1 = indx2(k)
               temp1 = temp1 + ws(k1,ipntr)*wy(k1,jpntr)
  50        continue
            do 51 k = ileave, n
               k1 = indx2(k)
               temp3 = temp3 + ws(k1,ipntr)*wy(k1,jpntr)
  51        continue
         if (is .le. jy + m) then
               wn1(is,jy) = wn1(is,jy) + temp1 - temp3  
            else
               wn1(is,jy) = wn1(is,jy) - temp1 + temp3  
            endif
            jpntr = mod(jpntr,m) + 1
  55     continue
         ipntr = mod(ipntr,m) + 1
  60  continue
 
c     Form the upper triangle of WN = [D+Y' ZZ'Y/theta   -L_a'+R_z' ] 
c                                     [-L_a +R_z        S'AA'S*theta]

      m2 = 2*m
      do 70 iy = 1, col
         is = col + iy
         is1 = m + iy
         do 65 jy = 1, iy
            js = col + jy
            js1 = m + jy
            wn(jy,iy) = wn1(iy,jy)/theta
            wn(js,is) = wn1(is1,js1)*theta
  65     continue
         do 66 jy = 1, iy - 1
            wn(jy,is) = -wn1(is1,jy)
  66     continue
         do 67 jy = iy, col
            wn(jy,is) = wn1(is1,jy)
  67     continue
         wn(iy,iy) = wn(iy,iy) + sy(iy,iy)
  70  continue

c     Form the upper triangle of WN= [  LL'            L^-1(-L_a'+R_z')] 
c                                    [(-L_a +R_z)L'^-1   S'AA'S*theta  ]

c        first Cholesky factor (1,1) block of wn to get LL'
c                          with L' stored in the upper triangle of wn.
      call dpotrf('U', col, wn, m2, info)
      if (info .ne. 0) then
         info = -1
         return
      endif
c        then form L^-1(-L_a'+R_z') in the (1,2) block.
      col2 = 2*col
      do 71 js = col+1 ,col2
         call dtrtrs('U', 'T', 'N', col, 1, wn, m2, wn(1,js), col, info)
  71  continue

c     Form S'AA'S*theta + (L^-1(-L_a'+R_z'))'L^-1(-L_a'+R_z') in the
c        upper triangle of (2,2) block of wn.
                      

      do 72 is = col+1, col2
         do 74 js = is, col2
               wn(is,js) = wn(is,js) + ddot(col,wn(1,is),1,wn(1,js),1)
  74        continue
  72     continue

c     Cholesky factorization of (2,2) block of wn.

      call dpotrf('U', col, wn(col+1,col+1), m2, info)
      if (info .ne. 0) then
         info = -2
         return
      endif

      return

      end

c======================= The end of formk ==============================

      subroutine formt(m, wt, sy, ss, col, theta, info)
 
      integer          m, col, info
      double precision theta, wt(m, m), sy(m, m), ss(m, m)

c     ************
c
c     Subroutine formt
c
c       This subroutine forms the upper half of the pos. def. and symm.
c         T = theta*SS + L*D^(-1)*L', stores T in the upper triangle
c         of the array wt, and performs the Cholesky factorization of T
c         to produce J*J', with J' stored in the upper triangle of wt.
c
c     Subprograms called:
c
c       Linpack ... dpofa.
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************

      integer          i,j,k,k1
      double precision ddum
      double precision zero
      parameter        (zero=0.0d0)


c     Form the upper half of  T = theta*SS + L*D^(-1)*L',
c        store T in the upper triangle of the array wt.
 
      do 52 j = 1, col
         wt(1,j) = theta*ss(1,j)
  52  continue
      do 55 i = 2, col
         do 54 j = i, col
            k1 = min(i,j) - 1
            ddum  = zero
            do 53 k = 1, k1
               ddum  = ddum + sy(i,k)*sy(j,k)/sy(k,k)
  53        continue
            wt(i,j) = ddum + theta*ss(i,j)
  54     continue
  55  continue
 
c     Cholesky factorize T to J*J' with 
c        J' stored in the upper triangle of wt.
 
      call dpotrf('U', col, wt, m, info)
      if (info .ne. 0) then
         info = -3
      endif

      return

      end

c======================= The end of formt ==============================
 
      subroutine freev(n, nfree, index, nenter, ileave, indx2, 
     +                 iwhere, wrk, updatd, cnstnd, iprint, iter)

      integer n, nfree, nenter, ileave, iprint, iter, 
     +        index(n), indx2(n), iwhere(n)
      logical wrk, updatd, cnstnd

c     ************
c
c     Subroutine freev 
c
c     This subroutine counts the entering and leaving variables when
c       iter > 0, and finds the index set of free and active variables
c       at the GCP.
c
c     cnstnd is a logical variable indicating whether bounds are present
c
c     index is an integer array of dimension n
c       for i=1,...,nfree, index(i) are the indices of free variables
c       for i=nfree+1,...,n, index(i) are the indices of bound variables
c       On entry after the first iteration, index gives 
c         the free variables at the previous iteration.
c       On exit it gives the free variables based on the determination
c         in cauchy using the array iwhere.
c
c     indx2 is an integer array of dimension n
c       On entry indx2 is unspecified.
c       On exit with iter>0, indx2 indicates which variables
c          have changed status since the previous iteration.
c       For i= 1,...,nenter, indx2(i) have changed from bound to free.
c       For i= ileave+1,...,n, indx2(i) have changed from free to bound.
c 
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************
 
      integer iact,i,k

      nenter = 0
      ileave = n + 1
      if (iter .gt. 0 .and. cnstnd) then
c                           count the entering and leaving variables.
         do 20 i = 1, nfree
            k = index(i)

c            write(6,*) ' k  = index(i) ', k
c            write(6,*) ' index = ', i

            if (iwhere(k) .gt. 0) then
               ileave = ileave - 1
               indx2(ileave) = k
               if (iprint .ge. 100) write (6,*)
     +             'Variable ',k,' leaves the set of free variables'
            endif
  20     continue
         do 22 i = 1 + nfree, n
            k = index(i)
            if (iwhere(k) .le. 0) then
               nenter = nenter + 1
               indx2(nenter) = k
               if (iprint .ge. 100) write (6,*)
     +             'Variable ',k,' enters the set of free variables'
            endif
  22     continue
         if (iprint .ge. 99) write (6,*)
     +       n+1-ileave,' variables leave; ',nenter,' variables enter'
      endif
      wrk = (ileave .lt. n+1) .or. (nenter .gt. 0) .or. updatd
 
c     Find the index set of free and active variables at the GCP.
 
