1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
|
//---------------------------------------------------------------------------------
//
// Little Color Management System
// Copyright (c) 1998-2024 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"
// Tone curves are powerful constructs that can contain curves specified in diverse ways.
// The curve is stored in segments, where each segment can be sampled or specified by parameters.
// a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
// each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
// each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
// the plug-in should provide the type id, how many parameters each type has, and a pointer to
// a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
// be called with the type id as a negative value, and a sampled version of the reversed curve
// will be built.
// ----------------------------------------------------------------- Implementation
// Maxim number of nodes
#define MAX_NODES_IN_CURVE 4097
#define MINUS_INF (-1E22F)
#define PLUS_INF (+1E22F)
// The list of supported parametric curves
typedef struct _cmsParametricCurvesCollection_st {
cmsUInt32Number nFunctions; // Number of supported functions in this chunk
cmsInt32Number FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN]; // The identification types
cmsUInt32Number ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN]; // Number of parameters for each function
cmsParametricCurveEvaluator Evaluator; // The evaluator
struct _cmsParametricCurvesCollection_st* Next; // Next in list
} _cmsParametricCurvesCollection;
// This is the default (built-in) evaluator
static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R);
// The built-in list
static _cmsParametricCurvesCollection DefaultCurves = {
10, // # of curve types
{ 1, 2, 3, 4, 5, 6, 7, 8, 108, 109 }, // Parametric curve ID
{ 1, 3, 4, 5, 7, 4, 5, 5, 1, 1 }, // Parameters by type
DefaultEvalParametricFn, // Evaluator
NULL // Next in chain
};
// Duplicates the zone of memory used by the plug-in in the new context
static
void DupPluginCurvesList(struct _cmsContext_struct* ctx,
const struct _cmsContext_struct* src)
{
_cmsCurvesPluginChunkType newHead = { NULL };
_cmsParametricCurvesCollection* entry;
_cmsParametricCurvesCollection* Anterior = NULL;
_cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin];
_cmsAssert(head != NULL);
// Walk the list copying all nodes
for (entry = head->ParametricCurves;
entry != NULL;
entry = entry ->Next) {
_cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection));
if (newEntry == NULL)
return;
// We want to keep the linked list order, so this is a little bit tricky
newEntry -> Next = NULL;
if (Anterior)
Anterior -> Next = newEntry;
Anterior = newEntry;
if (newHead.ParametricCurves == NULL)
newHead.ParametricCurves = newEntry;
}
ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType));
}
// The allocator have to follow the chain
void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx,
const struct _cmsContext_struct* src)
{
_cmsAssert(ctx != NULL);
if (src != NULL) {
// Copy all linked list
DupPluginCurvesList(ctx, src);
}
else {
static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL };
ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType));
}
}
// The linked list head
_cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL };
// As a way to install new parametric curves
cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data)
{
_cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data;
_cmsParametricCurvesCollection* fl;
if (Data == NULL) {
ctx -> ParametricCurves = NULL;
return TRUE;
}
fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection));
if (fl == NULL) return FALSE;
// Copy the parameters
fl ->Evaluator = Plugin ->Evaluator;
fl ->nFunctions = Plugin ->nFunctions;
// Make sure no mem overwrites
if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN)
fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN;
// Copy the data
memmove(fl->FunctionTypes, Plugin ->FunctionTypes, fl->nFunctions * sizeof(cmsUInt32Number));
memmove(fl->ParameterCount, Plugin ->ParameterCount, fl->nFunctions * sizeof(cmsUInt32Number));
// Keep linked list
fl ->Next = ctx->ParametricCurves;
ctx->ParametricCurves = fl;
// All is ok
return TRUE;
}
// Search in type list, return position or -1 if not found
static
int IsInSet(int Type, _cmsParametricCurvesCollection* c)
{
int i;
for (i=0; i < (int) c ->nFunctions; i++)
if (abs(Type) == c ->FunctionTypes[i]) return i;
return -1;
}
// Search for the collection which contains a specific type
static
_cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index)
{
_cmsParametricCurvesCollection* c;
int Position;
_cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) {
Position = IsInSet(Type, c);
if (Position != -1) {
if (index != NULL)
*index = Position;
return c;
}
}
// If none found, revert for defaults
for (c = &DefaultCurves; c != NULL; c = c ->Next) {
Position = IsInSet(Type, c);
if (Position != -1) {
if (index != NULL)
*index = Position;
return c;
}
}
return NULL;
}
// Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
// no optimization curve is computed. nSegments may also be zero in the inverse case, where only the
// optimization curve is given. Both features simultaneously is an error
static
cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsUInt32Number nEntries,
cmsUInt32Number nSegments, const cmsCurveSegment* Segments,
const cmsUInt16Number* Values)
{
cmsToneCurve* p;
cmsUInt32Number i;
// We allow huge tables, which are then restricted for smoothing operations
if (nEntries > 65530) {
cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries");
return NULL;
}
if (nEntries == 0 && nSegments == 0) {
cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table");
return NULL;
}
// Allocate all required pointers, etc.
