File: abi-generic.h

package info (click to toggle)
ldc 1%3A1.30.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 59,248 kB
  • sloc: cpp: 61,598; ansic: 14,545; sh: 1,014; makefile: 972; asm: 510; objc: 135; exp: 48; python: 12
file content (308 lines) | stat: -rw-r--r-- 9,667 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
//===-- gen/abi-generic.h - Generic Target ABI helpers ----------*- C++ -*-===//
//
//                         LDC – the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
//
// Contains helpers for handling rewrites common to more than one target ABI.
//
//===----------------------------------------------------------------------===//

#pragma once

#include "gen/abi.h"
#include "gen/irstate.h"
#include "gen/llvmhelpers.h"
#include "gen/logger.h"
#include "gen/structs.h"
#include "gen/tollvm.h"

struct LLTypeMemoryLayout {
  // Structs and static arrays are folded recursively to scalars or anonymous
  // structs.
  // Pointer types are folded to an integer type.
  // Vector types are folded to a universal vector type.
  static LLType *fold(LLType *type) {
    // T* => same-sized integer
    if (type->isPointerTy()) {
      return LLIntegerType::get(gIR->context(), getTypeBitSize(type));
    }

    // <N x T> => same-sized <M x i8>
    if (type->isVectorTy()) {
      const size_t sizeInBits = getTypeBitSize(type);
      assert(sizeInBits % 8 == 0);
      return llvm::VectorType::get(LLIntegerType::get(gIR->context(), 8),
                                   sizeInBits / 8
#if LDC_LLVM_VER >= 1100
                                   ,
                                   /*Scalable=*/false
#endif
      );
    }

    if (LLStructType *structType = isaStruct(type)) {
      unsigned numElements = structType->getNumElements();

      // fold each element
      std::vector<LLType *> elements;
      elements.reserve(numElements);
      for (unsigned i = 0; i < numElements; ++i) {
        elements.push_back(fold(structType->getElementType(i)));
      }

      // single element? then discard wrapping struct
      if (numElements == 1) {
        return elements[0];
      }

      return LLStructType::get(gIR->context(), elements,
                               structType->isPacked());
    }

    if (LLArrayType *arrayType = isaArray(type)) {
      unsigned numElements = arrayType->getNumElements();
      LLType *foldedElementType = fold(arrayType->getElementType());

      // single element? then fold to scalar
      if (numElements == 1) {
        return foldedElementType;
      }

      // otherwise: convert to struct of N folded elements
      std::vector<LLType *> elements(numElements, foldedElementType);
      return LLStructType::get(gIR->context(), elements);
    }

    return type;
  }

  // Checks two LLVM types for memory-layout equivalency.
  static bool typesAreEquivalent(LLType *a, LLType *b) {
    if (a == b) {
      return true;
    }
    if (!a || !b) {
      return false;
    }

    return fold(a) == fold(b);
  }
};

//////////////////////////////////////////////////////////////////////////////

/// Removes padding fields for (non-union-containing!) structs
struct RemoveStructPadding : ABIRewrite {
  LLValue *put(DValue *v, bool, bool) override {
    return DtoUnpaddedStruct(v->type->toBasetype(), DtoLVal(v));
  }

  LLValue *getLVal(Type *dty, LLValue *v) override {
    LLValue *lval = DtoAlloca(dty, ".RemoveStructPadding_dump");
    // Make sure the padding is zero, so struct comparisons work.
    // TODO: Only do this if there's padding, and/or only initialize padding.
    DtoMemSetZero(lval, DtoConstSize_t(getTypeAllocSize(DtoType(dty))));
    DtoPaddedStruct(dty->toBasetype(), v, lval);
    return lval;
  }

  LLType *type(Type *t) override {
    return DtoUnpaddedStructType(t->toBasetype());
  }
};

//////////////////////////////////////////////////////////////////////////////

/**
 * Base for ABI rewrites bit-casting an argument to another LL type.
 * If the argument isn't in memory already, it is dumped to memory to perform
 * the bit-cast.
 */
struct BaseBitcastABIRewrite : ABIRewrite {
  static unsigned getMaxAlignment(LLType *llType, Type *dType) {
    return std::max(getABITypeAlign(llType), DtoAlignment(dType));
  }

  LLValue *put(DValue *dv, bool, bool) override {
    LLType *asType = type(dv->type);
    const unsigned alignment = getMaxAlignment(asType, dv->type);
    const char *name = ".BaseBitcastABIRewrite_arg";

    if (!dv->isLVal()) {
      LLValue *dump = DtoAllocaDump(dv, asType, alignment,
                                    ".BaseBitcastABIRewrite_arg_storage");
      return DtoLoad(dump, name);
    }

    LLValue *address = DtoLVal(dv);
    LLType *pointeeType = address->getType()->getPointerElementType();

    if (getTypeStoreSize(asType) > getTypeAllocSize(pointeeType) ||
        alignment > DtoAlignment(dv->type)) {
      // not enough allocated memory or insufficiently aligned
      LLValue *paddedDump = DtoRawAlloca(
          asType, alignment, ".BaseBitcastABIRewrite_padded_arg_storage");
      DtoMemCpy(paddedDump, address,
                DtoConstSize_t(getTypeAllocSize(pointeeType)));
      return DtoLoad(paddedDump, name);
    }

    address = DtoBitCast(address, getPtrToType(asType));
    return DtoLoad(address, name);
  }