      nfree = 0 
      iact = n + 1
      do 24 i = 1, n
         if (iwhere(i) .le. 0) then
            nfree = nfree + 1
            index(nfree) = i
         else
            iact = iact - 1
            index(iact) = i
         endif
  24  continue
      if (iprint .ge. 99) write (6,*)
     +      nfree,' variables are free at GCP ',iter + 1  

      return

      end

c======================= The end of freev ==============================

      subroutine hpsolb(n, t, iorder, iheap)
      integer          iheap, n, iorder(n)
      double precision t(n)
  
c     ************
c
c     Subroutine hpsolb 
c
c     This subroutine sorts out the least element of t, and puts the
c       remaining elements of t in a heap.
c 
c     n is an integer variable.
c       On entry n is the dimension of the arrays t and iorder.
c       On exit n is unchanged.
c
c     t is a double precision array of dimension n.
c       On entry t stores the elements to be sorted,
c       On exit t(n) stores the least elements of t, and t(1) to t(n-1)
c         stores the remaining elements in the form of a heap.
c
c     iorder is an integer array of dimension n.
c       On entry iorder(i) is the index of t(i).
c       On exit iorder(i) is still the index of t(i), but iorder may be
c         permuted in accordance with t.
c
c     iheap is an integer variable specifying the task.
c       On entry iheap should be set as follows:
c         iheap .eq. 0 if t(1) to t(n) is not in the form of a heap,
c         iheap .ne. 0 if otherwise.
c       On exit iheap is unchanged.
c
c
c     References:
c       Algorithm 232 of CACM (J. W. J. Williams): HEAPSORT.
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c     ************
  
      integer          i,j,k,indxin,indxou
      double precision ddum,out

      if (iheap .eq. 0) then

c        Rearrange the elements t(1) to t(n) to form a heap.

         do 20 k = 2, n
            ddum  = t(k)
            indxin = iorder(k)

c           Add ddum to the heap.
            i = k
   10       continue
            if (i.gt.1) then
               j = i/2
               if (ddum .lt. t(j)) then
                  t(i) = t(j)
                  iorder(i) = iorder(j)
                  i = j
                  goto 10 
               endif  
            endif  
            t(i) = ddum
            iorder(i) = indxin
   20    continue
      endif
 
c     Assign to 'out' the value of t(1), the least member of the heap,
c        and rearrange the remaining members to form a heap as
c        elements 1 to n-1 of t.
 
      if (n .gt. 1) then
         i = 1
         out = t(1)
         indxou = iorder(1)
         ddum  = t(n)
         indxin  = iorder(n)

c        Restore the heap 
   30    continue
         j = i+i
         if (j .le. n-1) then
            if (t(j+1) .lt. t(j)) j = j+1
            if (t(j) .lt. ddum ) then
               t(i) = t(j)
               iorder(i) = iorder(j)
               i = j
               goto 30
            endif 
         endif 
         t(i) = ddum
         iorder(i) = indxin
 
c     Put the least member in t(n). 

         t(n) = out
         iorder(n) = indxou
      endif 

      return

      end

c====================== The end of hpsolb ==============================

      subroutine lnsrlb(n, l, u, nbd, x, f, fold, gd, gdold, g, d, r, t,
     +                  z, stp, dnorm, dtd, xstep, stpmx, iter, ifun,
     +                  iback, nfgv, info, task, boxed, cnstnd, csave,
     +                  isave, dsave)

      character*60     task, csave
      logical          boxed, cnstnd
      integer          n, iter, ifun, iback, nfgv, info,
     +                 nbd(n), isave(2)
      double precision f, fold, gd, gdold, stp, dnorm, dtd, xstep,
     +                 stpmx, x(n), l(n), u(n), g(n), d(n), r(n), t(n),
     +                 z(n), dsave(13)
c     **********
c
c     Subroutine lnsrlb
c
c     This subroutine calls subroutine dcsrch from the Minpack2 library
c       to perform the line search.  Subroutine dscrch is safeguarded so
c       that all trial points lie within the feasible region.
c
c     Subprograms called:
c
c       Minpack2 Library ... dcsrch.
c
c       Linpack ... dtrsl, ddot.
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     **********

      integer          i
      double           precision ddot,a1,a2
      double precision one,zero,big
      parameter        (one=1.0d0,zero=0.0d0,big=1.0d+10)
      double precision ftol,gtol,xtol
      parameter        (ftol=1.0d-3,gtol=0.9d0,xtol=0.1d0)

      if (task(1:5) .eq. 'FG_LN') goto 556

      dtd = ddot(n,d,1,d,1)
      dnorm = sqrt(dtd)

c     Determine the maximum step length.

      stpmx = big
      if (cnstnd) then
         if (iter .eq. 0) then
            stpmx = one
         else
            do 43 i = 1, n
               a1 = d(i)
               if (nbd(i) .ne. 0) then
                  if (a1 .lt. zero .and. nbd(i) .le. 2) then
                     a2 = l(i) - x(i)
                     if (a2 .ge. zero) then
                        stpmx = zero
                     else if (a1*stpmx .lt. a2) then
                        stpmx = a2/a1
                     endif
                  else if (a1 .gt. zero .and. nbd(i) .ge. 2) then
                     a2 = u(i) - x(i)
                     if (a2 .le. zero) then
                        stpmx = zero
                     else if (a1*stpmx .gt. a2) then
                        stpmx = a2/a1
                     endif
                  endif
               endif
  43        continue
         endif
      endif
 
      if (iter .eq. 0 .and. .not. boxed) then
         stp = min(one/dnorm, stpmx)
      else
         stp = one
      endif 

      call dcopy(n,x,1,t,1)
      call dcopy(n,g,1,r,1)
      fold = f
      ifun = 0
      iback = 0
      csave = 'START'
 556  continue
      gd = ddot(n,g,1,d,1)
      if (ifun .eq. 0) then
         gdold=gd
         if (gd .ge. zero) then
c                               the directional derivative >=0.
c                               Line search is impossible.
            if (iprint .ge. 0) then
               write(6,*)' ascent direction in projection gd = ', gd
            endif
            info = -4
            return
         endif
      endif

      call dcsrch(f,gd,stp,ftol,gtol,xtol,zero,stpmx,csave,isave,dsave)

      xstep = stp*dnorm
      if (csave(1:4) .ne. 'CONV' .and. csave(1:4) .ne. 'WARN') then
         task = 'FG_LNSRCH'
         ifun = ifun + 1
         nfgv = nfgv + 1
         iback = ifun - 1 
         if (stp .eq. one) then
            call dcopy(n,z,1,x,1)
         else
            do 41 i = 1, n
               x(i) = stp*d(i) + t(i)
  41        continue
         endif
      else
         task = 'NEW_X'
      endif

      return

      end

c======================= The end of lnsrlb =============================

      subroutine matupd(n, m, ws, wy, sy, ss, d, r, itail, 
     +                  iupdat, col, head, theta, rr, dr, stp, dtd)
 
      integer          n, m, itail, iupdat, col, head
      double precision theta, rr, dr, stp, dtd, d(n), r(n), 
     +                 ws(n, m), wy(n, m), sy(m, m), ss(m, m)

c     ************
c
c     Subroutine matupd
c
c       This subroutine updates matrices WS and WY, and forms the
c         middle matrix in B.
c
c     Subprograms called:
c
c       Linpack ... dcopy, ddot.
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************
 
      integer          j,pointr
      double precision ddot
      double precision one
      parameter        (one=1.0d0)

c     Set pointers for matrices WS and WY.
 
