File: Lcommandline.cc

package info (click to toggle)
lcalc 1.23%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,108 kB
  • ctags: 1,898
  • sloc: cpp: 8,513; ansic: 4,073; sh: 176; makefile: 146
file content (643 lines) | stat: -rw-r--r-- 23,081 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
/*

Copyright (C) Michael Rubinstein

This file is part of the L-function package L.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

Check the License for details. You should have received a copy of it, along
with the package; see the file 'COPYING'. If not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/


//---------------------------------------------------
//
// Command line interface to the L function package
// By Michael Rubinstein
//
//---------------------------------------------------

#include "Lcommandline.h"
#include "cmdline.h"

int main (int argc, char *argv[])
{


    int i;
    Long n;
    bool do_zeros=false,do_values=false,file_to_open=false,do_twists=false,file_of_s_values=false;
    bool file2_to_open=false,do_print=false,do_interpolate=false;
    char data_filename[1000]; //filename of file containing data for L-function.
    char data_filename2[1000]; //filename of file containing data for L-function.
    int number_coeff_print=30;
    bool do_hardy=false;
    bool do_explicit=false; //whether to test the explicit formula when looking for zeros

    //used for elliptic curves
    // y^2 + a1 xy + a3 y = x^3 + a2 x^2 + a4 x + a6
    bool do_elliptic_curve=false;
    char a1[200];
    char a2[200];
    char a3[200];
    char a4[200];
    char a6[200];
    int rank=-1;

    bool do_tau=false;
    bool check_rank=false;
    bool do_compute_rank=false;
    bool limit_the_rank=false;
    bool do_only_even_twists=false;

    char s_file_name[1000];  //file of s values

    //int derivative=0; //which derivative of L to compute (0 is just the L-value)

    Double x=0,y=0,step_size=1025;
    Double x2=0,y2=0;
    Long count=0;

    char twist_type; //type of twist to do: quadratic, primitive, all, nth
    Long D1,D2; // for twists

    int print_character=0; //1 is all chi(n) , 2 is just chi(-1)


    bool do_exit=false;
    gengetopt_args_info args_info;
    /* call the cmdline parser */
    if (cmdline_parser (argc, argv, &args_info) != 0){
        exit(1) ;
    }


    if(args_info.zeros_given){ /* Whether zeros was given.  */
        do_zeros=true;
        count=args_info.zeros_arg;
    }
    if(args_info.zeros_interval_given){ /* Whether zeros-interval was given.  */
        do_zeros=true;
        if(!args_info.x_given||!args_info.y_given){
            cout << "x and y options must be used" << endl;
            exit(1);
        }
        if(!args_info.stepsize_given){
            cout << "stepsize option must be used" << endl;
            exit(1);
        }
        #ifdef USE_LONG_DOUBLE
            sscanf(args_info.x_arg,"%Lg",&x);
            sscanf(args_info.y_arg,"%Lg",&y);
        #elif USE_MPFR
            x=args_info.x_arg;
            y=args_info.y_arg;
        #else
            sscanf(args_info.x_arg,"%lg",&x);
            sscanf(args_info.y_arg,"%lg",&y);
        #endif
        if(y<x){
            cout << "x should be < than y" << endl;
            exit(1);
        }
        #ifdef USE_LONG_DOUBLE
            sscanf(args_info.stepsize_arg,"%Lg",&step_size);
        #elif USE_MPFR
            step_size=args_info.stepsize_arg;
        #else
            sscanf(args_info.stepsize_arg,"%lg",&step_size);
        #endif
        //step_size=atof(args_info.stepsize_arg);
    }
    if(args_info.explicit_given) do_explicit=true; /* Whether to check the explicit formula  */
    if(args_info.value_given){ /* Whether value was given.  */
        do_values=true;
        if(!args_info.x_given||!args_info.y_given){
            cout << "x and y options must be used" << endl;
            exit(1);
        }
        #ifdef USE_LONG_DOUBLE
            sscanf(args_info.x_arg,"%Lg",&x);
            sscanf(args_info.y_arg,"%Lg",&y);
        #elif USE_MPFR
            x=args_info.x_arg;
            y=args_info.y_arg;
        #else
            sscanf(args_info.x_arg,"%lg",&x);
            sscanf(args_info.y_arg,"%lg",&y);
        #endif
    }
    if(args_info.value_file_given){ /* Whether value-file was given.  */
        do_values=true;
        file_of_s_values=true;
        strcpy(s_file_name,args_info.value_file_arg);
    }
    if(args_info.value_line_segment_given){/* Whether value-line-segment was given.  */
        do_values=true;
        if(!args_info.x_given||!args_info.y_given||
        !args_info.X_given||!args_info.Y_given){
            cout << "x,y,X,Y options must be used" << endl;
            do_exit=true;
        }
        if(!args_info.number_samples_given){
            cout << "--number-samples option must be used" << endl;
            do_exit=true;
        }
        if(do_exit) exit(1);
        #ifdef USE_LONG_DOUBLE
            sscanf(args_info.x_arg,"%Lg",&x);
            sscanf(args_info.y_arg,"%Lg",&y);
            sscanf(args_info.X_arg,"%Lg",&x2);
            sscanf(args_info.Y_arg,"%Lg",&y2);
        #elif USE_MPFR
            x=args_info.x_arg;
            y=args_info.y_arg;
            x2=args_info.X_arg;
            y2=args_info.Y_arg;
        #else
            sscanf(args_info.x_arg,"%lg",&x);
            sscanf(args_info.y_arg,"%lg",&y);
            sscanf(args_info.X_arg,"%lg",&x2);
            sscanf(args_info.Y_arg,"%lg",&y2);
        #endif
    }
    if(args_info.number_samples_given){ /* Whether derivative was given.  */
        count=args_info.number_samples_arg;
    }
    if(args_info.hardy_given){ /* Whether Hardy Z option was given.  */
        do_hardy=true;
    }

