1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
//===-- targetmachine.cpp -------------------------------------------------===//
//
// LDC – the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
//
// Note: The target CPU detection logic has been adapted from Clang
// (Tools.cpp and ToolChain.cpp in lib/Driver, the latter seems to have the
// more up-to-date version).
//
//===----------------------------------------------------------------------===//
#include "driver/targetmachine.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "mars.h"
#include "gen/logger.h"
static std::string getX86TargetCPU(const llvm::Triple &triple)
{
// Select the default CPU if none was given (or detection failed).
// Intel Macs are relatively recent, take advantage of that.
if (triple.isOSDarwin())
return triple.isArch64Bit() ? "core2" : "yonah";
// Everything else goes to x86-64 in 64-bit mode.
if (triple.isArch64Bit())
return "x86-64";
if (triple.getOSName().startswith("haiku"))
return "i586";
if (triple.getOSName().startswith("openbsd"))
return "i486";
if (triple.getOSName().startswith("bitrig"))
return "i686";
if (triple.getOSName().startswith("freebsd"))
return "i486";
if (triple.getOSName().startswith("netbsd"))
return "i486";
#if LDC_LLVM_VER >= 302
// All x86 devices running Android have core2 as their common
// denominator. This makes a better choice than pentium4.
if (triple.getEnvironment() == llvm::Triple::Android)
return "core2";
#endif
// Fallback to p4.
return "pentium4";
}
static std::string getARMTargetCPU(const llvm::Triple &triple)
{
const char *result = llvm::StringSwitch<const char *>(triple.getArchName())
.Cases("armv2", "armv2a","arm2")
.Case("armv3", "arm6")
.Case("armv3m", "arm7m")
.Case("armv4", "strongarm")
.Case("armv4t", "arm7tdmi")
.Cases("armv5", "armv5t", "arm10tdmi")
.Cases("armv5e", "armv5te", "arm1026ejs")
.Case("armv5tej", "arm926ej-s")
.Cases("armv6", "armv6k", "arm1136jf-s")
.Case("armv6j", "arm1136j-s")
.Cases("armv6z", "armv6zk", "arm1176jzf-s")
.Case("armv6t2", "arm1156t2-s")
.Cases("armv6m", "armv6-m", "cortex-m0")
.Cases("armv7", "armv7a", "armv7-a", "cortex-a8")
.Cases("armv7l", "armv7-l", "cortex-a8")
.Cases("armv7f", "armv7-f", "cortex-a9-mp")
.Cases("armv7s", "armv7-s", "swift")
.Cases("armv7r", "armv7-r", "cortex-r4")
.Cases("armv7m", "armv7-m", "cortex-m3")
.Cases("armv7em", "armv7e-m", "cortex-m4")
.Cases("armv8", "armv8a", "armv8-a", "cortex-a53")
.Case("ep9312", "ep9312")
.Case("iwmmxt", "iwmmxt")
.Case("xscale", "xscale")
// If all else failed, return the most base CPU with thumb interworking
// supported by LLVM.
.Default(0);
if (result)
return result;
return (triple.getEnvironment() == llvm::Triple::GNUEABIHF) ?
"arm1176jzf-s" : "arm7tdmi";
}
/// Returns the LLVM name of the target CPU to use given the provided
/// -mcpu argument and target triple.
static std::string getTargetCPU(const std::string &cpu,
const llvm::Triple &triple)
{
if (!cpu.empty())
{
if (cpu != "native")
return cpu;
// FIXME: Reject attempts to use -mcpu=native unless the target matches
// the host.
std::string hostCPU = llvm::sys::getHostCPUName();
if (!hostCPU.empty() && hostCPU != "generic")
return hostCPU;
}
switch (triple.getArch())
{
default:
// We don't know about the specifics of this platform, just return the
// empty string and let LLVM decide.
