1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
// -*- related-file-name: "../include/lcdf/transform.hh" -*-
/* transform.{cc,hh} -- planar affine transformations
*
* Copyright (c) 2000-2011 Eddie Kohler
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version. This program is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <lcdf/transform.hh>
#include <lcdf/straccum.hh>
#include <math.h>
Transform::Transform()
{
_m[0] = _m[3] = 1;
_m[1] = _m[2] = _m[4] = _m[5] = 0;
_null = true;
}
Transform::Transform(const double m[6])
{
_m[0] = m[0];
_m[1] = m[1];
_m[2] = m[2];
_m[3] = m[3];
_m[4] = m[4];
_m[5] = m[5];
check_null(0);
}
Transform::Transform(double m0, double m1, double m2,
double m3, double m4, double m5)
{
_m[0] = m0;
_m[1] = m1;
_m[2] = m2;
_m[3] = m3;
_m[4] = m4;
_m[5] = m5;
check_null(0);
}
void
Transform::check_null(double tolerance)
{
_null = (fabs(_m[0] - 1) < tolerance && fabs(_m[1]) < tolerance
&& fabs(_m[2]) < tolerance && fabs(_m[3] - 1) < tolerance
&& fabs(_m[4]) < tolerance && fabs(_m[5]) < tolerance);
}
void
Transform::scale(double x, double y)
{
_m[0] *= x;
_m[1] *= x;
_m[2] *= y;
_m[3] *= y;
if (x != 1 || y != 1)
_null = false;
}
void
Transform::rotate(double r)
{
double c = cos(r);
double s = sin(r);
double a = _m[0], b = _m[2];
_m[0] = a*c + b*s;
_m[2] = b*c - a*s;
a = _m[1], b = _m[3];
_m[1] = a*c + b*s;
_m[3] = b*c - a*s;
if (r != 0)
_null = false;
}
void
Transform::translate(double x, double y)
{
_m[4] += _m[0]*x + _m[2]*y;
_m[5] += _m[1]*x + _m[3]*y;
if (x != 0 || y != 0)
_null = false;
}
void
Transform::shear(double s)
{
*this *= Transform(1, 0, s, 1, 0, 0);
}
Transform
Transform::transformed(const Transform &t) const
{
return Transform(_m[0] * t._m[0] + _m[2] * t._m[1],
_m[1] * t._m[0] + _m[3] * t._m[1],
_m[0] * t._m[2] + _m[2] * t._m[3],
_m[1] * t._m[2] + _m[3] * t._m[3],
_m[0] * t._m[4] + _m[2] * t._m[5] + _m[4],
_m[1] * t._m[4] + _m[3] * t._m[5] + _m[5]);
}
void
Transform::real_apply_to(Point &p) const
{
double x = p.x;
p.x = x*_m[0] + p.y*_m[2] + _m[4];
p.y = x*_m[1] + p.y*_m[3] + _m[5];
}
Point
Transform::real_apply(const Point &p) const
{
return Point(p.x*_m[0] + p.y*_m[2] + _m[4],
p.x*_m[1] + p.y*_m[3] + _m[5]);
}
Bezier &
operator*=(Bezier &b, const Transform &t)
{
if (!t.null()) {
b.mpoint(0) *= t;
b.mpoint(1) *= t;
b.mpoint(2) *= t;
b.mpoint(3) *= t;
}
return b;
}
Bezier
operator*(const Bezier &b, const Transform &t)
{
return (t.null()
? b
: Bezier(b.point(0) * t, b.point(1) * t, b.point(2) * t, b.point(3) * t));
}
String
Transform::unparse() const
{
StringAccum sa;
sa << '[';
for (int i = 0; i < 6; i++) {
if (i)
sa << ',' << ' ';
sa << _m[i];
}
sa << ']';
return sa.take_string();
}
|