    if(args_info.elliptic_curve_given){ /* Whether elliptic-curve was given.  */
        do_elliptic_curve=true;
        if(!args_info.a1_given){ cout << "must specify a1 with --a1" << endl; do_exit=true;}
        if(!args_info.a2_given){ cout << "must specify a2 with --a2" << endl; do_exit=true;}
        if(!args_info.a3_given){ cout << "must specify a3 with --a3" << endl; do_exit=true;}
        if(!args_info.a4_given){ cout << "must specify a4 with --a4" << endl; do_exit=true;}
        if(!args_info.a6_given){ cout << "must specify a6 with --a6" << endl; do_exit=true;}
        if(do_exit) exit(1);
        strcpy(a1,args_info.a1_arg);
        strcpy(a2,args_info.a2_arg);
        strcpy(a3,args_info.a3_arg);
        strcpy(a4,args_info.a4_arg);
        strcpy(a6,args_info.a6_arg);
    }
    if(args_info.file_input_given){ /* Whether file-input was given.  */
        file_to_open=true;
        strcpy(data_filename,args_info.file_input_arg);
    }
    if(args_info.url_given){ /* Whether file-input was given.  */
        char str1[]="wget -O temporary_url_file_lcalc "; 
        if(system(strcat(str1,args_info.url_arg))!=0){
             cout << "Error retrieving file: " << args_info.url_arg << endl;
             do_exit=true;
        }
        if(do_exit) exit(1);
        file_to_open=true;
        strcpy(data_filename,"temporary_url_file_lcalc");
    }
    if(args_info.interpolate_given){ /* Whether interpolate was given.  */
        do_interpolate=true;
        file2_to_open=true;
        strcpy(data_filename2,args_info.interpolate_arg);
    }
    if(args_info.output_character_given){ /* Whether output-character was given.  */
        print_character = atoi(args_info.output_character_arg);
    }
    if(args_info.output_data_given){ /* Whether output-data was given.  */
        do_print=true;
        number_coeff_print=args_info.output_data_arg;
    }
    if(args_info.precision_given){ /* Whether precision was given.  */
         DIGITS=args_info.precision_arg;
         DIGITS3=DIGITS-DIGITS2;

    }
    if(args_info.sacrifice_given){ /* Whether sacrifice was given.  */
         DIGITS2=args_info.sacrifice_arg;
         DIGITS3=DIGITS-DIGITS2;