return cpu;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return getX86TargetCPU(triple);
case llvm::Triple::arm:
return getARMTargetCPU(triple);
}
}
static const char *getLLVMArchSuffixForARM(llvm::StringRef CPU)
{
return llvm::StringSwitch<const char *>(CPU)
.Case("strongarm", "v4")
.Cases("arm7tdmi", "arm7tdmi-s", "arm710t", "v4t")
.Cases("arm720t", "arm9", "arm9tdmi", "v4t")
.Cases("arm920", "arm920t", "arm922t", "v4t")
.Cases("arm940t", "ep9312","v4t")
.Cases("arm10tdmi", "arm1020t", "v5")
.Cases("arm9e", "arm926ej-s", "arm946e-s", "v5e")
.Cases("arm966e-s", "arm968e-s", "arm10e", "v5e")
.Cases("arm1020e", "arm1022e", "xscale", "iwmmxt", "v5e")
.Cases("arm1136j-s", "arm1136jf-s", "arm1176jz-s", "v6")
.Cases("arm1176jzf-s", "mpcorenovfp", "mpcore", "v6")
.Cases("arm1156t2-s", "arm1156t2f-s", "v6t2")
.Cases("cortex-a5", "cortex-a7", "cortex-a8", "v7")
.Cases("cortex-a9", "cortex-a12", "cortex-a15", "v7")
.Cases("cortex-r4", "cortex-r5", "v7r")
.Case("cortex-m0", "v6m")
.Case("cortex-m3", "v7m")
.Case("cortex-m4", "v7em")
.Case("cortex-a9-mp", "v7f")
.Case("swift", "v7s")
.Case("cortex-a53", "v8")
.Case("krait", "v7")
.Default("");
}
static FloatABI::Type getARMFloatABI(const llvm::Triple &triple,
const char* llvmArchSuffix)
{
switch (triple.getOS()) {
case llvm::Triple::Darwin:
case llvm::Triple::MacOSX:
case llvm::Triple::IOS: {
// Darwin defaults to "softfp" for v6 and v7.
if (llvm::StringRef(llvmArchSuffix).startswith("v6") ||
llvm::StringRef(llvmArchSuffix).startswith("v7"))
return FloatABI::SoftFP;
return FloatABI::Soft;
}
case llvm::Triple::FreeBSD:
// FreeBSD defaults to soft float
return FloatABI::Soft;
default:
switch(triple.getEnvironment()) {
case llvm::Triple::GNUEABIHF:
return FloatABI::Hard;
case llvm::Triple::GNUEABI:
return FloatABI::SoftFP;
case llvm::Triple::EABI:
// EABI is always AAPCS, and if it was not marked 'hard', it's softfp
return FloatABI::SoftFP;
#if LDC_LLVM_VER >= 302
case llvm::Triple::Android: {
if (llvm::StringRef(llvmArchSuffix).startswith("v7"))
return FloatABI::SoftFP;
return FloatABI::Soft;
}
#endif
default:
// Assume "soft".
// TODO: Warn the user we are guessing.
return FloatABI::Soft;
}
}
}
/// Sanitizes the MIPS ABI in the feature string.
static void addMipsABI(const llvm::Triple &triple, std::vector<std::string> &attrs)
{
enum ABI { O32 = 1<<0, N32 = 1<<1, N64 = 1<<2, EABI = 1<<3 };
const bool is64Bit = triple.getArch() == llvm::Triple::mips64 ||
triple.getArch() == llvm::Triple::mips64el;
const uint32_t defaultABI = is64Bit ? N64 : O32;
uint32_t bits = defaultABI;
std::vector<std::string>::iterator I = attrs.begin();
while (I != attrs.end())
{
std::string str = *I;
bool enabled = str[0] == '+';
std::string flag = (str[0] == '+' || str[0] == '-') ? str.substr(1) : str;
uint32_t newBit = 0;
if (flag == "o32") newBit = O32;
if (flag == "n32") newBit = N32;
if (flag == "n64") newBit = N64;
if (flag == "eabi") newBit = EABI;
if (newBit)
{
I = attrs.erase(I);
if (enabled) bits |= newBit;
else bits &= ~newBit;
}
else
++I;
}
switch (bits)
{
case O32: attrs.push_back("+o32"); break;
case N32: attrs.push_back("+n32"); break;
case N64: attrs.push_back("+n64"); break;
case EABI: attrs.push_back("+eabi"); break;
default: error(Loc(), "Only one ABI argument is supported"); fatal();
}
if (bits != defaultABI)
attrs.push_back(is64Bit ? "-n64" : "-o32");
}
/// Looks up a target based on an arch name and a target triple.