p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve));
if (!p) return NULL;
// In this case, there are no segments
if (nSegments == 0) {
p ->Segments = NULL;
p ->Evals = NULL;
}
else {
p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment));
if (p ->Segments == NULL) goto Error;
p ->Evals = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator));
if (p ->Evals == NULL) goto Error;
}
p -> nSegments = nSegments;
// This 16-bit table contains a limited precision representation of the whole curve and is kept for
// increasing xput on certain operations.
if (nEntries == 0) {
p ->Table16 = NULL;
}
else {
p ->Table16 = (cmsUInt16Number*) _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number));
if (p ->Table16 == NULL) goto Error;
}
p -> nEntries = nEntries;
// Initialize members if requested
if (Values != NULL && (nEntries > 0)) {
for (i=0; i < nEntries; i++)
p ->Table16[i] = Values[i];
}
// Initialize the segments stuff. The evaluator for each segment is located and a pointer to it
// is placed in advance to maximize performance.
if (Segments != NULL && (nSegments > 0)) {
_cmsParametricCurvesCollection *c;
p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*));
if (p ->SegInterp == NULL) goto Error;
for (i=0; i < nSegments; i++) {
// Type 0 is a special marker for table-based curves
if (Segments[i].Type == 0)
p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT);
memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment));
if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL)
p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints);
else
p ->Segments[i].SampledPoints = NULL;
c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL);
if (c != NULL)
p ->Evals[i] = c ->Evaluator;
}
}
p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS);
if (p->InterpParams != NULL)
return p;
Error:
for (i=0; i < nSegments; i++) {
if (p ->Segments && p ->Segments[i].SampledPoints) _cmsFree(ContextID, p ->Segments[i].SampledPoints);
if (p ->SegInterp && p ->SegInterp[i]) _cmsFree(ContextID, p ->SegInterp[i]);
}
if (p -> SegInterp) _cmsFree(ContextID, p -> SegInterp);
if (p -> Segments) _cmsFree(ContextID, p -> Segments);
if (p -> Evals) _cmsFree(ContextID, p -> Evals);
if (p ->Table16) _cmsFree(ContextID, p ->Table16);
_cmsFree(ContextID, p);
return NULL;
}
// Generates a sigmoidal function with desired steepness.