      if (iupdat .le. m) then
         col = iupdat
         itail = mod(head+iupdat-2,m) + 1
      else
         itail = mod(itail,m) + 1
         head = mod(head,m) + 1
      endif
 
c     Update matrices WS and WY.

      call dcopy(n,d,1,ws(1,itail),1)
      call dcopy(n,r,1,wy(1,itail),1)
 
c     Set theta=yy/ys.
 
      theta = rr/dr
 
c     Form the middle matrix in B.
 
c        update the upper triangle of SS,
c                                         and the lower triangle of SY:
      if (iupdat .gt. m) then
c                              move old information
         do 50 j = 1, col - 1
            call dcopy(j,ss(2,j+1),1,ss(1,j),1)
            call dcopy(col-j,sy(j+1,j+1),1,sy(j,j),1)
  50     continue
      endif
c        add new information: the last row of SY
c                                             and the last column of SS:
      pointr = head
      do 51 j = 1, col - 1
         sy(col,j) = ddot(n,d,1,wy(1,pointr),1)
         ss(j,col) = ddot(n,ws(1,pointr),1,d,1)
         pointr = mod(pointr,m) + 1
  51  continue
      if (stp .eq. one) then
         ss(col,col) = dtd
      else
         ss(col,col) = stp*stp*dtd
      endif
      sy(col,col) = dr
 
      return

      end

c======================= The end of matupd =============================

      subroutine prn1lb(n, m, l, u, x, iprint, itfile, epsmch)
 
      integer n, m, iprint, itfile
      double precision epsmch, x(n), l(n), u(n)

c     ************
c
c     Subroutine prn1lb
c
c     This subroutine prints the input data, initial point, upper and
c       lower bounds of each variable, machine precision, as well as 
c       the headings of the output.
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************

      integer i

      if (iprint .ge. 0) then
         write (6,7001) epsmch
         write (6,*) 'N = ',n,'    M = ',m
         if (iprint .ge. 1) then
            write (itfile,2001) epsmch
            write (itfile,*)'N = ',n,'    M = ',m
            write (itfile,9001)
            if (iprint .gt. 100) then
               write (6,1004) 'L =',(l(i),i = 1,n)
               write (6,1004) 'X0 =',(x(i),i = 1,n)
               write (6,1004) 'U =',(u(i),i = 1,n)
            endif 
         endif
      endif 

 1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4)))
 2001 format ('RUNNING THE L-BFGS-B CODE',/,/,
     + 'it    = iteration number',/,
     + 'nf    = number of function evaluations',/,
     + 'nseg  = number of segments explored during the Cauchy search',/,
     + 'nact  = number of active bounds at the generalized Cauchy point'
     + ,/,
     + 'sub   = manner in which the subspace minimization terminated:'
     + ,/,'        con = converged, bnd = a bound was reached',/,
     + 'itls  = number of iterations performed in the line search',/,
     + 'stepl = step length used',/,
     + 'tstep = norm of the displacement (total step)',/,
     + 'projg = norm of the projected gradient',/,
     + 'f     = function value',/,/,
     + '           * * *',/,/,
     + 'Machine precision =',1p,d10.3)
 7001 format ('RUNNING THE L-BFGS-B CODE',/,/,
     + '           * * *',/,/,
     + 'Machine precision =',1p,d10.3)
 9001 format (/,3x,'it',3x,'nf',2x,'nseg',2x,'nact',2x,'sub',2x,'itls',
     +        2x,'stepl',4x,'tstep',5x,'projg',8x,'f')

      return

      end

c======================= The end of prn1lb =============================

      subroutine prn2lb(n, x, f, g, iprint, itfile, iter, nfgv, nact, 
     +                  sbgnrm, nseg, word, iword, iback, stp, xstep)
 
      character*3      word
      integer          n, iprint, itfile, iter, nfgv, nact, nseg,
     +                 iword, iback
      double precision f, sbgnrm, stp, xstep, x(n), g(n)

c     ************
c
c     Subroutine prn2lb
c
c     This subroutine prints out new information after a successful
c       line search. 
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************

      integer i,imod

c           'word' records the status of subspace solutions.
      if (iword .eq. 0) then
c                            the subspace minimization converged.
         word = 'con'
      else if (iword .eq. 1) then
c                          the subspace minimization stopped at a bound.
         word = 'bnd'
      else if (iword .eq. 5) then
c                             the truncated Newton step has been used.
         word = 'TNT'
      else
         word = '---'
      endif
      if (iprint .ge. 99) then
         write (6,*) 'LINE SEARCH',iback,' times; norm of step = ',xstep
         write (6,2001) iter,f,sbgnrm
         if (iprint .gt. 100) then      
            write (6,1004) 'X =',(x(i), i = 1, n)
            write (6,1004) 'G =',(g(i), i = 1, n)
         endif
      else if (iprint .gt. 0) then 
         imod = mod(iter,iprint)
         if (imod .eq. 0) write (6,2001) iter,f,sbgnrm
      endif
      if (iprint .ge. 1) write (itfile,3001)
     +          iter,nfgv,nseg,nact,word,iback,stp,xstep,sbgnrm,f

 1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4)))
 2001 format
     +  (/,'At iterate',i5,4x,'f= ',1p,d12.5,4x,'|proj g|= ',1p,d12.5)
 3001 format(2(1x,i4),2(1x,i5),2x,a3,1x,i4,1p,2(2x,d7.1),1p,2(1x,d10.3))

      return

      end

c======================= The end of prn2lb =============================

      subroutine prn3lb(n, x, f, task, iprint, info, itfile, 
     +                  iter, nfgv, nintol, nskip, nact, sbgnrm, 
     +                  time, nseg, word, iback, stp, xstep, k, 
     +                  cachyt, sbtime, lnscht)
 
      character*60     task
      character*3      word
      integer          n, iprint, info, itfile, iter, nfgv, nintol,
     +                 nskip, nact, nseg, iback, k
      double precision f, sbgnrm, time, stp, xstep, cachyt, sbtime,
     +                 lnscht, x(n)

c     ************
c
c     Subroutine prn3lb
c
c     This subroutine prints out information when either a built-in
c       convergence test is satisfied or when an error message is
c       generated.
c       
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************

      integer i

      if (task(1:5) .eq. 'ERROR') goto 999

      if (iprint .ge. 0) then
         write (6,3003)
         write (6,3004)
         write(6,3005) n,iter,nfgv,nintol,nskip,nact,sbgnrm,f
         if (iprint .ge. 100) then
            write (6,1004) 'X =',(x(i),i = 1,n)
         endif  
         if (iprint .ge. 1) write (6,*) ' F =',f
      endif 
 999  continue
      if (iprint .ge. 0) then
         write (6,3009) task
         if (info .ne. 0) then
            if (info .eq. -1) write (6,9011)
            if (info .eq. -2) write (6,9012)
            if (info .eq. -3) write (6,9013)
            if (info .eq. -4) write (6,9014)
            if (info .eq. -5) write (6,9015)
            if (info .eq. -6) write (6,*)' Input nbd(',k,') is invalid.'
            if (info .eq. -7) 
     +      write (6,*)' l(',k,') > u(',k,').  No feasible solution.'
            if (info .eq. -8) write (6,9018)
            if (info .eq. -9) write (6,9019)
         endif
         if (iprint .ge. 1) write (6,3007) cachyt,sbtime,lnscht
         write (6,3008) time
         if (iprint .ge. 1) then
            if (info .eq. -4 .or. info .eq. -9) then
               write (itfile,3002)
     +             iter,nfgv,nseg,nact,word,iback,stp,xstep
            endif
            write (itfile,3009) task
            if (info .ne. 0) then
               if (info .eq. -1) write (itfile,9011)
               if (info .eq. -2) write (itfile,9012)
               if (info .eq. -3) write (itfile,9013)
               if (info .eq. -4) write (itfile,9014)
               if (info .eq. -5) write (itfile,9015)
               if (info .eq. -8) write (itfile,9018)
               if (info .eq. -9) write (itfile,9019)
            endif
            write (itfile,3008) time
         endif
      endif

