1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
// -*- related-file-name: "../include/lcdf/bezier.hh" -*-
/* bezier.{cc,hh} -- cubic Bezier curves
*
* Copyright (c) 1998-2011 Eddie Kohler
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version. This program is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <lcdf/bezier.hh>
//
// bounding box
//
void
Bezier::make_bb() const throw ()
{
_bb = 0;
for (int i = 1; i < 4; i++) {
if (_p[i].x > bb_right_x())
_bb = (_bb & ~0x03) | (i << 0);
else if (_p[i].x < bb_left_x())
_bb = (_bb & ~0x0C) | (i << 2);
if (_p[i].y > bb_top_x())
_bb = (_bb & ~0x30) | (i << 4);
else if (_p[i].y < bb_bottom_x())
_bb = (_bb & ~0xC0) | (i << 6);
}
}
//
// is_flat, eval
//
bool
Bezier::is_flat(double t) const throw ()
{
return (_p[2].on_segment(_p[0], _p[3], t)
&& _p[1].on_segment(_p[0], _p[3], t));
}
static Point
eval_bezier(Point *b_in, int degree, double u)
{
assert(degree < 4);
Point b[4];
for (int i = 0; i <= degree; i++)
b[i] = b_in[i];
double m = 1.0 - u;
for (int i = 1; i <= degree; i++)
for (int j = 0; j <= degree - i; j++)
b[j] = b[j]*m + b[j+1]*u;
return b[0];
}
Point
Bezier::eval(double u) const throw ()
{
Bezier b = *this;
double m = 1.0 - u;
for (int i = 1; i < 4; i++)
for (int j = 0; j < 4 - i; j++)
b._p[j] = m * b._p[j] + u * b._p[j+1];
return b._p[0];
}
//
// halve
//
void
Bezier::halve(Bezier &l, Bezier &r) const throw ()
{
Point half = Point::midpoint(_p[1], _p[2]);
l._p[0] = _p[0];
l._p[1] = Point::midpoint(_p[0], _p[1]);
l._p[2] = Point::midpoint(l._p[1], half);
r._p[3] = _p[3];
r._p[2] = Point::midpoint(_p[2], _p[3]);
r._p[1] = Point::midpoint(r._p[2], half);
r._p[0] = l._p[3] = Point::midpoint(l._p[2], r._p[1]);
}
//
// hit testing
//
bool
Bezier::in_bb(const Point &p, double tolerance) const throw ()
{
ensure_bb();
if (bb_right() + tolerance < p.x
|| bb_left() - tolerance > p.x
|| bb_top() + tolerance < p.y
|| bb_bottom() - tolerance > p.y)
return false;
else
return true;
}
double
Bezier::hit_recurse(const Point &p, double tolerance, double leftd,
double rightd, double leftt, double rightt) const throw ()
{
Bezier left, right;
double middled, resultt;
if (is_flat(tolerance)) {
if (p.on_segment(_p[0], _p[3], tolerance))
return (leftt + rightt) / 2;
else
return -1;
}
if (leftd < tolerance * tolerance)
return leftt;
if (rightd < tolerance * tolerance)
return rightt;
if (!in_bb(p, tolerance))
return -1;
halve(left, right);
middled = (right._p[0] - p).squared_length();
resultt = left.hit_recurse
(p, tolerance, leftd, middled, leftt, (leftt + rightt) / 2);
if (resultt >= 0)
return resultt;
return right.hit_recurse
(p, tolerance, middled, rightd, (leftt + rightt) / 2, rightt);
}
bool
Bezier::hit(const Point &p, double tolerance) const throw ()
{
double leftd = (_p[0] - p).squared_length();
double rightd = (_p[3] - p).squared_length();
double resultt = hit_recurse(p, tolerance, leftd, rightd, 0, 1);
return resultt >= 0;
}
//
// segmentize to list of points
//
// uses recursive subdivision
//
void
Bezier::segmentize(Vector<Point> &v, bool first) const
{
if (is_flat(0.5)) {
if (first)
v.push_back(_p[0]);
v.push_back(_p[3]);
} else {
Bezier left, right;
halve(left, right);
left.segmentize(v, first);
right.segmentize(v, false);
}
}
//
// curve fitting
//
// code after Philip J. Schneider's algorithm described, with code, in the
// first Graphics Gems
//
static void
chord_length_parameterize(const Point *d, int nd, Vector<double> &result)
{
assert(result.size() == 0);
result.reserve(nd);
result.push_back(0);
for (int i = 1; i < nd; i++)
result.push_back(result.back() + Point::distance(d[i-1], d[i]));
double last_dist = result.back();
for (int i = 1; i < nd; i++)
result[i] /= last_dist;
}
static inline double
B0(double u)
{
double m = 1.0 - u;
return m*m*m;
}
static inline double
B1(double u)
{
double m = 1.0 - u;
return 3*m*m*u;
}
static inline double
B2(double u)
{
double m = 1.0 - u;
return 3*m*u*u;
}
static inline double
B3(double u)
{
return u*u*u;
}
static Bezier
generate_bezier(const Point *d, int nd, const Vector<double> ¶meters,
const Point &left_tangent, const Point &right_tangent)