    }
    if(args_info.rank_compute_given){ /* Whether rank-compute was given.  */
        do_compute_rank=true;
    }
    if(args_info.rank_verify_given){ /* Whether rank-verify was given.  */
        check_rank=true;
        rank=args_info.rank_verify_arg;
    }
    if(args_info.rank_limit_given){ /* Whether rank-limit was given.  */
        limit_the_rank=true;
        rank=args_info.rank_limit_arg;
    }
    if(args_info.tau_given){ /* Whether tau was given.  */
        do_tau=true;
    }
    if(args_info.twist_quadratic_given){ /* Whether twist-quadratic was given.  */
        do_twists=true;
        twist_type='q';
    }
    if(args_info.twist_quadratic_even_given){ /* Whether twist-quadratic was given.  */
        do_twists=true;
        do_only_even_twists=true;
        twist_type='q';
    }
    if(args_info.twist_primitive_given){ /* Whether twist-primitive was given.  */
        do_twists=true;
        twist_type='p';
    }
    if(args_info.twist_all_given){ /* Whether twist-all was given.  */
        do_twists=true;
        twist_type='A';
    }
    if(args_info.twist_all_no_conj_pairs_given){ /* Whether twist-all-no-conj-pairs was given.  */
        do_twists=true;
        twist_type='a';
    }
    if(args_info.twist_complex_no_conj_pairs_given){ /* Whether twist-complex-no-conj-pairs was given.  */
        do_twists=true;
        twist_type='c';
    }
    if(args_info.twist_generic_given){ /* Whether twist-complex-no-conj-pairs was given.  */
        do_twists=true;
        twist_type='g';
    }
    if(args_info.degree_given){ /* Whether degree was given.  */
        do_twists=true;
        twist_type='n';
        n=args_info.degree_arg;
    }
    if(do_twists){
        if(!args_info.start_given){ 
            cout << "must specify starting discriminant/conductor (--finish or -f)" << endl; 
            do_exit=true;
        }
        if(!args_info.finish_given){ 
            cout << "must specify finishing discriminant/conductor (with --start or -s)" << endl;
            do_exit=true;
        }
        if(do_exit) exit(1);
        D1=strtoll(args_info.start_arg,0,10); D2=strtoll(args_info.finish_arg,0,10);
    }

    #ifdef _OPENMP
        if(args_info.openmp_given) /* whether a number of threads was specified */
        {
            /* get the total number of CPUs/cores available for OpenMP */
            int    NCPU = omp_get_num_procs();
            if (args_info.openmp_arg>NCPU){
                cout << "ERROR: You only have " << NCPU << " processors available." << endl;
                cout << "Specify fewer processors" << endl;
                exit(1);
            }
            omp_set_num_threads(args_info.openmp_arg);
        }
        else //default is 1
            omp_set_num_threads(1);
    #endif
    #ifndef _OPENMP
        if(args_info.openmp_given){ /* whether a number of threads was specified */
            cout << endl;
            cout << "ERROR: lcalc has not been compiled with openmp enabled." << endl;
            cout << "You need to uncomment the line: " << endl;
            cout << "#OPENMP_FLAG = -fopenmp" << endl;
            cout << "in the Makefile, and recompile by typing:"<< endl;
            cout << endl;
            cout << "make clean" << endl;
            cout << "make" << endl;
            cout << endl;
            exit(1);
        }
    #endif

    //placed here rather than at top since
    //precision depends on user input.

    initialize_globals();


    //the L-functions used throughout are global and
    //need to be re-initialized now that we have initialized
    //Pi in initialize_globals.
    initialize_commandline_globals();
    if(args_info.derivative_given){ /* Whether derivative was given.  */
        global_derivative = args_info.derivative_arg;
        //DIGITS3=(int)(DIGITS3/pow(2.,global_derivative)); // now taken care of in Lvalue.h
    }

    if(do_zeros){
        input_mean_spacing_given = (6.28/log(count*1.+100))*2./DIGITS; //only used
        //for the zeta funciton, and then in the band limited interpolation scheme. Is a
        //rough estimate for the average distance between sample points.
        //Dividing by DIGITS/2 more than accounts for searching for and then zooming in
        //on zeros.
        //cout << " input_mean_spacing_given " << input_mean_spacing_given << endl;

    }

    if(args_info.use_dirichlet_series_given){ /* Whether to compute just using the Dirichlet series */
        only_use_dirichlet_series=true;
        N_use_dirichlet_series=args_info.use_dirichlet_series_arg; //how many terms to use
    }


    if(args_info.verbose_given){ /* Whether vebosity level was specified.  */
        my_verbose=args_info.verbose_arg;
    }


    A=1./(16*Pi*Pi*2.3*DIGITS); //controls the 'support' of g(w)

    if(file2_to_open){
        initialize_new_L(data_filename2);
        switch(current_L_type)
        {
            case 1:
                int_L2=int_L;
                break;
            case 2:
                Double_L2=Double_L;
                break;
            case 3:
                Complex_L2=Complex_L;
                break;
        }

    }

    if(file_to_open){
        initialize_new_L(data_filename);
        if(args_info.url_given){ /* Whether file-input was given.  */
            system("rm temporary_url_file_lcalc"); 
        }
    }
    else current_L_type=1; //default is zeta, and type 1, i.e. int, is simplest

    if(do_interpolate) //compute the zeros on the critical line
    //of the L-series that interpolate between f and f2. Must be used in combination with 
    //with the option: -zi x y increment 
    //By interpolate I mean take t*(basic data of L) and (1-t)*(basic data of L2).
    {
         L_interpolate(x,y,step_size);
         return 0;
    }


