1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
|
//===-- GarbageCollect2Stack.cpp - Promote or remove GC allocations -------===//
//
// LDC – the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
//
// This file attempts to turn allocations on the garbage-collected heap into
// stack allocations.
//
//===----------------------------------------------------------------------===//
#include "gen/attributes.h"
#include "metadata.h"
#include "gen/passes/Passes.h"
#include "gen/runtime.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#define DEBUG_TYPE "dgc2stack"
using namespace llvm;
STATISTIC(NumGcToStack, "Number of calls promoted to constant-size allocas");
STATISTIC(NumToDynSize,
"Number of calls promoted to dynamically-sized allocas");
STATISTIC(NumDeleted,
"Number of GC calls deleted because the return value was unused");
static cl::opt<unsigned>
SizeLimit("dgc2stack-size-limit", cl::ZeroOrMore, cl::Hidden,
cl::init(1024),
cl::desc("Require allocs to be smaller than n bytes to be "
"promoted, 0 to ignore."));
namespace {
struct Analysis {
const DataLayout &DL;
const Module &M;
CallGraph *CG;
CallGraphNode *CGNode;
llvm::Type *getTypeFor(Value *typeinfo) const;
};
}
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
void EmitMemSet(IRBuilder<> &B, Value *Dst, Value *Val, Value *Len,
const Analysis &A) {
Dst = B.CreateBitCast(Dst, PointerType::getUnqual(B.getInt8Ty()));
#if LDC_LLVM_VER >= 1000
MaybeAlign Align(1);
#else
unsigned Align = 1;
#endif
auto CS = B.CreateMemSet(Dst, Val, Len, Align, false /*isVolatile*/);
if (A.CGNode) {
auto calledFunc = CS->getCalledFunction();
A.CGNode->addCalledFunction(CS, A.CG->getOrInsertFunction(calledFunc));
}
}
static void EmitMemZero(IRBuilder<> &B, Value *Dst, Value *Len,
const Analysis &A) {
EmitMemSet(B, Dst, ConstantInt::get(B.getInt8Ty(), 0), Len, A);
}
//===----------------------------------------------------------------------===//
// Helpers for specific types of GC calls.
//===----------------------------------------------------------------------===//
namespace {
namespace ReturnType {
enum Type {
Pointer, /// Function returns a pointer to the allocated memory.
Array /// Function returns the allocated memory as an array slice.
};
}
class FunctionInfo {
protected:
llvm::Type *Ty;
public:
ReturnType::Type ReturnType;
// Analyze the current call, filling in some fields. Returns true if
// this is an allocation we can stack-allocate.
virtual bool analyze(LLCallBasePtr CB, const Analysis &A) = 0;
// Returns the alloca to replace this call.
// It will always be inserted before the call.
virtual Value *promote(LLCallBasePtr CB, IRBuilder<> &B, const Analysis &A) {
NumGcToStack++;
auto &BB = CB->getCaller()->getEntryBlock();
Instruction *Begin = &(*BB.begin());
// FIXME: set alignment on alloca?
return new AllocaInst(Ty,
BB.getModule()->getDataLayout().getAllocaAddrSpace(),
".nongc_mem", Begin);
}
explicit FunctionInfo(ReturnType::Type returnType) : ReturnType(returnType) {}
virtual ~FunctionInfo() = default;
};
static bool isKnownLessThan(Value *Val, uint64_t Limit, const Analysis &A) {
unsigned BitsLimit = Log2_64(Limit);
// LLVM's alloca ueses an i32 for the number of elements.