///
/// If the arch name is non-empty, then the lookup is done by arch. Otherwise,
/// the target triple is used.
///
/// This has been adapted from the corresponding LLVM 3.2+ overload of
/// llvm::TargetRegistry::lookupTarget. Once support for LLVM 3.1 is dropped,
/// the registry method can be used instead.
const llvm::Target *lookupTarget(const std::string &arch, llvm::Triple &triple,
std::string &errorMsg)
{
// Allocate target machine. First, check whether the user has explicitly
// specified an architecture to compile for. If so we have to look it up by
// name, because it might be a backend that has no mapping to a target triple.
const llvm::Target *target = 0;
if (!arch.empty())
{
for (llvm::TargetRegistry::iterator it = llvm::TargetRegistry::begin(),
ie = llvm::TargetRegistry::end(); it != ie; ++it)
{
if (arch == it->getName())
{
target = &*it;
break;
}
}
if (!target)
{
errorMsg = "invalid target architecture '" + arch + "', see "
"-version for a list of supported targets.";
return 0;
}
// Adjust the triple to match (if known), otherwise stick with the
// given triple.
llvm::Triple::ArchType Type = llvm::Triple::getArchTypeForLLVMName(arch);
if (Type != llvm::Triple::UnknownArch)
triple.setArch(Type);
}
else
{
std::string tempError;
target = llvm::TargetRegistry::lookupTarget(triple.getTriple(), tempError);
if (!target)
{
errorMsg = "unable to get target for '" + triple.getTriple() +
"', see -version and -mtriple.";
}
}
return target;
}
llvm::TargetMachine* createTargetMachine(
std::string targetTriple,
std::string arch,
std::string cpu,
std::vector<std::string> attrs,
ExplicitBitness::Type bitness,
FloatABI::Type floatABI,
llvm::Reloc::Model relocModel,
llvm::CodeModel::Model codeModel,
llvm::CodeGenOpt::Level codeGenOptLevel,
bool noFramePointerElim,
bool noLinkerStripDead)
{
// Determine target triple. If the user didn't explicitly specify one, use
// the one set at LLVM configure time.
llvm::Triple triple;
if (targetTriple.empty())
{
triple = llvm::Triple(llvm::sys::getDefaultTargetTriple());
// Handle -m32/-m64.
if (sizeof(void*) == 4 && bitness == ExplicitBitness::M64)
{
triple = triple.get64BitArchVariant();
}
else if (sizeof(void*) == 8 && bitness == ExplicitBitness::M32)
{
triple = triple.get32BitArchVariant();
}
}
else
{
triple = llvm::Triple(llvm::Triple::normalize(targetTriple));
}
// Look up the LLVM backend to use. This also updates triple with the
// user-specified arch, if any.
std::string errMsg;
const llvm::Target *target = lookupTarget(arch, triple, errMsg);
if (target == 0)
{
error(Loc(), "%s", errMsg.c_str());
fatal();
}
// Package up features to be passed to target/subtarget.
