File: Lexplicit_formula.h

package info (click to toggle)
lcalc 1.23%2Bdfsg-11
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 2,416 kB
  • sloc: cpp: 8,516; ansic: 4,079; makefile: 147
file content (202 lines) | stat: -rw-r--r-- 5,242 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// This file mainly due to Kevin McGown, with modifications by Michael Rubinstein

#ifndef Lexplicit_formula_H
#define Lexplicit_formula_H

inline Complex xxx_phi(Double A, Double x_0, Complex x); // the phi in the explicit formula
inline Complex xxx_phi_hat(Double A, Double x_0, Complex x); //its fourier transform

/***************************************************************************************************/

inline Complex xxx_phi(Double A, Double x_0, Complex x)
{
  return exp(-A*(x-x_0)*(x-x_0));
}

inline Complex xxx_phi_hat(Double A, Double x_0, Complex x)
{
  return sqrt(Pi/A) * exp(-2*Pi*I*x_0*x - Pi*Pi*x*x/A);
}

/***************************************************************************************************/

template <class ttype>
int L_function <ttype>::
dirichlet_coeffs_log_diff(int num_coeffs, Complex *c)
{

  std::vector<Complex> b(num_coeffs+1);
  int j, n, d1, ind;
  Complex total, total2, temp;

  if (what_type_L != 1 && what_type_L != -1
    && num_coeffs > number_of_dirichlet_coefficients)
  {
      cout << "Don't have enough Dirichlet coefficients." << endl;
      return 1;
  }
  b[1] = 1;

  if(my_verbose!=0) cout << "Computing " << num_coeffs << " Dirichlet coefficients of the logarithmic derivative" << endl;
  //XXXXXXXX this should be computed just once, not each time test is called

  for (n=2;n<=num_coeffs;n++)
  {
    total = 0;
    total2 = 0;
    for (j=1;j<=n/2;j++)
      if (n % j == 0)
      {
        d1 = n/j;
        if (what_type_L == -1)
          temp = b[j];
        else if (what_type_L == 1)
        {
          ind = d1 % period;
          if (ind == 0)
            ind = period;
          temp = dirichlet_coefficient[ind]*b[j];
        }
        else
          temp = dirichlet_coefficient[d1]*b[j];
        total -= temp;
        total2 += temp*LOG(d1);
      }
    b[n] = total;
    c[n] = total2;
    if(my_verbose>5) cout << "c[" << n << "] = " << c[n] << endl;
  }

  return 0;
}

/************************************************************************************************/

template <class ttype>
int L_function <ttype>::
test_explicit_formula(Double A, Double x_0, Double *zero_table, int number_zeros, Complex *c, int num_coeffs)
{
  Double t, t_begin, t_end, t_step, u;
  Double D;
  Double total;
  Double term1, term2, term3;
  int p, n, x, j;
  Double temp;
  Double LHS, RHS;
  //Complex *c;
  //int num_coeffs;
  int flag;

  //num_coeffs = 150; //XXXXXXXXXX should depend on test required
  //c = new Complex[num_coeffs+1]; //XXXXXXX move to L.h
  //dirichlet_coeffs_log_diff(num_coeffs, c);

  //compute the possible contribution from poles

  term1 = 0;
  for (j=1;j<=number_of_poles;j++)
    term1 += real(xxx_phi(A, x_0, (pole[j]-0.5)/I));

  // compute the contribution from the Gamma factors (integral of the log diff)

  t_step = 0.02;
  D = ceil(sqrt(DIGITS*log(10.0)/A)/t_step) * t_step;
  t_begin = x_0 - D;
  t_end = x_0 + D;
  total = 0;

  for (t=t_begin;t<=t_end;t=t+t_step)
  {
    temp = 0;
    for (j=1;j<=this->a;j++)
    {
      temp +=  2*real(log_GAMMA(gamma[j]/2 + I*t*gamma[j]+lambda[j], 1)*gamma[j]); //1 here calls the logarithmic derivative
      //temp +=  log_GAMMA(gamma[j]/2 - I*t*gamma[j]+conj(lambda[j]), 1)*gamma[j];
    }
    total = total + real(xxx_phi(A, x_0, t)) * temp;
    //cout << t << " total " << total << endl;
  }

  term2 = t_step*total + 2*log(Q)*sqrt(Pi/A);
  term2 = 1/(2*Pi) * term2;

  //compute the contribution from the Dirichlet coefficients

  x = num_coeffs;
  //extend_prime_table(x);

  j = 0;
  p = get_prime(j);
  term3 = 0;

  while (p <= x)
  {
    n = p;
    while (n <= x)
    {
      temp = 2*real(c[n]*xxx_phi_hat(A, x_0, LOG(n)/(2*Pi)));// + conj(c[n])*xxx_phi_hat(A, x_0, -LOG(n)/(2*Pi)); 
      term3 += two_inverse_sqrt(n)*temp;
      n = n * p;
      //cout << n << "term3 " << term3 << endl;
    }
    j = j + 1;
    p = get_prime(j);
  }
  term3 = 1/(4*Pi) * term3;

  /*** COMPUTE RHS ***/

  RHS = term1 + term2 - term3;

  /*** COMPUTE LHS ***/

  LHS = 0;
  //we will want to truncate this automatically
  for (j=0;j<=number_zeros-1;j++)
  {

    u=zero_table[j]-x_0;
    u=u*u*A;
    if(u<2.3*DIGITS*2) LHS += exp(-u);
    //LHS += exp(-A*(zero_table[j]-x_0)*(zero_table[j]-x_0));
  }

  /*** Display Results ***/

  //if (my_verbose > 3)
  if (my_verbose==0)
  {
    cout << endl << endl;
    cout << "*** Testing Explicit Formula for L ***" << endl;
    cout << "A = " << A << endl;
    cout << "x_0 = " << x_0 << endl;
    cout << "D = " << D << endl;
    cout << "TERM 1:  " << term1 << endl;
    cout << "TERM 2:  " << term2 << endl;
    cout << "TERM 3:  " << term3 << endl;
    cout << "RHS:  " << RHS << endl;
    cout << "LHS:  " << LHS << endl;
    cout << "LHS - RHS:  " << LHS-RHS << endl;
    cout << "CUTOFF:  " << pow(10.0, -DIGITS/3) << endl;
  }

  //cout << "A = " << A << ", x_0 = " << x_0 << ", ";
  cout << " x_0=" << x_0 << ",";
  cout << "LHS = " << LHS << ", RHS = " << RHS << ", DIFF = " << abs((LHS - RHS)) << ", ";

  // I arbitrarily chose DIGITS/3.
  if (abs((LHS - RHS)) < pow(10.0,-DIGITS/3))
  {
    flag = 0;
    //cout << "PASS." << endl;
  }
  else
  {
    flag = 1;
    //cout << "FAIL!" << endl;
  }

  return flag;
}

#endif