cmsINLINE double sigmoid_base(double k, double t)
{
return (1.0 / (1.0 + exp(-k * t))) - 0.5;
}
cmsINLINE double inverted_sigmoid_base(double k, double t)
{
return -log((1.0 / (t + 0.5)) - 1.0) / k;
}
cmsINLINE double sigmoid_factory(double k, double t)
{
double correction = 0.5 / sigmoid_base(k, 1);
return correction * sigmoid_base(k, 2.0 * t - 1.0) + 0.5;
}
cmsINLINE double inverse_sigmoid_factory(double k, double t)
{
double correction = 0.5 / sigmoid_base(k, 1);
return (inverted_sigmoid_base(k, (t - 0.5) / correction) + 1.0) / 2.0;
}
// Parametric Fn using floating point
static
cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R)
{
cmsFloat64Number e, Val, disc;
switch (Type) {
// X = Y ^ Gamma
case 1:
if (R < 0) {
if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
Val = R;
else
Val = 0;
}
else
Val = pow(R, Params[0]);
break;
// Type 1 Reversed: X = Y ^1/gamma
case -1:
if (R < 0) {
if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
Val = R;
else
Val = 0;
}
else
{
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
Val = PLUS_INF;
else
Val = pow(R, 1 / Params[0]);
}
break;
// CIE 122-1966
// Y = (aX + b)^Gamma | X >= -b/a
// Y = 0 | else
case 2:
{
if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
{
Val = 0;
}
else
{
disc = -Params[2] / Params[1];
if (R >= disc) {
e = Params[1] * R + Params[2];
if (e > 0)
Val = pow(e, Params[0]);
else
Val = 0;
}
else
Val = 0;
}
}
break;
// Type 2 Reversed
// X = (Y ^1/g - b) / a
case -2:
{
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
fabs(Params[1]) < MATRIX_DET_TOLERANCE)
{
Val = 0;
}
else
{
if (R < 0)
Val = 0;
else
Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
if (Val < 0)
Val = 0;
}
}
break;
// IEC 61966-3
// Y = (aX + b)^Gamma + c | X <= -b/a
// Y = c | else
case 3:
{
if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
{
Val = 0;
}
else
{
disc = -Params[2] / Params[1];
if (disc < 0)
disc = 0;
if (R >= disc) {
e = Params[1] * R + Params[2];
if (e > 0)
Val = pow(e, Params[0]) + Params[3];
else
Val = 0;
}
else
Val = Params[3];
}
}
break;
// Type 3 reversed
// X=((Y-c)^1/g - b)/a | (Y>=c)
// X=-b/a | (Y<c)
case -3:
{
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
fabs(Params[1]) < MATRIX_DET_TOLERANCE)
{
Val = 0;
}
else
{
if (R >= Params[3]) {
e = R - Params[3];
if (e > 0)
Val = (pow(e, 1 / Params[0]) - Params[2]) / Params[1];
else
Val = 0;
}
else {
Val = -Params[2] / Params[1];
}
}
}
break;
// IEC 61966-2.1 (sRGB)
// Y = (aX + b)^Gamma | X >= d
// Y = cX | X < d
case 4:
if (R >= Params[4]) {
e = Params[1]*R + Params[2];
if (e > 0)
Val = pow(e, Params[0]);
else
Val = 0;
}
else
Val = R * Params[3];
break;
// Type 4 reversed
// X=((Y^1/g-b)/a) | Y >= (ad+b)^g
// X=Y/c | Y< (ad+b)^g
case -4:
{
e = Params[1] * Params[4] + Params[2];
if (e < 0)
disc = 0;
else
disc = pow(e, Params[0]);
if (R >= disc) {
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
fabs(Params[1]) < MATRIX_DET_TOLERANCE)
Val = 0;
else
Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
}
else {
if (fabs(Params[3]) < MATRIX_DET_TOLERANCE)
Val = 0;
else
Val = R / Params[3];
}
}
break;
// Y = (aX + b)^Gamma + e | X >= d
// Y = cX + f | X < d
case 5:
if (R >= Params[4]) {
e = Params[1]*R + Params[2];
if (e > 0)
Val = pow(e, Params[0]) + Params[5];
else
Val = Params[5];
}
else
Val = R*Params[3] + Params[6];
break;
// Reversed type 5
// X=((Y-e)1/g-b)/a | Y >=(ad+b)^g+e), cd+f
// X=(Y-f)/c | else
case -5:
{
disc = Params[3] * Params[4] + Params[6];
if (R >= disc) {
e = R - Params[5];
if (e < 0)
Val = 0;
else
{
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
fabs(Params[1]) < MATRIX_DET_TOLERANCE)
Val = 0;
else
Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
}
}
else {
if (fabs(Params[3]) < MATRIX_DET_TOLERANCE)
Val = 0;
else
Val = (R - Params[6]) / Params[3];
}
}
break;
// Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf
// Type 6 is basically identical to type 5 without d
// Y = (a * X + b) ^ Gamma + c
case 6:
e = Params[1]*R + Params[2];