BitsLimit = std::min(BitsLimit, 32U);
const IntegerType *SizeType = dyn_cast<IntegerType>(Val->getType());
if (!SizeType) {
return false;
}
unsigned Bits = SizeType->getBitWidth();
if (Bits > BitsLimit) {
APInt Mask = APInt::getLowBitsSet(Bits, BitsLimit);
Mask.flipAllBits();
KnownBits Known(Bits);
computeKnownBits(Val, Known, A.DL);
if ((Known.Zero & Mask) != Mask) {
return false;
}
}
return true;
}
class TypeInfoFI : public FunctionInfo {
unsigned TypeInfoArgNr;
public:
TypeInfoFI(ReturnType::Type returnType, unsigned tiArgNr)
: FunctionInfo(returnType), TypeInfoArgNr(tiArgNr) {}
bool analyze(LLCallBasePtr CB, const Analysis &A) override {
Value *TypeInfo = CB->getArgOperand(TypeInfoArgNr);
Ty = A.getTypeFor(TypeInfo);
if (!Ty) {
return false;
}
return A.DL.getTypeAllocSize(Ty) < SizeLimit;
}
};
class ArrayFI : public TypeInfoFI {
int ArrSizeArgNr;
bool Initialized;
Value *arrSize;
public:
ArrayFI(ReturnType::Type returnType, unsigned tiArgNr, unsigned arrSizeArgNr,
bool initialized)
: TypeInfoFI(returnType, tiArgNr), ArrSizeArgNr(arrSizeArgNr),
Initialized(initialized) {}
bool analyze(LLCallBasePtr CB, const Analysis &A) override {
if (!TypeInfoFI::analyze(CB, A)) {
return false;
}
arrSize = CB->getArgOperand(ArrSizeArgNr);
// Extract the element type from the array type.
const StructType *ArrTy = dyn_cast<StructType>(Ty);
assert(ArrTy && "Dynamic array type not a struct?");
assert(isa<IntegerType>(ArrTy->getElementType(0)));
const PointerType *PtrTy = cast<PointerType>(ArrTy->getElementType(1));
Ty = PtrTy->getPointerElementType();
// If the user explicitly disabled the limits, don't even check
// whether the element count fits in 32 bits. This could cause
// miscompilations for humongous arrays, but as the value "range"
// (set bits) inference algorithm is rather limited, this is
// useful for experimenting.
if (SizeLimit > 0) {
uint64_t ElemSize = A.DL.getTypeAllocSize(Ty);
if (!isKnownLessThan(arrSize, SizeLimit / ElemSize, A)) {
return false;
}
}
return true;
}
Value *promote(LLCallBasePtr CB, IRBuilder<> &B, const Analysis &A) override {
// If the allocation is of constant size it's best to put it in the
// entry block, so do so if we're not already there.
// For dynamically-sized allocations it's best to avoid the overhead
// of allocating them if possible, so leave those where they are.
// While we're at it, update statistics too.
const IRBuilderBase::InsertPointGuard savedInsertPoint(B);
if (isa<Constant>(arrSize)) {
BasicBlock &Entry = CB->getCaller()->getEntryBlock();
if (B.GetInsertBlock() != &Entry) {
B.SetInsertPoint(&Entry, Entry.begin());
}
NumGcToStack++;
} else {
NumToDynSize++;
}
// Convert array size to 32 bits if necessary
Value *count = B.CreateIntCast(arrSize, B.getInt32Ty(), false);
AllocaInst *alloca =
B.CreateAlloca(Ty, count, ".nongc_mem"); // FIXME: align?
if (Initialized) {
// For now, only zero-init is supported.
uint64_t size = A.DL.getTypeStoreSize(Ty);
Value *TypeSize = ConstantInt::get(arrSize->getType(), size);
// Use the original B to put initialization at the
// allocation site.
Value *Size = B.CreateMul(TypeSize, arrSize);
EmitMemZero(B, alloca, Size, A);
}
if (ReturnType == ReturnType::Array) {
Value *arrStruct = llvm::UndefValue::get(CB->getType());
arrStruct = B.CreateInsertValue(arrStruct, arrSize, 0);
Value *memPtr =
B.CreateBitCast(alloca, PointerType::getUnqual(B.getInt8Ty()));
arrStruct = B.CreateInsertValue(arrStruct, memPtr, 1);
return arrStruct;
}
return alloca;
}
};
// FunctionInfo for _d_allocclass
class AllocClassFI : public FunctionInfo {
public:
bool analyze(LLCallBasePtr CB, const Analysis &A) override {
if (CB->arg_size() != 1) {
return false;
}
Value *arg = CB->getArgOperand(0)->stripPointerCasts();
GlobalVariable *ClassInfo = dyn_cast<GlobalVariable>(arg);
if (!ClassInfo) {
return false;
}
const auto metaname = getMetadataName(CD_PREFIX, ClassInfo);
NamedMDNode *meta = A.M.getNamedMetadata(metaname);
if (!meta) {
return false;
}
MDNode *node = static_cast<MDNode *>(meta->getOperand(0));
if (!node || node->getNumOperands() != CD_NumFields) {
return false;
}
// Inserting destructor calls is not implemented yet, so classes
// with destructors are ignored for now.
