1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
// Copyright (C) 2020-2025 Yixuan Qiu <yixuan.qiu@cos.name>
// Under MIT license
#ifndef LBFGSPP_LINE_SEARCH_MORE_THUENTE_H
#define LBFGSPP_LINE_SEARCH_MORE_THUENTE_H
#include <Eigen/Core>
#include <stdexcept> // std::invalid_argument, std::runtime_error
#include "Param.h"
namespace LBFGSpp {
///
/// The line search algorithm by Moré and Thuente (1994), currently used for the L-BFGS-B algorithm.
///
/// The target of this line search algorithm is to find a step size \f$\alpha\f$ that satisfies the strong Wolfe condition
/// \f$f(x+\alpha d) \le f(x) + \alpha\mu g(x)^T d\f$ and \f$|g(x+\alpha d)^T d| \le \eta|g(x)^T d|\f$.
/// Our implementation is a simplified version of the algorithm in [1]. We assume that \f$0<\mu<\eta<1\f$, while in [1]
/// they do not assume \f$\eta>\mu\f$. As a result, the algorithm in [1] has two stages, but in our implementation we
/// only need the first stage to guarantee the convergence.
///
/// Reference:
/// [1] Moré, J. J., & Thuente, D. J. (1994). Line search algorithms with guaranteed sufficient decrease.
///
template <typename Scalar>
class LineSearchMoreThuente
{
private:
using Vector = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
// Minimizer of a quadratic function q(x) = c0 + c1 * x + c2 * x^2
// that interpolates fa, ga, and fb, assuming the minimizer exists
// For case I: fb >= fa and ga * (b - a) < 0
static Scalar quadratic_minimizer(const Scalar& a, const Scalar& b, const Scalar& fa, const Scalar& ga, const Scalar& fb)
{
const Scalar ba = b - a;
const Scalar w = Scalar(0.5) * ba * ga / (fa - fb + ba * ga);
return a + w * ba;
}
// Minimizer of a quadratic function q(x) = c0 + c1 * x + c2 * x^2
// that interpolates fa, ga and gb, assuming the minimizer exists
// The result actually does not depend on fa
// For case II: ga * (b - a) < 0, ga * gb < 0
// For case III: ga * (b - a) < 0, ga * ga >= 0, |gb| <= |ga|
static Scalar quadratic_minimizer(const Scalar& a, const Scalar& b, const Scalar& ga, const Scalar& gb)
{
const Scalar w = ga / (ga - gb);
return a + w * (b - a);
}
// Local minimizer of a cubic function q(x) = c0 + c1 * x + c2 * x^2 + c3 * x^3
// that interpolates fa, ga, fb and gb, assuming a != b
// Also sets a flag indicating whether the minimizer exists
static Scalar cubic_minimizer(const Scalar& a, const Scalar& b, const Scalar& fa, const Scalar& fb,
const Scalar& ga, const Scalar& gb, bool& exists)
{
using std::abs;
using std::sqrt;
const Scalar apb = a + b;
const Scalar ba = b - a;
const Scalar ba2 = ba * ba;
const Scalar fba = fb - fa;
const Scalar gba = gb - ga;
// z3 = c3 * (b-a)^3, z2 = c2 * (b-a)^3, z1 = c1 * (b-a)^3
const Scalar z3 = (ga + gb) * ba - Scalar(2) * fba;
const Scalar z2 = Scalar(0.5) * (gba * ba2 - Scalar(3) * apb * z3);
const Scalar z1 = fba * ba2 - apb * z2 - (a * apb + b * b) * z3;
// std::cout << "z1 = " << z1 << ", z2 = " << z2 << ", z3 = " << z3 << std::endl;
// If c3 = z/(b-a)^3 == 0, reduce to quadratic problem
const Scalar eps = std::numeric_limits<Scalar>::epsilon();
if (abs(z3) < eps * abs(z2) || abs(z3) < eps * abs(z1))
{
// Minimizer exists if c2 > 0
exists = (z2 * ba > Scalar(0));
// Return the end point if the minimizer does not exist
return exists ? (-Scalar(0.5) * z1 / z2) : b;
}
// Now we can assume z3 > 0
// The minimizer is a solution to the equation c1 + 2*c2 * x + 3*c3 * x^2 = 0
// roots = -(z2/z3) / 3 (+-) sqrt((z2/z3)^2 - 3 * (z1/z3)) / 3
//
// Let u = z2/(3z3) and v = z1/z2