// On gamma 1.0, don't clamp
if (Params[0] == 1.0) {
Val = e + Params[3];
}
else {
if (e < 0)
Val = Params[3];
else
Val = pow(e, Params[0]) + Params[3];
}
break;
// ((Y - c) ^1/Gamma - b) / a
case -6:
{
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
fabs(Params[1]) < MATRIX_DET_TOLERANCE)
{
Val = 0;
}
else
{
e = R - Params[3];
if (e < 0)
Val = 0;
else
Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
}
}
break;
// Y = a * log (b * X^Gamma + c) + d
case 7:
e = Params[2] * pow(R, Params[0]) + Params[3];
if (e <= 0)
Val = Params[4];
else
Val = Params[1]*log10(e) + Params[4];
break;
// (Y - d) / a = log(b * X ^Gamma + c)
// pow(10, (Y-d) / a) = b * X ^Gamma + c
// pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
case -7:
{
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
fabs(Params[1]) < MATRIX_DET_TOLERANCE ||
fabs(Params[2]) < MATRIX_DET_TOLERANCE)
{
Val = 0;
}
else
{
Val = pow((pow(10.0, (R - Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]);
}
}
break;
//Y = a * b^(c*X+d) + e
case 8:
Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]);
break;
// Y = (log((y-e) / a) / log(b) - d ) / c
// a=0, b=1, c=2, d=3, e=4,
case -8:
disc = R - Params[4];
if (disc < 0) Val = 0;
else
{
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
fabs(Params[2]) < MATRIX_DET_TOLERANCE)
{
Val = 0;
}
else
{
Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2];
}
}
break;
// S-Shaped: (1 - (1-x)^1/g)^1/g
case 108:
if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
Val = 0;
else
Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]);
break;
// y = (1 - (1-x)^1/g)^1/g
// y^g = (1 - (1-x)^1/g)
// 1 - y^g = (1-x)^1/g
// (1 - y^g)^g = 1 - x
// 1 - (1 - y^g)^g
case -108:
Val = 1 - pow(1 - pow(R, Params[0]), Params[0]);
break;
// Sigmoidals
case 109:
Val = sigmoid_factory(Params[0], R);
break;
case -109:
Val = inverse_sigmoid_factory(Params[0], R);
break;
default:
// Unsupported parametric curve. Should never reach here
return 0;
}
return Val;
}
// Evaluate a segmented function for a single value. Return -Inf if no valid segment found .
// If fn type is 0, perform an interpolation on the table
static
cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R)
{
int i;
cmsFloat32Number Out32;
cmsFloat64Number Out;
for (i = (int) g->nSegments - 1; i >= 0; --i) {
// Check for domain
if ((R > g->Segments[i].x0) && (R <= g->Segments[i].x1)) {
// Type == 0 means segment is sampled
if (g->Segments[i].Type == 0) {
cmsFloat32Number R1 = (cmsFloat32Number)(R - g->Segments[i].x0) / (g->Segments[i].x1 - g->Segments[i].x0);
// Setup the table (TODO: clean that)
g->SegInterp[i]->Table = g->Segments[i].SampledPoints;
g->SegInterp[i]->Interpolation.LerpFloat(&R1, &Out32, g->SegInterp[i]);
Out = (cmsFloat64Number) Out32;
}
else {
Out = g->Evals[i](g->Segments[i].Type, g->Segments[i].Params, R);
}
if (isinf(Out))
return PLUS_INF;
else
{
if (isinf(-Out))
return MINUS_INF;
}
return Out;
}
}
return MINUS_INF;
}
// Access to estimated low-res table
cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve* t)
{
_cmsAssert(t != NULL);
return t ->nEntries;
}
const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(const cmsToneCurve* t)
{
_cmsAssert(t != NULL);
return t ->Table16;
}
// Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the
// floating point description empty.
cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsUInt32Number nEntries, const cmsUInt16Number Values[])
{
return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values);
}
static
cmsUInt32Number EntriesByGamma(cmsFloat64Number Gamma)
{
if (fabs(Gamma - 1.0) < 0.001) return 2;
return 4096;
}
// Create a segmented gamma, fill the table
cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID,
cmsUInt32Number nSegments, const cmsCurveSegment Segments[])
{
cmsUInt32Number i;
cmsFloat64Number R, Val;
cmsToneCurve* g;
cmsUInt32Number nGridPoints = 4096;
_cmsAssert(Segments != NULL);
// Optimizatin for identity curves.