auto hasDestructor =
mdconst::dyn_extract<Constant>(node->getOperand(CD_Finalize));
if (hasDestructor == nullptr ||
hasDestructor != ConstantInt::getFalse(A.M.getContext())) {
return false;
}
Ty = mdconst::dyn_extract<Constant>(node->getOperand(CD_BodyType))
->getType();
return A.DL.getTypeAllocSize(Ty) < SizeLimit;
}
// The default promote() should be fine.
AllocClassFI() : FunctionInfo(ReturnType::Pointer) {}
};
/// Describes runtime functions that allocate a chunk of memory with a
/// given size.
class UntypedMemoryFI : public FunctionInfo {
unsigned SizeArgNr;
Value *SizeArg;
public:
bool analyze(LLCallBasePtr CB, const Analysis &A) override {
if (CB->arg_size() < SizeArgNr + 1) {
return false;
}
SizeArg = CB->getArgOperand(SizeArgNr);
// If the user explicitly disabled the limits, don't even check
// whether the allocated size fits in 32 bits. This could cause
// miscompilations for humongous allocations, but as the value
// "range" (set bits) inference algorithm is rather limited, this
// is useful for experimenting.
if (SizeLimit > 0) {
if (!isKnownLessThan(SizeArg, SizeLimit, A)) {
return false;
}
}
// Should be i8.
Ty = CB->getType()->getContainedType(0);
return true;
}
Value *promote(LLCallBasePtr CB, IRBuilder<> &B, const Analysis &A) override {
// If the allocation is of constant size it's best to put it in the
// entry block, so do so if we're not already there.
// For dynamically-sized allocations it's best to avoid the overhead
// of allocating them if possible, so leave those where they are.
// While we're at it, update statistics too.
const IRBuilderBase::InsertPointGuard savedInsertPoint(B);
if (isa<Constant>(SizeArg)) {
BasicBlock &Entry = CB->getCaller()->getEntryBlock();
if (B.GetInsertBlock() != &Entry) {
B.SetInsertPoint(&Entry, Entry.begin());
}
NumGcToStack++;
} else {
NumToDynSize++;
}
// Convert array size to 32 bits if necessary
Value *count = B.CreateIntCast(SizeArg, B.getInt32Ty(), false);
AllocaInst *alloca =
B.CreateAlloca(Ty, count, ".nongc_mem"); // FIXME: align?
return B.CreateBitCast(alloca, CB->getType());
}
explicit UntypedMemoryFI(unsigned sizeArgNr)
: FunctionInfo(ReturnType::Pointer), SizeArgNr(sizeArgNr) {}
};
}
//===----------------------------------------------------------------------===//
// GarbageCollect2Stack Pass Implementation
//===----------------------------------------------------------------------===//
namespace {
/// This pass replaces GC calls with alloca's
///
struct GarbageCollect2Stack {
StringMap<FunctionInfo *> KnownFunctions;
Module *M;
TypeInfoFI AllocMemoryT;
ArrayFI NewArrayU;
ArrayFI NewArrayT;
AllocClassFI AllocClass;
UntypedMemoryFI AllocMemory;
GarbageCollect2Stack();
bool run(llvm::Function& function,
DominatorTree &DT,
CallGraphWrapperPass *CGPass);
static StringRef getPassName() { return "GarbageCollect2Stack"; }
};
class LLVM_LIBRARY_VISIBILITY GarbageCollect2StackLegacyPass : public FunctionPass {
bool doInitialization(Module &M) override {
this->pass.M = &M;
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<CallGraphWrapperPass>();
}
bool runOnFunction(Function &F) override {
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
CallGraphWrapperPass *CGPass = getAnalysisIfAvailable<CallGraphWrapperPass>();
return pass.run(F, DT, CGPass);
}
StringRef getPassName() const override { return GarbageCollect2Stack::getPassName(); }
public:
GarbageCollect2StackLegacyPass() :
FunctionPass(ID), pass() {}
static char ID; // Pass identification
GarbageCollect2Stack pass;
};
char GarbageCollect2StackLegacyPass::ID = 0;
} // end anonymous namespace.