 1004 format (/,a4, 1p, 6(1x,d11.4),/,(4x,1p,6(1x,d11.4)))
 3002 format(2(1x,i4),2(1x,i5),2x,a3,1x,i4,1p,2(2x,d7.1),6x,'-',10x,'-')
 3003 format (/,
     + '           * * *',/,/,
     + 'Tit   = total number of iterations',/,
     + 'Tnf   = total number of function evaluations',/,
     + 'Tnint = total number of segments explored during',
     +           ' Cauchy searches',/,
     + 'Skip  = number of BFGS updates skipped',/,
     + 'Nact  = number of active bounds at final generalized',
     +          ' Cauchy point',/,
     + 'Projg = norm of the final projected gradient',/,
     + 'F     = final function value',/,/,
     + '           * * *')
 3004 format (/,3x,'N',4x,'Tit',5x,'Tnf',2x,'Tnint',2x,
     +       'Skip',2x,'Nact',5x,'Projg',8x,'F')
 3005 format (i5,2(1x,i6),(1x,i6),(2x,i4),(1x,i5),1p,2(2x,d10.3))
 3007 format (/,' Cauchy                time',1p,e10.3,' seconds.',/ 
     +        ' Subspace minimization time',1p,e10.3,' seconds.',/
     +        ' Line search           time',1p,e10.3,' seconds.')
 3008 format (/,' Total User time',1p,e10.3,' seconds.',/)
 3009 format (/,a60)
 9011 format (/,
     +' Matrix in 1st Cholesky factorization in formk is not Pos. Def.')
 9012 format (/,
     +' Matrix in 2st Cholesky factorization in formk is not Pos. Def.')
 9013 format (/,
     +' Matrix in the Cholesky factorization in formt is not Pos. Def.')
 9014 format (/,
     +' Derivative >= 0, backtracking line search impossible.',/,
     +'   Previous x, f and g restored.',/,
     +' Possible causes: 1 error in function or gradient evaluation;',/,
     +'                  2 rounding errors dominate computation.')
 9015 format (/,
     +' Warning:  more than 10 function and gradient',/,
     +'   evaluations in the last line search.  Termination',/,
     +'   may possibly be caused by a bad search direction.')
 9018 format (/,' The triangular system is singular.')
 9019 format (/,
     +' Line search cannot locate an adequate point after 20 function',/
     +,'  and gradient evaluations.  Previous x, f and g restored.',/,
     +' Possible causes: 1 error in function or gradient evaluation;',/,
     +'                  2 rounding error dominate computation.')

      return

      end

c======================= The end of prn3lb =============================

      subroutine projgr(n, l, u, nbd, x, g, sbgnrm)

      integer          n, nbd(n)
      double precision sbgnrm, x(n), l(n), u(n), g(n)

c     ************
c
c     Subroutine projgr
c
c     This subroutine computes the infinity norm of the projected
c       gradient.
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************

      integer i
      double precision gi
      double precision one,zero
      parameter        (one=1.0d0,zero=0.0d0)

      sbgnrm = zero
      do 15 i = 1, n
        gi = g(i)
        if (nbd(i) .ne. 0) then
           if (gi .lt. zero) then
              if (nbd(i) .ge. 2) gi = max((x(i)-u(i)),gi)
           else
              if (nbd(i) .le. 2) gi = min((x(i)-l(i)),gi)
           endif
        endif
        sbgnrm = max(sbgnrm,abs(gi))
  15  continue

      return

      end

c======================= The end of projgr =============================

      subroutine subsm ( n, m, nsub, ind, l, u, nbd, x, d, xp, ws, wy,
     +                   theta, xx, gg,
     +                   col, head, iword, wv, wn, iprint, info )
      implicit none
      integer          n, m, nsub, col, head, iword, iprint, info, 
     +                 ind(nsub), nbd(n)
      double precision theta, 
     +                 l(n), u(n), x(n), d(n), xp(n), xx(n), gg(n),
     +                 ws(n, m), wy(n, m), 
     +                 wv(2*m), wn(2*m, 2*m)

c     **********************************************************************
c
c     This routine contains the major changes in the updated version.
c     The changes are described in the accompanying paper
c
c      Jose Luis Morales, Jorge Nocedal
c      "Remark On Algorithm 788: L-BFGS-B: Fortran Subroutines for Large-Scale
c       Bound Constrained Optimization". Decemmber 27, 2010.
c
c             J.L. Morales  Departamento de Matematicas, 
c                           Instituto Tecnologico Autonomo de Mexico
c                           Mexico D.F.
c
c             J, Nocedal    Department of Electrical Engineering and
c                           Computer Science.
c                           Northwestern University. Evanston, IL. USA
c
c                           January 17, 2011
c
c      **********************************************************************
c                           
c
c     Subroutine subsm
c
c     Given xcp, l, u, r, an index set that specifies
c       the active set at xcp, and an l-BFGS matrix B 
c       (in terms of WY, WS, SY, WT, head, col, and theta), 
c       this subroutine computes an approximate solution
c       of the subspace problem
c
c       (P)   min Q(x) = r'(x-xcp) + 1/2 (x-xcp)' B (x-xcp)
c
c             subject to l<=x<=u
c                       x_i=xcp_i for all i in A(xcp)
c                     
c       along the subspace unconstrained Newton direction 
c       
c          d = -(Z'BZ)^(-1) r.
c
c       The formula for the Newton direction, given the L-BFGS matrix
c       and the Sherman-Morrison formula, is
c
c          d = (1/theta)r + (1/theta*2) Z'WK^(-1)W'Z r.
c 
c       where
c                 K = [-D -Y'ZZ'Y/theta     L_a'-R_z'  ]
c                     [L_a -R_z           theta*S'AA'S ]
c
c     Note that this procedure for computing d differs 
c     from that described in [1]. One can show that the matrix K is
c     equal to the matrix M^[-1]N in that paper.
c
c     n is an integer variable.
c       On entry n is the dimension of the problem.
c       On exit n is unchanged.
c
c     m is an integer variable.
c       On entry m is the maximum number of variable metric corrections
c         used to define the limited memory matrix.
c       On exit m is unchanged.
c
c     nsub is an integer variable.
c       On entry nsub is the number of free variables.
c       On exit nsub is unchanged.
c
c     ind is an integer array of dimension nsub.
c       On entry ind specifies the coordinate indices of free variables.
c       On exit ind is unchanged.
c
c     l is a double precision array of dimension n.
c       On entry l is the lower bound of x.
c       On exit l is unchanged.
c
c     u is a double precision array of dimension n.
c       On entry u is the upper bound of x.
c       On exit u is unchanged.
c
c     nbd is a integer array of dimension n.
c       On entry nbd represents the type of bounds imposed on the
c         variables, and must be specified as follows:
c         nbd(i)=0 if x(i) is unbounded,
c                1 if x(i) has only a lower bound,
c                2 if x(i) has both lower and upper bounds, and
c                3 if x(i) has only an upper bound.
c       On exit nbd is unchanged.
c
c     x is a double precision array of dimension n.
c       On entry x specifies the Cauchy point xcp. 
c       On exit x(i) is the minimizer of Q over the subspace of
c                                                        free variables. 
c
c     d is a double precision array of dimension n.
c       On entry d is the reduced gradient of Q at xcp.
c       On exit d is the Newton direction of Q. 
c
c    xp is a double precision array of dimension n.
c       used to safeguard the projected Newton direction 
c
c    xx is a double precision array of dimension n
c       On entry it holds the current iterate
c       On output it is unchanged