// The minimizer exists if v/u <= 1
const Scalar u = z2 / (Scalar(3) * z3), v = z1 / z2;
const Scalar vu = v / u;
exists = (vu <= Scalar(1));
if (!exists)
return b;
// We need to find a numerically stable way to compute the roots, as z3 may still be small
//
// If |u| >= |v|, let w = 1 + sqrt(1-v/u), and then
// r1 = -u * w, r2 = -v / w, r1 does not need to be the smaller one
//
// If |u| < |v|, we must have uv <= 0, and then
// r = -u (+-) sqrt(delta), where
// sqrt(delta) = sqrt(|u|) * sqrt(|v|) * sqrt(1-u/v)
Scalar r1 = Scalar(0), r2 = Scalar(0);
if (abs(u) >= abs(v))
{
const Scalar w = Scalar(1) + sqrt(Scalar(1) - vu);
r1 = -u * w;
r2 = -v / w;
}
else
{
const Scalar sqrtd = sqrt(abs(u)) * sqrt(abs(v)) * sqrt(1 - u / v);
r1 = -u - sqrtd;
r2 = -u + sqrtd;
}
return (z3 * ba > Scalar(0)) ? ((std::max)(r1, r2)) : ((std::min)(r1, r2));
}
// Select the next step size according to the current step sizes,
// function values, and derivatives
static Scalar step_selection(
const Scalar& al, const Scalar& au, const Scalar& at,
const Scalar& fl, const Scalar& fu, const Scalar& ft,
const Scalar& gl, const Scalar& gu, const Scalar& gt)
{
using std::abs;
if (al == au)
return al;
// If ft = Inf or gt = Inf, we return the middle point of al and at
if (!std::isfinite(ft) || !std::isfinite(gt))
return (al + at) / Scalar(2);
// ac: cubic interpolation of fl, ft, gl, gt
// aq: quadratic interpolation of fl, gl, ft
bool ac_exists;
// std::cout << "al = " << al << ", at = " << at << ", fl = " << fl << ", ft = " << ft << ", gl = " << gl << ", gt = " << gt << std::endl;
const Scalar ac = cubic_minimizer(al, at, fl, ft, gl, gt, ac_exists);
const Scalar aq = quadratic_minimizer(al, at, fl, gl, ft);
// std::cout << "ac = " << ac << ", aq = " << aq << std::endl;
// Case 1: ft > fl
if (ft > fl)
{
// This should not happen if ft > fl, but just to be safe
if (!ac_exists)
return aq;
// Then use the scheme described in the paper
return (abs(ac - al) < abs(aq - al)) ? ac : ((aq + ac) / Scalar(2));
}
// as: quadratic interpolation of gl and gt
const Scalar as = quadratic_minimizer(al, at, gl, gt);
// Case 2: ft <= fl, gt * gl < 0
if (gt * gl < Scalar(0))
return (abs(ac - at) >= abs(as - at)) ? ac : as;
// Case 3: ft <= fl, gt * gl >= 0, |gt| < |gl|
const Scalar deltal = Scalar(1.1), deltau = Scalar(0.66);
if (abs(gt) < abs(gl))
{
// We choose either ac or as
// The case for ac: 1. It exists, and
// 2. ac is farther than at from al, and
// 3. ac is closer to at than as
// Cases for as: otherwise
const Scalar res = (ac_exists &&
(ac - at) * (at - al) > Scalar(0) &&
abs(ac - at) < abs(as - at)) ?
ac :
as;
// Postprocessing the chosen step
return (at > al) ?
std::min(at + deltau * (au - at), res) :
std::max(at + deltau * (au - at), res);
}
// Simple extrapolation if au, fu, or gu is infinity
if ((!std::isfinite(au)) || (!std::isfinite(fu)) || (!std::isfinite(gu)))
return at + deltal * (at - al);
// ae: cubic interpolation of ft, fu, gt, gu
bool ae_exists;
const Scalar ae = cubic_minimizer(at, au, ft, fu, gt, gu, ae_exists);
// Case 4: ft <= fl, gt * gl >= 0, |gt| >= |gl|
// The following is not used in the paper, but it seems to be a reasonable safeguard
return (at > al) ?
std::min(at + deltau * (au - at), ae) :
std::max(at + deltau * (au - at), ae);
}
public:
///
/// Line search by Moré and Thuente (1994).
///
/// \param f A function object such that `f(x, grad)` returns the
/// objective function value at `x`, and overwrites `grad` with
/// the gradient.