if (nSegments == 1 && Segments[0].Type == 1) {
nGridPoints = EntriesByGamma(Segments[0].Params[0]);
}
g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL);
if (g == NULL) return NULL;
// Once we have the floating point version, we can approximate a 16 bit table of 4096 entries
// for performance reasons. This table would normally not be used except on 8/16 bits transforms.
for (i = 0; i < nGridPoints; i++) {
R = (cmsFloat64Number) i / (nGridPoints-1);
Val = EvalSegmentedFn(g, R);
// Round and saturate
g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0);
}
return g;
}
// Use a segmented curve to store the floating point table
cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[])
{
cmsCurveSegment Seg[3];
// Do some housekeeping
if (nEntries == 0 || values == NULL)
return NULL;
// A segmented tone curve should have function segments in the first and last positions
// Initialize segmented curve part up to 0 to constant value = samples[0]
Seg[0].x0 = MINUS_INF;
Seg[0].x1 = 0;
Seg[0].Type = 6;
Seg[0].Params[0] = 1;
Seg[0].Params[1] = 0;
Seg[0].Params[2] = 0;
Seg[0].Params[3] = values[0];
Seg[0].Params[4] = 0;
// From zero to 1
Seg[1].x0 = 0;
Seg[1].x1 = 1.0;
Seg[1].Type = 0;
Seg[1].nGridPoints = nEntries;
Seg[1].SampledPoints = (cmsFloat32Number*) values;
// Final segment is constant = lastsample
Seg[2].x0 = 1.0;
Seg[2].x1 = PLUS_INF;
Seg[2].Type = 6;
Seg[2].Params[0] = 1;
Seg[2].Params[1] = 0;
Seg[2].Params[2] = 0;
Seg[2].Params[3] = values[nEntries-1];
Seg[2].Params[4] = 0;
return cmsBuildSegmentedToneCurve(ContextID, 3, Seg);
}
// Parametric curves
//
// Parameters goes as: Curve, a, b, c, d, e, f
// Type is the ICC type +1
// if type is negative, then the curve is analytically inverted
cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[])
{
cmsCurveSegment Seg0;
int Pos = 0;
cmsUInt32Number size;
_cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos);
_cmsAssert(Params != NULL);
if (c == NULL) {
cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type);
return NULL;
}
memset(&Seg0, 0, sizeof(Seg0));
Seg0.x0 = MINUS_INF;
Seg0.x1 = PLUS_INF;
Seg0.Type = Type;
size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number);
memmove(Seg0.Params, Params, size);
return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0);
}
// Build a gamma table based on gamma constant
cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma)
{
return cmsBuildParametricToneCurve(ContextID, 1, &Gamma);
}
// Free all memory taken by the gamma curve
void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve)
{
cmsContext ContextID;
if (Curve == NULL) return;
ContextID = Curve ->InterpParams->ContextID;
_cmsFreeInterpParams(Curve ->InterpParams);
if (Curve -> Table16)
_cmsFree(ContextID, Curve ->Table16);
if (Curve ->Segments) {
cmsUInt32Number i;
for (i=0; i < Curve ->nSegments; i++) {
if (Curve ->Segments[i].SampledPoints) {
_cmsFree(ContextID, Curve ->Segments[i].SampledPoints);
}
if (Curve ->SegInterp[i] != 0)
_cmsFreeInterpParams(Curve->SegInterp[i]);
}
_cmsFree(ContextID, Curve ->Segments);
_cmsFree(ContextID, Curve ->SegInterp);
}
if (Curve -> Evals)
_cmsFree(ContextID, Curve -> Evals);
_cmsFree(ContextID, Curve);
}
// Utility function, free 3 gamma tables
void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3])
{
_cmsAssert(Curve != NULL);
if (Curve[0] != NULL) cmsFreeToneCurve(Curve[0]);
if (Curve[1] != NULL) cmsFreeToneCurve(Curve[1]);
if (Curve[2] != NULL) cmsFreeToneCurve(Curve[2]);
Curve[0] = Curve[1] = Curve[2] = NULL;
}
// Duplicate a gamma table
cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In)
{
if (In == NULL) return NULL;
return AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16);
}
// Joins two curves for X and Y. Curves should be monotonic.