static RegisterPass<GarbageCollect2StackLegacyPass>
X("dgc2stack", "Promote (GC'ed) heap allocations to stack");
// Public interface to the pass.
FunctionPass *createGarbageCollect2Stack() {
return new GarbageCollect2StackLegacyPass();
}
GarbageCollect2Stack::GarbageCollect2Stack()
: AllocMemoryT(ReturnType::Pointer, 0),
NewArrayU(ReturnType::Array, 0, 1, false),
NewArrayT(ReturnType::Array, 0, 1, true), AllocMemory(0) {
KnownFunctions["_d_allocmemoryT"] = &AllocMemoryT;
KnownFunctions["_d_newarrayU"] = &NewArrayU;
KnownFunctions["_d_newarrayT"] = &NewArrayT;
KnownFunctions["_d_allocclass"] = &AllocClass;
KnownFunctions["_d_allocmemory"] = &AllocMemory;
}
static void RemoveCall(LLCallBasePtr CB, const Analysis &A) {
// For an invoke instruction, we insert a branch to the normal target BB
// immediately before it. Ideally, we would find a way to not invalidate
// the dominator tree here.
if (auto Invoke = dyn_cast<InvokeInst>(static_cast<Instruction *>(CB))) {
BranchInst::Create(Invoke->getNormalDest(), Invoke);
Invoke->getUnwindDest()->removePredecessor(CB->getParent());
}
// Remove the runtime call.
if (A.CGNode) {
A.CGNode->removeCallEdgeFor(*CB);
}
static_cast<Instruction *>(CB)->eraseFromParent();
}
static bool
isSafeToStackAllocateArray(BasicBlock::iterator Alloc, DominatorTree &DT,
SmallVector<CallInst *, 4> &RemoveTailCallInsts);
static bool
isSafeToStackAllocate(BasicBlock::iterator Alloc, Value *V, DominatorTree &DT,
SmallVector<CallInst *, 4> &RemoveTailCallInsts);
/// runOnFunction - Top level algorithm.
///
bool GarbageCollect2Stack::run(Function &F, DominatorTree &DT, CallGraphWrapperPass *CGPass) {
LLVM_DEBUG(errs() << "\nRunning -dgc2stack on function " << F.getName() << '\n');
const DataLayout &DL = F.getParent()->getDataLayout();
CallGraph *CG = CGPass ? &CGPass->getCallGraph() : nullptr;
CallGraphNode *CGNode = CG ? (*CG)[&F] : nullptr;
Analysis A = {DL, *M, CG, CGNode};
BasicBlock &Entry = F.getEntryBlock();
IRBuilder<> AllocaBuilder(&Entry, Entry.begin());
bool Changed = false;
for (auto &BB : F) {
for (auto I = BB.begin(), E = BB.end(); I != E;) {
auto originalI = I;
// Ignore non-calls.
Instruction *Inst = &(*(I++));
auto CB = dyn_cast<CallBase>(Inst);
if (!CB) {
continue;
}
// Ignore indirect calls and calls to non-external functions.