c    gg is a double precision array of dimension n
c       On entry it holds the gradient at the current iterate
c       On output it is unchanged
c
c     ws and wy are double precision arrays;
c     theta is a double precision variable;
c     col is an integer variable;
c     head is an integer variable.
c       On entry they store the information defining the
c                                          limited memory BFGS matrix:
c         ws(n,m) stores S, a set of s-vectors;
c         wy(n,m) stores Y, a set of y-vectors;
c         theta is the scaling factor specifying B_0 = theta I;
c         col is the number of variable metric corrections stored;
c         head is the location of the 1st s- (or y-) vector in S (or Y).
c       On exit they are unchanged.
c
c     iword is an integer variable.
c       On entry iword is unspecified.
c       On exit iword specifies the status of the subspace solution.
c         iword = 0 if the solution is in the box,
c                 1 if some bound is encountered.
c
c     wv is a double precision working array of dimension 2m.
c
c     wn is a double precision array of dimension 2m x 2m.
c       On entry the upper triangle of wn stores the LEL^T factorization
c         of the indefinite matrix
c
c              K = [-D -Y'ZZ'Y/theta     L_a'-R_z'  ]
c                  [L_a -R_z           theta*S'AA'S ]
c                                                    where E = [-I  0]
c                                                              [ 0  I]
c       On exit wn is unchanged.
c
c     iprint is an INTEGER variable that must be set by the user.
c       It controls the frequency and type of output generated:
c        iprint<0    no output is generated;
c        iprint=0    print only one line at the last iteration;
c        0<iprint<99 print also f and |proj g| every iprint iterations;
c        iprint=99   print details of every iteration except n-vectors;
c        iprint=100  print also the changes of active set and final x;
c        iprint>100  print details of every iteration including x and g;
c       When iprint > 0, the file iterate.dat will be created to
c                        summarize the iteration.
c
c     info is an integer variable.
c       On entry info is unspecified.
c       On exit info = 0       for normal return,
c                    = nonzero for abnormal return 
c                                  when the matrix K is ill-conditioned.
c
c     Subprograms called:
c
c       Linpack dtrsl.
c
c
c     References:
c
c       [1] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, ``A limited
c       memory algorithm for bound constrained optimization'',
c       SIAM J. Scientific Computing 16 (1995), no. 5, pp. 1190--1208.
c
c
c
c                           *  *  *
c
c     NEOS, November 1994. (Latest revision June 1996.)
c     Optimization Technology Center.
c     Argonne National Laboratory and Northwestern University.
c     Written by
c                        Ciyou Zhu
c     in collaboration with R.H. Byrd, P. Lu-Chen and J. Nocedal.
c
c
c     ************

      integer          pointr,m2,col2,ibd,jy,js,i,j,k
      double precision alpha, xk, dk, temp1, temp2 
      double precision one,zero
      parameter        (one=1.0d0,zero=0.0d0)
c
      double precision dd_p

      if (nsub .le. 0) return
      if (iprint .ge. 99) write (6,1001)

c     Compute wv = W'Zd.

      pointr = head 
      do 20 i = 1, col
         temp1 = zero
         temp2 = zero
         do 10 j = 1, nsub
            k = ind(j)
            temp1 = temp1 + wy(k,pointr)*d(j)
            temp2 = temp2 + ws(k,pointr)*d(j)
  10     continue
         wv(i) = temp1
         wv(col + i) = theta*temp2
         pointr = mod(pointr,m) + 1
  20  continue
 
c     Compute wv:=K^(-1)wv.

      m2 = 2*m
      col2 = 2*col
      call dtrtrs('U', 'T', 'N', col2, 1, wn, m2, wv, col2, info)
      if (info .ne. 0) return
      do 25 i = 1, col
         wv(i) = -wv(i)
  25     continue
      call dtrtrs('U', 'N', 'N', col2, 1, wn, m2, wv, col2, info)
      if (info .ne. 0) return
 
c     Compute d = (1/theta)d + (1/theta**2)Z'W wv.
 
      pointr = head
      do 40 jy = 1, col
         js = col + jy
         do 30 i = 1, nsub
            k = ind(i)
            d(i) = d(i) + wy(k,pointr)*wv(jy)/theta     
     +                  + ws(k,pointr)*wv(js)
  30     continue
         pointr = mod(pointr,m) + 1
  40  continue

      call dscal( nsub, one/theta, d, 1 )
c 
c-----------------------------------------------------------------
c     Let us try the projection, d is the Newton direction