/// \param param An `LBFGSParam` or `LBFGSBParam` object that stores the
/// parameters of the solver.
/// \param xp The current point.
/// \param drt The current moving direction.
/// \param step_max The upper bound for the step size that makes x feasible.
/// \param step In: The initial step length.
/// Out: The calculated step length.
/// \param fx In: The objective function value at the current point.
/// Out: The function value at the new point.
/// \param grad In: The current gradient vector.
/// Out: The gradient at the new point.
/// \param dg In: The inner product between drt and grad.
/// Out: The inner product between drt and the new gradient.
/// \param x Out: The new point moved to.
///
template <typename Foo, typename SolverParam>
static void LineSearch(Foo& f, const SolverParam& param,
const Vector& xp, const Vector& drt, const Scalar& step_max,
Scalar& step, Scalar& fx, Vector& grad, Scalar& dg, Vector& x)
{
using std::abs;
// std::cout << "========================= Entering line search =========================\n\n";
// Check the value of step
if (step <= Scalar(0))
throw std::invalid_argument("'step' must be positive");
if (step > step_max)
throw std::invalid_argument("'step' exceeds 'step_max'");
// Save the function value at the current x
const Scalar fx_init = fx;
// Projection of gradient on the search direction
const Scalar dg_init = dg;
// std::cout << "fx_init = " << fx_init << ", dg_init = " << dg_init << std::endl << std::endl;
// Make sure d points to a descent direction
if (dg_init >= Scalar(0))
throw std::logic_error("the moving direction does not decrease the objective function value");
// Tolerance for convergence test
// Sufficient decrease
const Scalar test_decr = param.ftol * dg_init;
// Curvature
const Scalar test_curv = -param.wolfe * dg_init;
// The bracketing interval
Scalar I_lo = Scalar(0), I_hi = std::numeric_limits<Scalar>::infinity();
Scalar fI_lo = Scalar(0), fI_hi = std::numeric_limits<Scalar>::infinity();
Scalar gI_lo = (Scalar(1) - param.ftol) * dg_init, gI_hi = std::numeric_limits<Scalar>::infinity();
// We also need to save x and grad for step=I_lo, since we want to return the best
// step size along the path when strong Wolfe condition is not met
Vector x_lo = xp, grad_lo = grad;
Scalar fx_lo = fx_init, dg_lo = dg_init;
// Function value and gradient at the current step size
x.noalias() = xp + step * drt;
fx = f(x, grad);
dg = grad.dot(drt);
// std::cout << "max_step = " << step_max << ", step = " << step << ", fx = " << fx << ", dg = " << dg << std::endl;
// Convergence test
if (fx <= fx_init + step * test_decr && abs(dg) <= test_curv)
{
// std::cout << "** Criteria met\n\n";
// std::cout << "========================= Leaving line search =========================\n\n";
return;
}
// Extrapolation factor
const Scalar delta = Scalar(1.1);
int iter;
for (iter = 0; iter < param.max_linesearch; iter++)
{
// ft = psi(step) = f(xp + step * drt) - f(xp) - step * test_decr
// gt = psi'(step) = dg - mu * dg_init
// mu = param.ftol
const Scalar ft = fx - fx_init - step * test_decr;
const Scalar gt = dg - param.ftol * dg_init;
// Update step size and bracketing interval
Scalar new_step;
if (ft > fI_lo)
{
// Case 1: ft > fl
new_step = step_selection(I_lo, I_hi, step, fI_lo, fI_hi, ft, gI_lo, gI_hi, gt);
// Sanity check: if the computed new_step is too small, typically due to
// extremely large value of ft, switch to the middle point
if (new_step <= param.min_step)
new_step = (I_lo + step) / Scalar(2);
I_hi = step;
fI_hi = ft;
gI_hi = gt;
// std::cout << "Case 1: new step = " << new_step << std::endl;
}
else if (gt * (I_lo - step) > Scalar(0))
{
// Case 2: ft <= fl, gt * (al - at) > 0
//
// Page 291 of Moré and Thuente (1994) suggests that
// newat = min(at + delta * (at - al), amax), delta in [1.1, 4]
new_step = std::min(step_max, step + delta * (step - I_lo));
// We can also consider the following scheme:
// First let step_selection() decide a value, and then project to the range above
//
// new_step = step_selection(I_lo, I_hi, step, fI_lo, fI_hi, ft, gI_lo, gI_hi, gt);
// const Scalar delta2 = Scalar(4)
// const Scalar t1 = step + delta * (step - I_lo);
