| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 
 | #ifndef Ldokchitser_H
#define Ldokchitser_H
//finding the explicit taylor series for \phi(t) using Dokchitser algo
#define MYDIGITS 5 // estimate of precision ... will be set using the precision variable
void mult_poly_taylor(Complex *, Complex *, Complex *, int );
template <class ttype>
void L_function <ttype>::
phi_series(int precision)
{
	cout << "-----------------------------------------------"<< endl << endl;
	cout << "phi series for " << name << " L_function" << endl << endl;
	
	int j,k;
		
	// constructing the equivalence classes Lambda[k] for k = 1 to N
	
	int pordtmp[a+1];
	Complex diff;
	Complex *lambda_k;
	int *l;
	
	for (j=1;j<=a;j++)
    	pordtmp[j]= 1;
    	
    for (j=1;j<=a;j++)
        for (k=1;k<=a;k++)
            if (j != k)
            {    
                diff = 2*(lambda[j] - lambda[k]);
                if((imag(diff)==0) && (fmod(real(diff),2) == 0) && (real(diff)<=0))
                {
                    pordtmp[j]+=pordtmp[k];
                    pordtmp[k]=0;
                }
            }
        	
    Complex temp_lambda_k[a];
    int temp_l[a];
    j=1;
    for (k=1;k<=a;k++)
        if (pordtmp[k]!=0)
        {
            temp_lambda_k[j]= lambda[k];
            temp_l[j]=pordtmp[k];
            j++;
        }
    
    int N = j-1;   
    lambda_k = new Complex[N+1];
    l = new int[N+1];
    for (j=1;j<=N;j++)
    {
    	lambda_k[j] = temp_lambda_k[j];
    	l[j] = temp_l[j];
    }
	
	cout << "-----------------------------------------------"<< endl << endl;
	cout << "There are "<< N << " equivalence classes Lambda[j]"<<endl;
    cout<< "The equivalence classes Lambda[j] for poles are represented by"<<endl;
    for (j=1;j<=N;j++)
    {
    	cout << "lambda_k["<<j<<"] = "<< lambda_k[j] << " with order l["<<j<<"] = "<<l[j]<<endl;
    }
    cout<<endl;
    
    // compute the values m[j] for the respective lambda_k[j]
    
    std::vector<Complex> m(N+1);
    for (j=1;j<=N;j++)
    	m[j] = -2*lambda_k[j] + 2;
	
	
	// compute sum_{k=1}^a log Gamma((s+m[j]+2*lambda[k])/2) for each j
	
	int n,fact_n;
	Complex log_Gamma[N+1][a+1][MYDIGITS+1];
        std:vector<std::vector<Complex> > sum_log_Gamma(N+1);
        for (j=1;j<=N;j++) sum_log_Gamma[j].resize(MYDIGITS+1);
	
	for (j=1;j<=N;j++)
	for (n=0;n<=MYDIGITS;n++)
			sum_log_Gamma[j][n] = 0;
	
	for (j=1;j<=N;j++)
	{
		for (k=1;k<=a;k++)
		{
			fact_n = 1;
			for (n=0;n<=MYDIGITS;n++)
			{
				if (n!=0)
					fact_n = fact_n*n;	
			
				log_Gamma[j][k][n] = pow(0.5,n)*(log_GAMMA((m[j]/2 + lambda[k]),n))/fact_n;
				sum_log_Gamma[j][n] = sum_log_Gamma[j][n] + log_Gamma[j][k][n];
			}
		}
	}	
	cout << endl;
	
	// compute the exponential taylor series for gamma = exp(sum_log_Gamma)
	
        std::vector<std::vector<std::vector<Complex> > > exp_sum_log_Gamma(N+1); // symmetric functions
        std::vector<std::vector<Complex> > gamma(N+1); // gamma(s+m[j]) for j = 1 to N
        for (j=1;j<=N;j++){
            exp_sum_log_Gamma[j].resize(MYDIGITS+1);
            gamma[j].resize(MYDIGITS+1);
        }
        for (j=1;j<=N;j++) for (n=0;n<=MYDIGITS;n++) exp_sum_log_Gamma[j][n].resize(MYDIGITS+1);
	Complex temp_gamma[MYDIGITS+1];
	Complex temp_mult_gamma[MYDIGITS+1];
	Complex temp_exp_sum_log_Gamma[MYDIGITS+1];
	int fact_n_k;
		
	for (j=1;j<=N;j++)
	{
		for (n=0;n<=MYDIGITS;n++)
			exp_sum_log_Gamma[j][0][n] = 0;			
		exp_sum_log_Gamma[j][0][0] = exp(sum_log_Gamma[j][0]);
		
		for (k=1;k<=MYDIGITS;k++)
		{
			fact_n_k = 1;
						
			for (n=0;n<=MYDIGITS;n++)
			{
				if(n%k == 0)
				{
					if (n/k != 0)
						fact_n_k = fact_n_k*(n/k);
						
					exp_sum_log_Gamma[j][k][n] = pow(sum_log_Gamma[j][k],n/k)/fact_n_k;
				}
				else
					exp_sum_log_Gamma[j][k][n] = 0;
			}
		}		
	}
	
	for (j=1;j<=N;j++)
	{
		
		for (n=0;n<=MYDIGITS;n++)
			temp_mult_gamma[n] = exp_sum_log_Gamma[j][0][n];
						
		for (k=1;k<=MYDIGITS;k++)
		{
			for (n=0;n<=MYDIGITS;n++)
			{
				temp_exp_sum_log_Gamma[n] = exp_sum_log_Gamma[j][k][n];
				temp_gamma[n] = temp_mult_gamma[n];
			}
				
			mult_poly_taylor(temp_gamma,temp_exp_sum_log_Gamma,temp_mult_gamma,MYDIGITS);
		}
		
		for (n=0;n<=MYDIGITS;n++)
			gamma[j][n] = temp_mult_gamma[n];		
					
	}
	
	cout << "-----------------------------------------------"<< endl;
    cout << "The gamma(s+m[j]) coefficients are as follows"<< endl<<endl;
    
    for(j=1;j<=N;j++)
    {
		cout<<"gamma(s+m["<<j<<"]) = "<<"gamma(s+"<<m[j]<<") = "<<gamma[j][0];
    	for (n=1;n<=MYDIGITS;n++)
    		cout << " + " << gamma[j][n] <<" s^"<<n;
    		
    	cout<<endl;
    }
    
    cout << "-----------------------------------------------"<< endl;
    
}
#endif
 |