      iword = 0

      call dcopy ( n, x, 1, xp, 1 )
c
      do 50 i=1, nsub
         k  = ind(i)
         dk = d(i)
         xk = x(k)
         if ( nbd(k) .ne. 0 ) then
c
            if ( nbd(k).eq.1 ) then          ! lower bounds only
               x(k) = max( l(k), xk + dk )
               if ( x(k).eq.l(k) ) iword = 1
            else 
c     
               if ( nbd(k).eq.2 ) then       ! upper and lower bounds
                  xk   = max( l(k), xk + dk ) 
                  x(k) = min( u(k), xk )
                  if ( x(k).eq.l(k) .or. x(k).eq.u(k) ) iword = 1
               else
c
                  if ( nbd(k).eq.3 ) then    ! upper bounds only
                     x(k) = min( u(k), xk + dk )
                     if ( x(k).eq.u(k) ) iword = 1
                  end if 
               end if
            end if
c            
         else                                ! free variables
            x(k) = xk + dk
         end if 
 50   continue
c
      if ( iword.eq.0 ) then
         go to 911
      end if
c
c     check sign of the directional derivative
c
      dd_p = zero
      do 55 i=1, n
         dd_p  = dd_p + (x(i) - xx(i))*gg(i)
 55   continue
      if ( dd_p .gt.zero ) then
         call dcopy( n, xp, 1, x, 1 )
         if (iprint .ge. 0) then
            write(6,*) ' Positive dir derivative in projection '
            write(6,*) ' Using the backtracking step '
         endif
      else
         go to 911
      endif
c
c-----------------------------------------------------------------
c
      alpha = one
      temp1 = alpha
      ibd   = 0 
      do 60 i = 1, nsub
         k = ind(i)
         dk = d(i)
         if (nbd(k) .ne. 0) then
            if (dk .lt. zero .and. nbd(k) .le. 2) then
               temp2 = l(k) - x(k)
               if (temp2 .ge. zero) then
                  temp1 = zero
               else if (dk*alpha .lt. temp2) then
                  temp1 = temp2/dk
               endif
            else if (dk .gt. zero .and. nbd(k) .ge. 2) then
               temp2 = u(k) - x(k)
               if (temp2 .le. zero) then
                  temp1 = zero
               else if (dk*alpha .gt. temp2) then
                  temp1 = temp2/dk
               endif
            endif
            if (temp1 .lt. alpha) then
               alpha = temp1
               ibd = i
            endif
         endif
 60   continue
      
      if (alpha .lt. one) then
         dk = d(ibd)
         k = ind(ibd)
         if (dk .gt. zero) then
            x(k) = u(k)
            d(ibd) = zero
         else if (dk .lt. zero) then
            x(k) = l(k)
            d(ibd) = zero
         endif
      endif
      do 70 i = 1, nsub
         k    = ind(i)
         x(k) = x(k) + alpha*d(i)
 70   continue
cccccc
 911  continue

      if (iprint .ge. 99) write (6,1004)

 1001 format (/,'----------------SUBSM entered-----------------',/)
 1004 format (/,'----------------exit SUBSM --------------------',/)

      return

      end
c====================== The end of subsm ===============================

      subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax,
     +                  task,isave,dsave)
      character*(*) task
      integer isave(2)
      double precision f,g,stp,ftol,gtol,xtol,stpmin,stpmax
      double precision dsave(13)
c     **********
c
c     Subroutine dcsrch
c
c     This subroutine finds a step that satisfies a sufficient
c     decrease condition and a curvature condition.
c
c     Each call of the subroutine updates an interval with 
c     endpoints stx and sty. The interval is initially chosen 
c     so that it contains a minimizer of the modified function
c
c           psi(stp) = f(stp) - f(0) - ftol*stp*f'(0).
c
c     If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
c     interval is chosen so that it contains a minimizer of f. 
c
c     The algorithm is designed to find a step that satisfies 
c     the sufficient decrease condition 
c
c           f(stp) <= f(0) + ftol*stp*f'(0),
c
c     and the curvature condition
c
c           abs(f'(stp)) <= gtol*abs(f'(0)).
c
c     If ftol is less than gtol and if, for example, the function
c     is bounded below, then there is always a step which satisfies
c     both conditions. 
c
c     If no step can be found that satisfies both conditions, then 
c     the algorithm stops with a warning. In this case stp only 
c     satisfies the sufficient decrease condition.
c
c     A typical invocation of dcsrch has the following outline:
c
c     task = 'START'
c  10 continue
c        call dcsrch( ... )
c        if (task .eq. 'FG') then
c           Evaluate the function and the gradient at stp 
c           goto 10
c           end if
c
c     NOTE: The user must no alter work arrays between calls.
c
c     The subroutine statement is
c
c        subroutine dcsrch(f,g,stp,ftol,gtol,xtol,stpmin,stpmax,
c                          task,isave,dsave)
c     where
c
c       f is a double precision variable.
c         On initial entry f is the value of the function at 0.
c            On subsequent entries f is the value of the 
c            function at stp.
c         On exit f is the value of the function at stp.
c
c       g is a double precision variable.
c         On initial entry g is the derivative of the function at 0.
c            On subsequent entries g is the derivative of the 
c            function at stp.
c         On exit g is the derivative of the function at stp.
c
c       stp is a double precision variable. 
c         On entry stp is the current estimate of a satisfactory 
c            step. On initial entry, a positive initial estimate 
c            must be provided. 
c         On exit stp is the current estimate of a satisfactory step
c            if task = 'FG'. If task = 'CONV' then stp satisfies
c            the sufficient decrease and curvature condition.
c
c       ftol is a double precision variable.
c         On entry ftol specifies a nonnegative tolerance for the 
c            sufficient decrease condition.
c         On exit ftol is unchanged.
c
c       gtol is a double precision variable.
c         On entry gtol specifies a nonnegative tolerance for the 
c            curvature condition. 
c         On exit gtol is unchanged.
c
c       xtol is a double precision variable.
c         On entry xtol specifies a nonnegative relative tolerance
c            for an acceptable step. The subroutine exits with a
c            warning if the relative difference between sty and stx
c            is less than xtol.
c         On exit xtol is unchanged.
c
c       stpmin is a double precision variable.
c         On entry stpmin is a nonnegative lower bound for the step.
c         On exit stpmin is unchanged.
c
c       stpmax is a double precision variable.
c         On entry stpmax is a nonnegative upper bound for the step.
c         On exit stpmax is unchanged.
c
c       task is a character variable of length at least 60.
c         On initial entry task must be set to 'START'.
c         On exit task indicates the required action:
c
c            If task(1:2) = 'FG' then evaluate the function and 
c            derivative at stp and call dcsrch again.
c
c            If task(1:4) = 'CONV' then the search is successful.
c
c            If task(1:4) = 'WARN' then the subroutine is not able
c            to satisfy the convergence conditions. The exit value of
c            stp contains the best point found during the search.
c
c            If task(1:5) = 'ERROR' then there is an error in the
c            input arguments.
c
c         On exit with convergence, a warning or an error, the
c            variable task contains additional information.
c
c       isave is an integer work array of dimension 2.
c         
c       dsave is a double precision work array of dimension 13.
c
c     Subprograms called
c
c       MINPACK-2 ... dcstep
c
c     MINPACK-1 Project. June 1983.
c     Argonne National Laboratory. 
c     Jorge J. More' and David J. Thuente.
c
c     MINPACK-2 Project. October 1993.
c     Argonne National Laboratory and University of Minnesota. 
c     Brett M. Averick, Richard G. Carter, and Jorge J. More'. 
c
c     **********
      double precision zero,p5,p66
      parameter(zero=0.0d0,p5=0.5d0,p66=0.66d0)
      double precision xtrapl,xtrapu
      parameter(xtrapl=1.1d0,xtrapu=4.0d0)

      logical brackt
      integer stage
      double precision finit,ftest,fm,fx,fxm,fy,fym,ginit,gtest,
     +       gm,gx,gxm,gy,gym,stx,sty,stmin,stmax,width,width1

c     Initialization block.

      if (task(1:5) .eq. 'START') then

c        Check the input arguments for errors.