// We want to get
//
// y = Y^-1(X(t))
//
cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
const cmsToneCurve* X,
const cmsToneCurve* Y, cmsUInt32Number nResultingPoints)
{
cmsToneCurve* out = NULL;
cmsToneCurve* Yreversed = NULL;
cmsFloat32Number t, x;
cmsFloat32Number* Res = NULL;
cmsUInt32Number i;
_cmsAssert(X != NULL);
_cmsAssert(Y != NULL);
Yreversed = cmsReverseToneCurveEx(nResultingPoints, Y);
if (Yreversed == NULL) goto Error;
Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number));
if (Res == NULL) goto Error;
//Iterate
for (i=0; i < nResultingPoints; i++) {
t = (cmsFloat32Number) i / (cmsFloat32Number)(nResultingPoints-1);
x = cmsEvalToneCurveFloat(X, t);
Res[i] = cmsEvalToneCurveFloat(Yreversed, x);
}
// Allocate space for output
out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res);
Error:
if (Res != NULL) _cmsFree(ContextID, Res);
if (Yreversed != NULL) cmsFreeToneCurve(Yreversed);
return out;
}
// Get the surrounding nodes. This is tricky on non-monotonic tables
static
int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p)
{
int i;
int y0, y1;
// A 1 point table is not allowed
if (p -> Domain[0] < 1) return -1;
// Let's see if ascending or descending.
if (LutTable[0] < LutTable[p ->Domain[0]]) {
// Table is overall ascending
for (i = (int) p->Domain[0] - 1; i >= 0; --i) {
y0 = LutTable[i];
y1 = LutTable[i+1];
if (y0 <= y1) { // Increasing
if (In >= y0 && In <= y1) return i;
}
else
if (y1 < y0) { // Decreasing
if (In >= y1 && In <= y0) return i;
}
}
}
else {
// Table is overall descending
for (i=0; i < (int) p -> Domain[0]; i++) {
y0 = LutTable[i];
y1 = LutTable[i+1];
if (y0 <= y1) { // Increasing
if (In >= y0 && In <= y1) return i;
}
else
if (y1 < y0) { // Decreasing
if (In >= y1 && In <= y0) return i;
}
}
}
return -1;
}
// Reverse a gamma table
cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsUInt32Number nResultSamples, const cmsToneCurve* InCurve)
{
cmsToneCurve *out;
cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2;
int i, j;
int Ascending;
_cmsAssert(InCurve != NULL);
// Try to reverse it analytically whatever possible
if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 &&
/* InCurve -> Segments[0].Type <= 5 */
GetParametricCurveByType(InCurve ->InterpParams->ContextID, InCurve ->Segments[0].Type, NULL) != NULL) {
return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID,
-(InCurve -> Segments[0].Type),
InCurve -> Segments[0].Params);
}
// Nope, reverse the table.
out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL);
if (out == NULL)
return NULL;
// We want to know if this is an ascending or descending table
Ascending = !cmsIsToneCurveDescending(InCurve);
// Iterate across Y axis
for (i=0; i < (int) nResultSamples; i++) {
y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1);
// Find interval in which y is within.
j = GetInterval(y, InCurve->Table16, InCurve->InterpParams);
if (j >= 0) {
// Get limits of interval
x1 = InCurve ->Table16[j];
x2 = InCurve ->Table16[j+1];
y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1);
y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1);
// If collapsed, then use any
if (x1 == x2) {
out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1);
continue;
} else {
// Interpolate
a = (y2 - y1) / (x2 - x1);
b = y2 - a * x2;
}
}
out ->Table16[i] = _cmsQuickSaturateWord(a* y + b);
}
return out;
}
// Reverse a gamma table
cmsToneCurve* CMSEXPORT cmsReverseToneCurve(const cmsToneCurve* InGamma)
{
_cmsAssert(InGamma != NULL);
return cmsReverseToneCurveEx(4096, InGamma);
}
// From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite
// differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press.
//
// Smoothing and interpolation with second differences.
//
// Input: weights (w), data (y): vector from 1 to m.
// Input: smoothing parameter (lambda), length (m).