// const Scalar t2 = step + delta2 * (step - I_lo);
// const Scalar tl = std::min(t1, t2), tu = std::max(t1, t2);
// new_step = std::min(tu, std::max(tl, new_step));
// new_step = std::min(step_max, new_step);
I_lo = step;
fI_lo = ft;
gI_lo = gt;
// Move x and grad to x_lo and grad_lo, respectively
x_lo.swap(x);
grad_lo.swap(grad);
fx_lo = fx;
dg_lo = dg;
// std::cout << "Case 2: new step = " << new_step << std::endl;
}
else
{
// Case 3: ft <= fl, gt * (al - at) <= 0
new_step = step_selection(I_lo, I_hi, step, fI_lo, fI_hi, ft, gI_lo, gI_hi, gt);
I_hi = I_lo;
fI_hi = fI_lo;
gI_hi = gI_lo;
I_lo = step;
fI_lo = ft;
gI_lo = gt;
// Move x and grad to x_lo and grad_lo, respectively
x_lo.swap(x);
grad_lo.swap(grad);
fx_lo = fx;
dg_lo = dg;
// std::cout << "Case 3: new step = " << new_step << std::endl;
}
// Case 1 and 3 are interpolations, whereas Case 2 is extrapolation
// This means that Case 2 may return new_step = step_max,
// and we need to decide whether to accept this value
// 1. If both step and new_step equal to step_max, it means
// step will have no further change, so we accept it
// 2. Otherwise, we need to test the function value and gradient
// on step_max, and decide later
// In case step, new_step, and step_max are equal, directly return the computed x and fx
if (step == step_max && new_step >= step_max)
{
// std::cout << "** Maximum step size reached\n\n";
// std::cout << "========================= Leaving line search =========================\n\n";
// Move {x, grad}_lo back before returning
x.swap(x_lo);
grad.swap(grad_lo);
return;
}
// Otherwise, recompute x and fx based on new_step
step = new_step;
if (step < param.min_step)
throw std::runtime_error("the line search step became smaller than the minimum value allowed");
if (step > param.max_step)
throw std::runtime_error("the line search step became larger than the maximum value allowed");
// Update parameter, function value, and gradient
x.noalias() = xp + step * drt;
fx = f(x, grad);
dg = grad.dot(drt);
// std::cout << "step = " << step << ", fx = " << fx << ", dg = " << dg << std::endl;
// Convergence test
if (fx <= fx_init + step * test_decr && abs(dg) <= test_curv)
{
// std::cout << "** Criteria met\n\n";
// std::cout << "========================= Leaving line search =========================\n\n";
return;
}
// Now assume step = step_max, and we need to decide whether to
// exit the line search (see the comments above regarding step_max)
// If we reach here, it means this step size does not pass the convergence
// test, so either the sufficient decrease condition or the curvature
// condition is not met yet
//
// Typically the curvature condition is harder to meet, and it is
// possible that no step size in [0, step_max] satisfies the condition
//
// But we need to make sure that its psi function value is smaller than
// the best one so far. If not, go to the next iteration and find a better one
if (step >= step_max)
{
const Scalar ft_bound = fx - fx_init - step * test_decr;
if (ft_bound <= fI_lo)
{
// std::cout << "** Maximum step size reached\n\n";
// std::cout << "========================= Leaving line search =========================\n\n";
return;
}
}
}
// If we have used up all line search iterations, then the strong Wolfe condition
// is not met. We choose not to raise an exception (unless no step satisfying
// sufficient decrease is found), but to return the best step size so far
if (iter >= param.max_linesearch)
{
// throw std::runtime_error("the line search routine reached the maximum number of iterations");
// First test whether the last step is better than I_lo
// If yes, return the last step
const Scalar ft = fx - fx_init - step * test_decr;
if (ft <= fI_lo)
return;
// If not, then the best step size so far is I_lo, but it needs to be positive
if (I_lo <= Scalar(0))
throw std::runtime_error("the line search routine is unable to sufficiently decrease the function value");
// Return everything with _lo
step = I_lo;
fx = fx_lo;
dg = dg_lo;
// Move {x, grad}_lo back
x.swap(x_lo);
grad.swap(grad_lo);
return;
}
}
};
} // namespace LBFGSpp
#endif // LBFGSPP_LINE_SEARCH_MORE_THUENTE_H
|