Function *Callee = CB->getCalledFunction();
if (Callee == nullptr || !Callee->isDeclaration() ||
!Callee->hasExternalLinkage()) {
continue;
}
// Ignore unknown calls.
auto OMI = KnownFunctions.find(Callee->getName());
if (OMI == KnownFunctions.end()) {
continue;
}
FunctionInfo *info = OMI->getValue();
if (static_cast<Instruction *>(CB)->use_empty()) {
Changed = true;
NumDeleted++;
RemoveCall(CB, A);
continue;
}
LLVM_DEBUG(errs() << "GarbageCollect2Stack inspecting: " << *CB);
if (!info->analyze(CB, A)) {
continue;
}
SmallVector<CallInst *, 4> RemoveTailCallInsts;
if (info->ReturnType == ReturnType::Array) {
if (!isSafeToStackAllocateArray(originalI, DT, RemoveTailCallInsts)) {
continue;
}
} else {
if (!isSafeToStackAllocate(originalI, CB, DT, RemoveTailCallInsts)) {
continue;
}
}
// Let's alloca this!
Changed = true;
// First demote tail calls which use the value so there IR is never
// in an invalid state.
for (auto i : RemoveTailCallInsts) {
i->setTailCall(false);
}
IRBuilder<> Builder(&BB, originalI);
Value *newVal = info->promote(CB, Builder, A);
LLVM_DEBUG(errs() << "Promoted to: " << *newVal);
// Make sure the type is the same as it was before, and replace all
// uses of the runtime call with the alloca.
if (newVal->getType() != CB->getType()) {
newVal = Builder.CreateBitCast(newVal, CB->getType());
}
static_cast<Instruction *>(CB)->replaceAllUsesWith(newVal);
RemoveCall(CB, A);
}
}
return Changed;
}
llvm::Type *Analysis::getTypeFor(Value *typeinfo) const {
GlobalVariable *ti_global =
dyn_cast<GlobalVariable>(typeinfo->stripPointerCasts());
if (!ti_global) {
return nullptr;
}
const auto metaname = getMetadataName(TD_PREFIX, ti_global);
NamedMDNode *meta = M.getNamedMetadata(metaname);
if (!meta || meta->getNumOperands() != 1) {
return nullptr;
}
MDNode *node = meta->getOperand(0);
return llvm::cast<llvm::ConstantAsMetadata>(node->getOperand(0))->getType();
}
/// Returns whether Def is used by any instruction that is reachable from Alloc
/// (without executing Def again).
static bool mayBeUsedAfterRealloc(Instruction *Def, BasicBlock::iterator Alloc,
DominatorTree &DT) {
LLVM_DEBUG(errs() << "### mayBeUsedAfterRealloc()\n" << *Def << *Alloc);
// If the definition isn't used it obviously won't be used after the
// allocation.
// If it does not dominate the allocation, there's no way for it to be used
// without going through Def again first, since the definition couldn't
// dominate the user either.
if (Def->use_empty() || !DT.dominates(Def, &(*Alloc))) {
LLVM_DEBUG(errs() << "### No uses or does not dominate allocation\n");
return false;
}
LLVM_DEBUG(errs() << "### Def dominates Alloc\n");
BasicBlock *DefBlock = Def->getParent();
BasicBlock *AllocBlock = Alloc->getParent();
// Create a set of users and one of blocks containing users.
SmallSet<User *, 16> Users;
SmallSet<BasicBlock *, 16> UserBlocks;
for (Instruction::use_iterator UI = Def->use_begin(), UE = Def->use_end();
UI != UE; ++UI) {
Instruction *User = cast<Instruction>(*UI);
LLVM_DEBUG(errs() << "USER: " << *User);
BasicBlock *UserBlock = User->getParent();
// This dominance check is not performed if they're in the same block
// because it will just walk the instruction list to figure it out.
// We will instead do that ourselves in the first iteration (for all
// users at once).
if (AllocBlock != UserBlock && DT.dominates(AllocBlock, UserBlock)) {
// There's definitely a path from alloc to this user that does not
// go through Def, namely any path that ends up in that user.
LLVM_DEBUG(errs() << "### Alloc dominates user " << *User);
return true;
}
// Phi nodes are checked separately, so no need to enter them here.
if (!isa<PHINode>(User)) {
Users.insert(User);
UserBlocks.insert(UserBlock);
}
}
// Contains first instruction of block to inspect.
typedef std::pair<BasicBlock *, BasicBlock::iterator> StartPoint;
SmallVector<StartPoint, 16> Worklist;
// Keeps track of successors that have been added to the work list.