// Output: smoothed vector (z): vector from 1 to m.
static
cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[],
cmsFloat32Number z[], cmsFloat32Number lambda, int m)
{
int i, i1, i2;
cmsFloat32Number *c, *d, *e;
cmsBool st;
c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
if (c != NULL && d != NULL && e != NULL) {
d[1] = w[1] + lambda;
c[1] = -2 * lambda / d[1];
e[1] = lambda /d[1];
z[1] = w[1] * y[1];
d[2] = w[2] + 5 * lambda - d[1] * c[1] * c[1];
c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2];
e[2] = lambda / d[2];
z[2] = w[2] * y[2] - c[1] * z[1];
for (i = 3; i < m - 1; i++) {
i1 = i - 1; i2 = i - 2;
d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i];
e[i] = lambda / d[i];
z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2];
}
i1 = m - 2; i2 = m - 3;
d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
i1 = m - 1; i2 = m - 2;
d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m];
z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m];
for (i = m - 2; 1<= i; i--)
z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2];
st = TRUE;
}
else st = FALSE;
if (c != NULL) _cmsFree(ContextID, c);
if (d != NULL) _cmsFree(ContextID, d);
if (e != NULL) _cmsFree(ContextID, e);
return st;
}
// Smooths a curve sampled at regular intervals.
cmsBool CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda)
{
cmsBool SuccessStatus = TRUE;
cmsFloat32Number *w, *y, *z;
cmsUInt32Number i, nItems, Zeros, Poles;
cmsBool notCheck = FALSE;
if (Tab != NULL && Tab->InterpParams != NULL)
{
cmsContext ContextID = Tab->InterpParams->ContextID;
if (!cmsIsToneCurveLinear(Tab)) // Only non-linear curves need smoothing
{
nItems = Tab->nEntries;
if (nItems < MAX_NODES_IN_CURVE)
{
// Allocate one more item than needed
w = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
y = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
z = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
if (w != NULL && y != NULL && z != NULL) // Ensure no memory allocation failure
{
memset(w, 0, (nItems + 1) * sizeof(cmsFloat32Number));
memset(y, 0, (nItems + 1) * sizeof(cmsFloat32Number));
memset(z, 0, (nItems + 1) * sizeof(cmsFloat32Number));
for (i = 0; i < nItems; i++)
{
y[i + 1] = (cmsFloat32Number)Tab->Table16[i];
w[i + 1] = 1.0;
}
if (lambda < 0)
{
notCheck = TRUE;
lambda = -lambda;
}
if (smooth2(ContextID, w, y, z, (cmsFloat32Number)lambda, (int)nItems))
{
// Do some reality - checking...
Zeros = Poles = 0;
for (i = nItems; i > 1; --i)
{
if (z[i] == 0.) Zeros++;
if (z[i] >= 65535.) Poles++;
if (z[i] < z[i - 1])
{
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic.");
SuccessStatus = notCheck;
break;
}
}
if (SuccessStatus && Zeros > (nItems / 3))
{
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros.");
SuccessStatus = notCheck;
}
if (SuccessStatus && Poles > (nItems / 3))
{
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles.");
SuccessStatus = notCheck;
}
if (SuccessStatus) // Seems ok
{
for (i = 0; i < nItems; i++)
{
// Clamp to cmsUInt16Number
Tab->Table16[i] = _cmsQuickSaturateWord(z[i + 1]);
}
}
}
else // Could not smooth
{
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Function smooth2 failed.");
SuccessStatus = FALSE;
}
}
else // One or more buffers could not be allocated
{
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Could not allocate memory.");
SuccessStatus = FALSE;
}
if (z != NULL)
_cmsFree(ContextID, z);
if (y != NULL)
_cmsFree(ContextID, y);
if (w != NULL)
_cmsFree(ContextID, w);
}
else // too many items in the table
{
cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Too many points.");
SuccessStatus = FALSE;
}
}
}
else // Tab parameter or Tab->InterpParams is NULL
{
// Can't signal an error here since the ContextID is not known at this point
SuccessStatus = FALSE;
}
return SuccessStatus;
}
// Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting
// in a linear table. This way assures it is linear in 12 bits, which should be enough in most cases.