         if (stp .lt. stpmin) task = 'ERROR: STP .LT. STPMIN'
         if (stp .gt. stpmax) task = 'ERROR: STP .GT. STPMAX'
         if (g .ge. zero) task = 'ERROR: INITIAL G .GE. ZERO'
         if (ftol .lt. zero) task = 'ERROR: FTOL .LT. ZERO'
         if (gtol .lt. zero) task = 'ERROR: GTOL .LT. ZERO'
         if (xtol .lt. zero) task = 'ERROR: XTOL .LT. ZERO'
         if (stpmin .lt. zero) task = 'ERROR: STPMIN .LT. ZERO'
         if (stpmax .lt. stpmin) task = 'ERROR: STPMAX .LT. STPMIN'

c        Exit if there are errors on input.

         if (task(1:5) .eq. 'ERROR') return

c        Initialize local variables.

         brackt = .false.
         stage = 1
         finit = f
         ginit = g
         gtest = ftol*ginit
         width = stpmax - stpmin
         width1 = width/p5

c        The variables stx, fx, gx contain the values of the step, 
c        function, and derivative at the best step. 
c        The variables sty, fy, gy contain the value of the step, 
c        function, and derivative at sty.
c        The variables stp, f, g contain the values of the step, 
c        function, and derivative at stp.

         stx = zero
         fx = finit
         gx = ginit
         sty = zero
         fy = finit
         gy = ginit
         stmin = zero
         stmax = stp + xtrapu*stp
         task = 'FG'

         goto 1000

      else

c        Restore local variables.

         if (isave(1) .eq. 1) then
            brackt = .true.
         else
            brackt = .false.
         endif
         stage = isave(2) 
         ginit = dsave(1) 
         gtest = dsave(2) 
         gx = dsave(3) 
         gy = dsave(4) 
         finit = dsave(5) 
         fx = dsave(6) 
         fy = dsave(7) 
         stx = dsave(8) 
         sty = dsave(9) 
         stmin = dsave(10) 
         stmax = dsave(11) 
         width = dsave(12) 
         width1 = dsave(13) 

      endif

c     If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
c     algorithm enters the second stage.

      ftest = finit + stp*gtest
      if (stage .eq. 1 .and. f .le. ftest .and. g .ge. zero) 
     +   stage = 2

c     Test for warnings.

      if (brackt .and. (stp .le. stmin .or. stp .ge. stmax))
     +   task = 'WARNING: ROUNDING ERRORS PREVENT PROGRESS'
      if (brackt .and. stmax - stmin .le. xtol*stmax) 
     +   task = 'WARNING: XTOL TEST SATISFIED'
      if (stp .eq. stpmax .and. f .le. ftest .and. g .le. gtest) 
     +   task = 'WARNING: STP = STPMAX'
      if (stp .eq. stpmin .and. (f .gt. ftest .or. g .ge. gtest)) 
     +   task = 'WARNING: STP = STPMIN'

c     Test for convergence.

      if (f .le. ftest .and. abs(g) .le. gtol*(-ginit)) 
     +   task = 'CONVERGENCE'

c     Test for termination.

      if (task(1:4) .eq. 'WARN' .or. task(1:4) .eq. 'CONV') goto 1000

c     A modified function is used to predict the step during the
c     first stage if a lower function value has been obtained but 
c     the decrease is not sufficient.

      if (stage .eq. 1 .and. f .le. fx .and. f .gt. ftest) then

c        Define the modified function and derivative values.

         fm = f - stp*gtest
         fxm = fx - stx*gtest
         fym = fy - sty*gtest
         gm = g - gtest
         gxm = gx - gtest
         gym = gy - gtest

c        Call dcstep to update stx, sty, and to compute the new step.

         call dcstep(stx,fxm,gxm,sty,fym,gym,stp,fm,gm,
     +               brackt,stmin,stmax)

c        Reset the function and derivative values for f.

         fx = fxm + stx*gtest
         fy = fym + sty*gtest
         gx = gxm + gtest
         gy = gym + gtest

      else

c       Call dcstep to update stx, sty, and to compute the new step.

        call dcstep(stx,fx,gx,sty,fy,gy,stp,f,g,
     +              brackt,stmin,stmax)

      endif

c     Decide if a bisection step is needed.

      if (brackt) then
         if (abs(sty-stx) .ge. p66*width1) stp = stx + p5*(sty - stx)
         width1 = width
         width = abs(sty-stx)
      endif

c     Set the minimum and maximum steps allowed for stp.

      if (brackt) then
         stmin = min(stx,sty)
         stmax = max(stx,sty)
      else
         stmin = stp + xtrapl*(stp - stx)
         stmax = stp + xtrapu*(stp - stx)
      endif
 
c     Force the step to be within the bounds stpmax and stpmin.
 
      stp = max(stp,stpmin)
      stp = min(stp,stpmax)

c     If further progress is not possible, let stp be the best
c     point obtained during the search.

      if (brackt .and. (stp .le. stmin .or. stp .ge. stmax)
     +   .or. (brackt .and. stmax-stmin .le. xtol*stmax)) stp = stx

c     Obtain another function and derivative.

      task = 'FG'

 1000 continue

c     Save local variables.

      if (brackt) then
         isave(1) = 1
      else
         isave(1) = 0
      endif
      isave(2) = stage
      dsave(1) =  ginit
      dsave(2) =  gtest
      dsave(3) =  gx
      dsave(4) =  gy
      dsave(5) =  finit
      dsave(6) =  fx
      dsave(7) =  fy
      dsave(8) =  stx
      dsave(9) =  sty
      dsave(10) = stmin
      dsave(11) = stmax
      dsave(12) = width
      dsave(13) = width1