    Double *coeff;

    if(do_elliptic_curve||do_tau){ //determine how many dirichlet coefficients are needed
                                   //and initialize the curve


        int N_terms; //number of dirichlet coefficients
        Double C = DIGITS2*log(10.);
        Double T;
        Double tmp_Q; //the maximum normalized conductor (including twists)

        Double t2;


        if(do_elliptic_curve){
#ifdef INCLUDE_PARI

            t2=.5; //t2=.5 because of the GAMMA(s+1/2)

            pari_init(1000000000,2);
            //pari_init_opts(400000000,2,INIT_DFTm); // the last option is to prevent
            //pari from giving its interrupt signal when its elliptic curve a_p
            //algorithm is called and interrupted with ctrl-c. Requires a more current
            //version of pari, so use pari_init above until I have a configure set up
            //that detects which pari, if any, is installed.

            coeff = new Double[3];
            //compute the conductor which is copied to coeff[1]
            data_E(a1,a2,a3,a4,a6,2,coeff);

            tmp_Q=sqrt(coeff[1])/(2*Pi);
            delete [] coeff;
#else
            cout << "You need to uncomment the line: PARI_DEFINE = -DINCLUDE_PARI" <<endl;
            cout << "in the Makefile and do: 'make clean', then 'make' if you wish to use" <<endl;
            cout << "elliptic curve L-functions. Requires that you already have pari installed" <<endl;
            cout << "on your machine." <<endl;
            exit(1);
#endif //ifdef INCLUDE_PARI
        }



        if(do_tau){
            t2=5.5;     //t2=5.5 because of the GAMMA(s+11/2)
            tmp_Q=1./(2*Pi);
        }



        if(do_twists) tmp_Q=tmp_Q*max(abs(1.*D1),abs(1.*D2)); // take into account twists


        if(do_zeros)
            T = max(abs(x),abs(y));
        else
            T = max(abs(y),abs(y2));

        if(my_verbose>1) cout << "T = " << T << endl;

        if(count>0&&!args_info.number_samples_given)
        T=T+(count+100)*Pi/log(T+3);

        if(my_verbose>1) cout << "T = " << T << endl;

        //based on the number of terms used in the gamma_sum routine. possible updates to gamma_sum condition should 
        //thus be reflected here
        Complex delta=int_L.find_delta(1+I*T+t2,1);
        N_terms = Int(2.3 * DIGITS*tmp_Q/real(delta));
        do{
            N_terms=(int)(N_terms*1.3);
            if(my_verbose>4) cout << "N_terms to precompute = " << N_terms << endl;
        }while(N_terms*real(delta)/tmp_Q-log((1.+t2)*N_terms)<2.3*DIGITS);
        N_terms=(int)(N_terms*1.3+40);
        if(my_verbose>4) cout << "N_terms to precompute = " << N_terms << endl;



#ifdef INCLUDE_PARI
        if(do_elliptic_curve){
             allocatemem((int) N_terms*16+1000000); //XXXXXXXXX this should depend on whether we're double or long double or mpfr double
             if (my_verbose>0) cout << "Will precompute " << N_terms << " elliptic L-function dirichlet coefficients..." << endl;
             initialize_new_L(a1,a2,a3,a4,a6,N_terms); 
        }
#endif //ifdef INCLUDE_PARI

        if(do_tau){

            tmp_Q=1./(2*Pi);

            coeff =  new Double[N_terms+1];
            ramanujan_tau(coeff,N_terms);

            Double *g;
            Complex *l;
            Complex *p;
            Complex *r;

            g=new Double[2];
            l=new Complex[2];
            g[1]=1.;
            l[1]=5.5;

            p = new Complex[1];
            r = new Complex[1];



            if (my_verbose>0) cout << "Will precompute " << N_terms << " Ramanujan tau(n) dirichlet coefficients..." << endl;
            current_L_type=2; //the normalized dirichlet coeffs are real
            Double_L=L_function<Double>("Ramanujan Tau",2,N_terms,coeff,0,tmp_Q,1,1,g,l,0,p,r);

            delete [] g;
            delete [] l;
            delete [] p;
            delete [] r;
            delete [] coeff;