cmsBool CMSEXPORT cmsIsToneCurveLinear(const cmsToneCurve* Curve)
{
int i;
int diff;
_cmsAssert(Curve != NULL);
for (i=0; i < (int) Curve ->nEntries; i++) {
diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries));
if (diff > 0x0f)
return FALSE;
}
return TRUE;
}
// Same, but for monotonicity
cmsBool CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t)
{
cmsUInt32Number n;
int i, last;
cmsBool lDescending;
_cmsAssert(t != NULL);
// Degenerated curves are monotonic? Ok, let's pass them
n = t ->nEntries;
if (n < 2) return TRUE;
// Curve direction
lDescending = cmsIsToneCurveDescending(t);
if (lDescending) {
last = t ->Table16[0];
for (i = 1; i < (int) n; i++) {
if (t ->Table16[i] - last > 2) // We allow some ripple
return FALSE;
else
last = t ->Table16[i];
}
}
else {
last = t ->Table16[n-1];
for (i = (int) n - 2; i >= 0; --i) {
if (t ->Table16[i] - last > 2)
return FALSE;
else
last = t ->Table16[i];
}
}
return TRUE;
}
// Same, but for descending tables
cmsBool CMSEXPORT cmsIsToneCurveDescending(const cmsToneCurve* t)
{
_cmsAssert(t != NULL);
return t ->Table16[0] > t ->Table16[t ->nEntries-1];
}
// Another info fn: is out gamma table multisegment?
cmsBool CMSEXPORT cmsIsToneCurveMultisegment(const cmsToneCurve* t)
{
_cmsAssert(t != NULL);
return t -> nSegments > 1;
}
cmsInt32Number CMSEXPORT cmsGetToneCurveParametricType(const cmsToneCurve* t)
{
_cmsAssert(t != NULL);
if (t -> nSegments != 1) return 0;
return t ->Segments[0].Type;
}
// We need accuracy this time
cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsFloat32Number v)
{
_cmsAssert(Curve != NULL);
// Check for 16 bits table. If so, this is a limited-precision tone curve
if (Curve ->nSegments == 0) {
cmsUInt16Number In, Out;
In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0);
Out = cmsEvalToneCurve16(Curve, In);
return (cmsFloat32Number) (Out / 65535.0);
}
return (cmsFloat32Number) EvalSegmentedFn(Curve, v);
}
// We need xput over here
cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt16Number v)
{
cmsUInt16Number out;
_cmsAssert(Curve != NULL);
Curve ->InterpParams ->Interpolation.Lerp16(&v, &out, Curve ->InterpParams);
return out;
}
// Least squares fitting.
// A mathematical procedure for finding the best-fitting curve to a given set of points by
// minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
// The sum of the squares of the offsets is used instead of the offset absolute values because
// this allows the residuals to be treated as a continuous differentiable quantity.
//
// y = f(x) = x ^ g
//
// R = (yi - (xi^g))
// R2 = (yi - (xi^g))2
// SUM R2 = SUM (yi - (xi^g))2
//
// dR2/dg = -2 SUM x^g log(x)(y - x^g)
// solving for dR2/dg = 0
//
// g = 1/n * SUM(log(y) / log(x))
cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision)
{
cmsFloat64Number gamma, sum, sum2;
cmsFloat64Number n, x, y, Std;
cmsUInt32Number i;
_cmsAssert(t != NULL);
sum = sum2 = n = 0;
// Excluding endpoints
for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) {
x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1);
y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x);
// Avoid 7% on lower part to prevent
// artifacts due to linear ramps
if (y > 0. && y < 1. && x > 0.07) {
gamma = log(y) / log(x);
sum += gamma;
sum2 += gamma * gamma;
n++;
}
}
// We need enough valid samples
if (n <= 1) return -1.0;
// Take a look on SD to see if gamma isn't exponential at all
Std = sqrt((n * sum2 - sum * sum) / (n*(n-1)));
if (Std > Precision)
return -1.0;
return (sum / n); // The mean
}
// Retrieve segments on tone curves
const cmsCurveSegment* CMSEXPORT cmsGetToneCurveSegment(cmsInt32Number n, const cmsToneCurve* t)
{
_cmsAssert(t != NULL);
if (n < 0 || n >= (cmsInt32Number) t->nSegments) return NULL;
return t->Segments + n;
}
// Retrieve parameters on one-segment tone curves
cmsFloat64Number* CMSEXPORT cmsGetToneCurveParams(const cmsToneCurve* t)
{
_cmsAssert(t != NULL);
if (t->nSegments != 1) return NULL;
return t->Segments[0].Params;
}
|