      return
      end
      
c====================== The end of dcsrch ==============================

      subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
     +                  stpmin,stpmax)
      logical brackt
      double precision stx,fx,dx,sty,fy,dy,stp,fp,dp,stpmin,stpmax
c     **********
c
c     Subroutine dcstep
c
c     This subroutine computes a safeguarded step for a search
c     procedure and updates an interval that contains a step that
c     satisfies a sufficient decrease and a curvature condition.
c
c     The parameter stx contains the step with the least function
c     value. If brackt is set to .true. then a minimizer has
c     been bracketed in an interval with endpoints stx and sty.
c     The parameter stp contains the current step. 
c     The subroutine assumes that if brackt is set to .true. then
c
c           min(stx,sty) < stp < max(stx,sty),
c
c     and that the derivative at stx is negative in the direction 
c     of the step.
c
c     The subroutine statement is
c
c       subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
c                         stpmin,stpmax)
c
c     where
c
c       stx is a double precision variable.
c         On entry stx is the best step obtained so far and is an
c            endpoint of the interval that contains the minimizer. 
c         On exit stx is the updated best step.
c
c       fx is a double precision variable.
c         On entry fx is the function at stx.
c         On exit fx is the function at stx.
c
c       dx is a double precision variable.
c         On entry dx is the derivative of the function at 
c            stx. The derivative must be negative in the direction of 
c            the step, that is, dx and stp - stx must have opposite 
c            signs.
c         On exit dx is the derivative of the function at stx.
c
c       sty is a double precision variable.
c         On entry sty is the second endpoint of the interval that 
c            contains the minimizer.
c         On exit sty is the updated endpoint of the interval that 
c            contains the minimizer.
c
c       fy is a double precision variable.
c         On entry fy is the function at sty.
c         On exit fy is the function at sty.
c
c       dy is a double precision variable.
c         On entry dy is the derivative of the function at sty.
c         On exit dy is the derivative of the function at the exit sty.
c
c       stp is a double precision variable.
c         On entry stp is the current step. If brackt is set to .true.
c            then on input stp must be between stx and sty. 
c         On exit stp is a new trial step.
c
c       fp is a double precision variable.
c         On entry fp is the function at stp
c         On exit fp is unchanged.
c
c       dp is a double precision variable.
c         On entry dp is the the derivative of the function at stp.
c         On exit dp is unchanged.
c
c       brackt is an logical variable.
c         On entry brackt specifies if a minimizer has been bracketed.
c            Initially brackt must be set to .false.
c         On exit brackt specifies if a minimizer has been bracketed.
c            When a minimizer is bracketed brackt is set to .true.
c
c       stpmin is a double precision variable.
c         On entry stpmin is a lower bound for the step.
c         On exit stpmin is unchanged.
c
c       stpmax is a double precision variable.
c         On entry stpmax is an upper bound for the step.
c         On exit stpmax is unchanged.
c
c     MINPACK-1 Project. June 1983
c     Argonne National Laboratory. 
c     Jorge J. More' and David J. Thuente.
c
c     MINPACK-2 Project. October 1993.
c     Argonne National Laboratory and University of Minnesota. 
c     Brett M. Averick and Jorge J. More'.
c
c     **********
      double precision zero,p66,two,three
      parameter(zero=0.0d0,p66=0.66d0,two=2.0d0,three=3.0d0)
   
      double precision gamma,p,q,r,s,sgnd,stpc,stpf,stpq,theta

      sgnd = dp*(dx/abs(dx))

c     First case: A higher function value. The minimum is bracketed. 
c     If the cubic step is closer to stx than the quadratic step, the 
c     cubic step is taken, otherwise the average of the cubic and 
c     quadratic steps is taken.

      if (fp .gt. fx) then
         theta = three*(fx - fp)/(stp - stx) + dx + dp
         s = max(abs(theta),abs(dx),abs(dp))
         gamma = s*sqrt((theta/s)**2 - (dx/s)*(dp/s))
         if (stp .lt. stx) gamma = -gamma
         p = (gamma - dx) + theta
         q = ((gamma - dx) + gamma) + dp
         r = p/q
         stpc = stx + r*(stp - stx)
         stpq = stx + ((dx/((fx - fp)/(stp - stx) + dx))/two)*
     +                                                       (stp - stx)
         if (abs(stpc-stx) .lt. abs(stpq-stx)) then
            stpf = stpc
         else
            stpf = stpc + (stpq - stpc)/two
         endif
         brackt = .true.

c     Second case: A lower function value and derivatives of opposite 
c     sign. The minimum is bracketed. If the cubic step is farther from 
c     stp than the secant step, the cubic step is taken, otherwise the 
c     secant step is taken.

      else if (sgnd .lt. zero) then
         theta = three*(fx - fp)/(stp - stx) + dx + dp
         s = max(abs(theta),abs(dx),abs(dp))
         gamma = s*sqrt((theta/s)**2 - (dx/s)*(dp/s))
         if (stp .gt. stx) gamma = -gamma
         p = (gamma - dp) + theta
         q = ((gamma - dp) + gamma) + dx
         r = p/q
         stpc = stp + r*(stx - stp)
         stpq = stp + (dp/(dp - dx))*(stx - stp)
         if (abs(stpc-stp) .gt. abs(stpq-stp)) then
            stpf = stpc
         else
            stpf = stpq
         endif
         brackt = .true.

c     Third case: A lower function value, derivatives of the same sign,
c     and the magnitude of the derivative decreases.

      else if (abs(dp) .lt. abs(dx)) then

c        The cubic step is computed only if the cubic tends to infinity 
c        in the direction of the step or if the minimum of the cubic
c        is beyond stp. Otherwise the cubic step is defined to be the 
c        secant step.

         theta = three*(fx - fp)/(stp - stx) + dx + dp
         s = max(abs(theta),abs(dx),abs(dp))

c        The case gamma = 0 only arises if the cubic does not tend
c        to infinity in the direction of the step.

         gamma = s*sqrt(max(zero,(theta/s)**2-(dx/s)*(dp/s)))
         if (stp .gt. stx) gamma = -gamma
         p = (gamma - dp) + theta
         q = (gamma + (dx - dp)) + gamma
         r = p/q
         if (r .lt. zero .and. gamma .ne. zero) then
            stpc = stp + r*(stx - stp)
         else if (stp .gt. stx) then
            stpc = stpmax
         else
            stpc = stpmin
         endif
         stpq = stp + (dp/(dp - dx))*(stx - stp)

         if (brackt) then

c           A minimizer has been bracketed. If the cubic step is 
c           closer to stp than the secant step, the cubic step is 
c           taken, otherwise the secant step is taken.

            if (abs(stpc-stp) .lt. abs(stpq-stp)) then
               stpf = stpc
            else
               stpf = stpq
            endif
            if (stp .gt. stx) then
               stpf = min(stp+p66*(sty-stp),stpf)
            else
               stpf = max(stp+p66*(sty-stp),stpf)
            endif
         else

c           A minimizer has not been bracketed. If the cubic step is 
c           farther from stp than the secant step, the cubic step is 
c           taken, otherwise the secant step is taken.

            if (abs(stpc-stp) .gt. abs(stpq-stp)) then
               stpf = stpc
            else
               stpf = stpq
            endif
            stpf = min(stpmax,stpf)
            stpf = max(stpmin,stpf)
         endif

c     Fourth case: A lower function value, derivatives of the same sign, 
c     and the magnitude of the derivative does not decrease. If the 
c     minimum is not bracketed, the step is either stpmin or stpmax, 
c     otherwise the cubic step is taken.

      else
         if (brackt) then
            theta = three*(fp - fy)/(sty - stp) + dy + dp
            s = max(abs(theta),abs(dy),abs(dp))
            gamma = s*sqrt((theta/s)**2 - (dy/s)*(dp/s))
            if (stp .gt. sty) gamma = -gamma
            p = (gamma - dp) + theta
            q = ((gamma - dp) + gamma) + dy
            r = p/q
            stpc = stp + r*(sty - stp)
            stpf = stpc
         else if (stp .gt. stx) then
            stpf = stpmax
         else
            stpf = stpmin
         endif
      endif

c     Update the interval which contains a minimizer.

      if (fp .gt. fx) then
         sty = stp
         fy = fp
         dy = dp
      else
         if (sgnd .lt. zero) then
            sty = stx
            fy = fx
            dy = dx
         endif
         stx = stp
         fx = fp
         dx = dp
      endif

c     Compute the new step.

      stp = stpf

      return
      end