  LLValue *getLVal(Type *dty, LLValue *v) override {
    const unsigned alignment = getMaxAlignment(v->getType(), dty);
    return DtoAllocaDump(v, DtoType(dty), alignment,
                         ".BaseBitcastABIRewrite_param_storage");
  }

  void applyToIfNotObsolete(IrFuncTyArg &arg, LLType *finalLType = nullptr) {
    if (!finalLType)
      finalLType = type(arg.type);
    if (!LLTypeMemoryLayout::typesAreEquivalent(arg.ltype, finalLType))
      applyTo(arg, finalLType);
  }
};

//////////////////////////////////////////////////////////////////////////////

/**
 * Bit-casts an argument based on the front-end toArgTypes* machinery.
 */
struct ArgTypesRewrite : BaseBitcastABIRewrite {
  LLType *type(Type *t) override {
    LLType *rewrittenType = TargetABI::getRewrittenArgType(t->toBasetype());
    assert(rewrittenType);
    return rewrittenType;
  }
};

//////////////////////////////////////////////////////////////////////////////

/**
 * Bit-casts an argument to an integer of the same or next bigger size.
 */
struct IntegerRewrite : BaseBitcastABIRewrite {
  static LLType *getIntegerType(unsigned minSizeInBytes) {
    if (minSizeInBytes > 16) {
      return nullptr;
    }

    unsigned size = minSizeInBytes;
    switch (minSizeInBytes) {
    case 0:
      size = 1;
      break;
    case 3:
      size = 4;
      break;
    case 5:
    case 6:
    case 7:
      size = 8;
      break;
    case 9:
    case 10:
    case 11:
    case 12:
    case 13:
    case 14:
    case 15:
      size = 16;
      break;
    default:
      break;
    }

    return LLIntegerType::get(gIR->context(), size * 8);
  }

  LLType *type(Type *t) override { return getIntegerType(t->size()); }
};

//////////////////////////////////////////////////////////////////////////////

/**
 * Implements indirect high-level-by-value semantics defined like this:
 * Instead of passing a copy of the original argument directly to the callee,
 * the caller makes a bitcopy on its stack first and then passes a pointer to
 * that copy to the callee.
 * The pointer is passed as regular parameter and hence occupies either a
 * register or a function parameters stack slot.
 *
 * This differs from LLVM's byval attribute for pointer parameters.
 * The byval attribute instructs LLVM to bitcopy the IR argument pointee onto
 * the callee parameters stack. The callee's IR parameter is an implicit pointer
 * to that private copy.
 */
struct IndirectByvalRewrite : ABIRewrite {
  LLValue *put(DValue *v, bool isLValueExp, bool) override {
    // if the argument expression is an rvalue and the LL value already in
    // memory, then elide an additional copy
    if (!isLValueExp && v->isLVal())
      return DtoLVal(v);

    return DtoAllocaDump(v, ".hidden_copy_for_IndirectByvalRewrite");
  }

  LLValue *getLVal(Type *dty, LLValue *v) override {
    return DtoBitCast(v, DtoPtrToType(dty));
  }

  LLType *type(Type *t) override { return DtoPtrToType(t); }

  void applyTo(IrFuncTyArg &arg, LLType *finalLType = nullptr) override {
    ABIRewrite::applyTo(arg, finalLType);

    // the copy is treated as a local variable of the callee
    // hence add the NoAlias and NoCapture attributes
    auto &attrs = arg.attrs;
    attrs.clear();
    attrs.addAttribute(LLAttribute::NoAlias);
    attrs.addAttribute(LLAttribute::NoCapture);
    if (auto alignment = DtoAlignment(arg.type))
      attrs.addAlignmentAttr(alignment);
  }
};

//////////////////////////////////////////////////////////////////////////////

/**
 * Bit-casts a Homogeneous Floating-point/Vector Aggregate (HFVA) to an array
 * of floats/vectors.
 */
struct HFVAToArray : BaseBitcastABIRewrite {
  const int maxElements;

  HFVAToArray(int max = 4) : maxElements(max) {}

  LLType *type(Type *t) override {
    LLType *hfvaType = nullptr;
    if (TargetABI::isHFVA(t, maxElements, &hfvaType))
      return hfvaType;
    llvm_unreachable("Type t should be an HFVA");
  }
};

//////////////////////////////////////////////////////////////////////////////

/**
 * Bit-casts an argument to an array of integers of the specified size.
 */
template <int elementSize> struct CompositeToArray : BaseBitcastABIRewrite {
  LLType *type(Type *t) override {
    size_t length = (t->size() + elementSize - 1) / elementSize;
    return LLArrayType::get(LLIntegerType::get(gIR->context(), elementSize * 8),
                            length);
  }
};

// Bit-casts to an array of i32.
using CompositeToArray32 = CompositeToArray<4>;
// Bit-casts to an array of i64.
using CompositeToArray64 = CompositeToArray<8>;