llvm::SubtargetFeatures features;
features.getDefaultSubtargetFeatures(triple);
if (cpu == "native")
{
llvm::StringMap<bool> hostFeatures;
if (llvm::sys::getHostCPUFeatures(hostFeatures))
{
llvm::StringMapConstIterator<bool> i = hostFeatures.begin(),
end = hostFeatures.end();
for (; i != end; ++i)
#if LDC_LLVM_VER >= 305
features.AddFeature(std::string((i->second ? "+" : "-")).append(i->first()));
#else
features.AddFeature(i->first(), i->second);
#endif
}
}
if (triple.getArch() == llvm::Triple::mips ||
triple.getArch() == llvm::Triple::mipsel ||
triple.getArch() == llvm::Triple::mips64 ||
triple.getArch() == llvm::Triple::mips64el)
addMipsABI(triple, attrs);
for (unsigned i = 0; i < attrs.size(); ++i)
features.AddFeature(attrs[i]);
// With an empty CPU string, LLVM will default to the host CPU, which is
// usually not what we want (expected behavior from other compilers is
// to default to "generic").
cpu = getTargetCPU(cpu, triple);
if (Logger::enabled())
{
Logger::println("Targeting '%s' (CPU '%s' with features '%s')",
triple.str().c_str(), cpu.c_str(), features.getString().c_str());
}
if (triple.isMacOSX() && relocModel == llvm::Reloc::Default)
{
// OS X defaults to PIC (and as of 10.7.5/LLVM 3.1-3.3, TLS use leads
// to crashes for non-PIC code). LLVM doesn't handle this.
relocModel = llvm::Reloc::PIC_;
}
if (floatABI == FloatABI::Default)
{
switch (triple.getArch())
{
default: // X86, ...
floatABI = FloatABI::Hard;
break;
case llvm::Triple::arm:
floatABI = getARMFloatABI(triple, getLLVMArchSuffixForARM(cpu));
break;
case llvm::Triple::thumb:
floatABI = FloatABI::Soft;
break;
}
}
#if LDC_LLVM_VER < 305
if (triple.getArch() == llvm::Triple::arm && !triple.isOSDarwin())
{
// On ARM, we want to use EHABI exception handling, as we don't support
// SJLJ EH in druntime. Unfortunately, it is still in a partly
// experimental state, and the -arm-enable-ehabi-descriptors command
// line option is not exposed via an internal API at all.
const char *backendArgs[3] = {
"ldc2", // Fake name, irrelevant.
"-arm-enable-ehabi",
"-arm-enable-ehabi-descriptors"
};
llvm::cl::ParseCommandLineOptions(3, backendArgs);
}
#endif
llvm::TargetOptions targetOptions;
targetOptions.NoFramePointerElim = noFramePointerElim;
switch (floatABI)
{
default: llvm_unreachable("Floating point ABI type unknown.");
case FloatABI::Soft:
targetOptions.UseSoftFloat = true;
targetOptions.FloatABIType = llvm::FloatABI::Soft;
break;
case FloatABI::SoftFP:
targetOptions.UseSoftFloat = false;
targetOptions.FloatABIType = llvm::FloatABI::Soft;
break;
case FloatABI::Hard:
targetOptions.UseSoftFloat = false;
targetOptions.FloatABIType = llvm::FloatABI::Hard;
break;
}
// Right now, we only support linker-level dead code elimination on Linux
// using the GNU toolchain (based on ld's --gc-sections flag). The Apple ld
// on OS X supports a similar flag (-dead_strip) that doesn't require
// emitting the symbols into different sections. The MinGW ld doesn't seem
// to support --gc-sections at all, and FreeBSD needs more investigation.
if (!noLinkerStripDead &&
(triple.getOS() == llvm::Triple::Linux || triple.getOS() == llvm::Triple::Win32))
{
#if LDC_LLVM_VER < 305
llvm::TargetMachine::setDataSections(true);
llvm::TargetMachine::setFunctionSections(true);
#else
targetOptions.FunctionSections = true;
targetOptions.DataSections = true;
#endif
}
return target->createTargetMachine(
triple.str(),
cpu,
features.getString(),
targetOptions,
relocModel,
codeModel,
codeGenOptLevel
);
}
|