{
Point *a0 = new Point[nd];
Point *a1 = new Point[nd];
for (int i = 0; i < nd; i++) {
a0[i] = left_tangent * B1(parameters[i]);
a1[i] = right_tangent * B2(parameters[i]);
}
double c[2][2], x[2];
c[0][0] = c[0][1] = c[1][0] = c[1][1] = x[0] = x[1] = 0.0;
int last = nd - 1;
for (int i = 0; i < nd; i++) {
c[0][0] += Point::dot(a0[i], a0[i]);
c[0][1] += Point::dot(a0[i], a1[i]);
c[1][1] += Point::dot(a1[i], a1[i]);
Point tmp = d[i] - (d[0] * (B0(parameters[i]) + B1(parameters[i]))
+ d[last] * (B2(parameters[i]) + B3(parameters[i])));
x[0] += Point::dot(a0[i], tmp);
x[1] += Point::dot(a1[i], tmp);
}
c[1][0] = c[0][1];
// compute determinants
double det_c0_c1 = c[0][0]*c[1][1] - c[1][0]*c[0][1];
double det_c0_x = c[0][0]*x[1] - c[0][1]*x[0];
double det_x_c1 = x[0]*c[1][1] - x[1]*c[0][1];
// finally, derive alpha values
if (det_c0_c1 == 0.0)
det_c0_c1 = c[0][0]*c[1][1] * 10e-12;
double alpha_l = det_x_c1 / det_c0_c1;
double alpha_r = det_c0_x / det_c0_c1;
// if alpha negative, use the Wu/Barsky heuristic
if (alpha_l < 0.0 || alpha_r < 0.0) {
double distance = Point::distance(d[0], d[last]) / 3;
return Bezier(d[0], d[0] + left_tangent*distance,
d[last] + right_tangent*distance, d[last]);
} else
return Bezier(d[0], d[0] + left_tangent*alpha_l,
d[last] + right_tangent*alpha_r, d[last]);
}
static double
newton_raphson_root_find(const Bezier &b, const Point &p, double u)
{
const Point *b_pts = b.points();
Point b_det[3];
for (int i = 0; i < 3; i++)
b_det[i] = (b_pts[i+1] - b_pts[i]) * 3;
Point b_det_det[2];
for (int i = 0; i < 2; i++)
b_det_det[i] = (b_det[i+1] - b_det[i]) * 2;
Point b_u = b.eval(u);
Point b_det_u = eval_bezier(b_det, 2, u);
Point b_det_det_u = eval_bezier(b_det_det, 1, u);
double numerator = Point::dot(b_u - p, b_det_u);
double denominator = Point::dot(b_det_u, b_det_u) +
Point::dot(b_u - p, b_det_det_u);
return u - numerator/denominator;
}
static void
reparameterize(const Point *d, int nd, Vector<double> ¶meters,
const Bezier &b)
{
for (int i = 0; i < nd; i++)
parameters[i] = newton_raphson_root_find(b, d[i], parameters[i]);
}
static double
compute_max_error(const Point *d, int nd, const Bezier &b,
const Vector<double> ¶meters, int *split_point)
{
*split_point = nd/2;
double max_dist = 0.0;
for (int i = 1; i < nd - 1; i++) {
double dist = (b.eval(parameters[i]) - d[i]).squared_length();
if (dist >= max_dist) {
max_dist = dist;
*split_point = i;
}
}
return max_dist;
}
static void
fit0(const Point *d, int nd, Point left_tangent, Point right_tangent,
double error, Vector<Bezier> &result)
{
// Use a heuristic for small regions (only two points)
if (nd == 2) {
double dist = Point::distance(d[0], d[1]) / 3;
result.push_back(Bezier(d[0],
d[0] + dist*left_tangent,
d[1] + dist*right_tangent,
d[1]));
return;
}
// Parameterize points and attempt to fit curve
Vector<double> parameters;
chord_length_parameterize(d, nd, parameters);
Bezier b = generate_bezier(d, nd, parameters, left_tangent, right_tangent);
// find max error
int split_point;
double max_error = compute_max_error(d, nd, b, parameters, &split_point);
if (max_error < error) {
result.push_back(b);
return;
}
// if error not too large, try iteration and reparameterization
if (max_error < error*error)
for (int i = 0; i < 4; i++) {
reparameterize(d, nd, parameters, b);
b = generate_bezier(d, nd, parameters, left_tangent, right_tangent);
max_error = compute_max_error(d, nd, b, parameters, &split_point);
if (max_error < error) {
result.push_back(b);
return;
}
}
// fitting failed -- split at max error point and fit again
Point center_tangent = ((d[split_point-1] - d[split_point+1])/2).normal();
fit0(d, split_point+1, left_tangent, center_tangent, error, result);
fit0(d+split_point, nd-split_point, -center_tangent, right_tangent, error, result);
}
void
Bezier::fit(const Vector<Point> &points, double error, Vector<Bezier> &result)
{
int npoints = points.size();
Point left_tangent = (points[1] - points[0]).normal();
Point right_tangent = (points[npoints-2] - points[npoints-1]).normal();
fit0(&points[0], npoints, left_tangent, right_tangent, error, result);
}
|