        }



    }


    if(do_print) print_L(number_coeff_print);

    if(check_rank&&rank>=0) verify_rank(rank);

    if(do_compute_rank&&!do_twists) compute_rank();

    if(do_values){
        if(do_twists){
            switch(twist_type){
                case 'q':
                    if(do_compute_rank)
                        quadratic_twists(D1,D2,x,y,0,0,"values and ranks",do_only_even_twists,do_explicit);
                    else if(limit_the_rank)
                        quadratic_twists(D1,D2,x,y,0,0,"values and ranks",do_only_even_twists,rank,do_explicit);
                    else
                        quadratic_twists(D1,D2,x,y,0,0,"values",do_only_even_twists,do_explicit);
                    break;
                case 'p':
                    if(do_compute_rank)
                        all_twists(D1,D2,x,y,0,0,"values and ranks",0,print_character,do_explicit);
                    else
                        all_twists(D1,D2,x,y,0,0,"values",0,print_character,do_explicit);
                    break;
                case 'a':
                    if(do_compute_rank)
                        all_twists(D1,D2,x,y,0,0,"values and ranks",1,print_character,do_explicit);
                    else
                        all_twists(D1,D2,x,y,0,0,"values",1,print_character,do_explicit);
                    break;
                case 'A':
                    if(do_compute_rank)
                        all_twists(D1,D2,x,y,0,0,"values and ranks",2,print_character,do_explicit);
                    else
                        all_twists(D1,D2,x,y,0,0,"values",2,print_character,do_explicit);
                    break;
                case 'g':
                    if(do_compute_rank)
                        all_twists(D1,D2,x,y,0,0,"values and ranks",-1,print_character,do_explicit);
                    else
                        all_twists(D1,D2,x,y,0,0,"values",-1,print_character,do_explicit);
                    break;
                case 'c':
                    if(do_compute_rank)
                        all_twists(D1,D2,x,y,0,0,"values and ranks",-2,print_character,do_explicit);
                    else
                        all_twists(D1,D2,x,y,0,0,"values",-2,print_character,do_explicit);
                    break;
            }
        }
        else if(file_of_s_values){
             if(!do_hardy) compute_values(x,y,"pure",s_file_name);
             else compute_values(x,y,"rotated pure",s_file_name);
        }
        else{
            input_mean_spacing_given=(y2-y)/count; //used in Riemann Siegel band limited routine
            //cout << " input_mean_spacing_given " << input_mean_spacing_given << endl;
            //for zeta, if applicable.
            if(!do_hardy) compute_values(x,y,"pure","",x2,y2,count);
            else compute_values(x,y,"rotated pure","",x2,y2,count);
        }

    }
    else if(do_zeros){
        if(do_twists){
            switch(twist_type){
                case 'q':
                    if(limit_the_rank)
                    quadratic_twists(D1,D2,x,y,count,step_size,"zeros and ranks",do_only_even_twists,do_explicit,rank);
                    else
                    quadratic_twists(D1,D2,x,y,count,step_size,"zeros",do_only_even_twists,do_explicit);
                    break;
                case 'p':
                    all_twists(D1,D2,x,y,count,step_size,"zeros",0,print_character,do_explicit);
                    break;
                case 'a':
                    all_twists(D1,D2,x,y,count,step_size,"zeros",1,print_character,do_explicit);
                    break;
                case 'A':
                    all_twists(D1,D2,x,y,count,step_size,"zeros",2,print_character,do_explicit);
                    break;
                case 'g':
                    all_twists(D1,D2,x,y,count,step_size,"zeros",-1,print_character,do_explicit);
                    break;
                case 'c':
                    all_twists(D1,D2,x,y,count,step_size,"zeros",-2,print_character,do_explicit);
                    break;

            }
        }
        else{
            compute_zeros(x,y,step_size,count,rank,do_explicit);
        }
    }
    else{ //else allow for printing of characters. "print character" is a dummy char str,
          //so all_twists will print out the character without doing zeros or values
        if(do_twists){
            switch(twist_type){
                case 'p':
                    all_twists(D1,D2,x,y,count,step_size,"print character",0,print_character,do_explicit);
                    break;
                case 'a':
                    all_twists(D1,D2,x,y,count,step_size,"print character",1,print_character,do_explicit);
                    break;
                case 'A':
                    all_twists(D1,D2,x,y,count,step_size,"print character",2,print_character,do_explicit);
                    break;
                case 'g':
                    all_twists(D1,D2,x,y,count,step_size,"print character",-1,print_character,do_explicit);
                    break;
                case 'c':
                    all_twists(D1,D2,x,y,count,step_size,"print character",-2,print_character,do_explicit);
                    break;

            }
        }

    }

    delete_globals();
    cmdline_parser_free (&args_info); /* release allocated memory */

    return 0;
}