SmallSet<BasicBlock *, 16> Visited;
// Start just after the allocation.
// Note that we don't insert AllocBlock into the Visited set here so the
// start of the block will get inspected if it's reachable.
BasicBlock::iterator Start = Alloc;
++Start;
Worklist.push_back(StartPoint(AllocBlock, Start));
while (!Worklist.empty()) {
StartPoint sp = Worklist.pop_back_val();
BasicBlock *B = sp.first;
BasicBlock::iterator BBI = sp.second;
// BBI is either just after the allocation (in the first iteration)
// or just after the last phi node in B (in subsequent iterations) here.
// This whole 'if' is just a way to avoid performing the inner 'for'
// loop when it can be determined not to be necessary, avoiding
// potentially expensive walks of the instruction list.
// It should be equivalent to just doing the loop.
if (UserBlocks.count(B)) {
if (B != DefBlock && B != AllocBlock) {
// This block does not contain the definition or the allocation,
// so any user in this block is definitely reachable without
// finding either the definition or the allocation.
LLVM_DEBUG(errs() << "### Block " << B->getName()
<< " contains a reachable user\n");
return true;
}
// We need to walk the instructions in the block to see whether we
// reach a user before we reach the definition or the allocation.
for (BasicBlock::iterator E = B->end(); BBI != E; ++BBI) {
if (&*BBI == &*Alloc || &*BBI == Def) {
break;
}
if (Users.count(&(*BBI))) {
LLVM_DEBUG(errs() << "### Problematic user: " << *BBI);
return true;
}
}
} else if (B == DefBlock || (B == AllocBlock && BBI != Start)) {
// There are no users in the block so the def or the allocation
// will be encountered before any users though this path.
// Skip to the next item on the worklist.
continue;
} else {
// No users and no definition or allocation after the start point,
// so just keep going.
}
// All instructions after the starting point in this block have been
// accounted for. Look for successors to add to the work list.
auto *Term = B->getTerminator();
unsigned SuccCount = Term->getNumSuccessors();
for (unsigned i = 0; i < SuccCount; i++) {
BasicBlock *Succ = Term->getSuccessor(i);
BBI = Succ->begin();
// Check phi nodes here because we only care about the operand
// coming in from this block.
bool SeenDef = false;
while (isa<PHINode>(BBI)) {
if (Def == cast<PHINode>(BBI)->getIncomingValueForBlock(B)) {
LLVM_DEBUG(errs() << "### Problematic phi user: " << *BBI);
return true;
}
SeenDef |= (Def == &*BBI);
++BBI;
}
// If none of the phis we just looked at were the definition, we
// haven't seen this block yet, and it's dominated by the def
// (meaning paths through it could lead to users), add the block and
// the first non-phi to the worklist.
if (!SeenDef
&& Visited.insert(Succ).second
&& DT.dominates(DefBlock, Succ)) {
Worklist.push_back(StartPoint(Succ, BBI));
}
}
}
// No users found in any block reachable from Alloc
// without going through the definition again.
return false;
}
/// Returns true if the GC call passed in is safe to turn into a stack
/// allocation.
///
/// This handles GC calls returning a D array instead of a raw pointer,
/// see isSafeToStackAllocate() for details.
bool isSafeToStackAllocateArray(
BasicBlock::iterator Alloc, DominatorTree &DT,
SmallVector<CallInst *, 4> &RemoveTailCallInsts) {
assert(Alloc->getType()->isStructTy() && "Allocated array is not a struct?");
Value *V = &(*Alloc);
for (auto U : V->users()) {
Instruction *User = dyn_cast<Instruction>(U);
if (User == nullptr) {
continue;
}
switch (User->getOpcode()) {
case Instruction::ExtractValue: {
ExtractValueInst *EVI = cast<ExtractValueInst>(User);
assert(EVI->getAggregateOperand() == V);
assert(EVI->getNumIndices() == 1);
unsigned idx = EVI->getIndices()[0];
if (idx == 0) {
// This extract the length argument, irrelevant for our analysis.
assert(EVI->getType()->isIntegerTy() &&
"First array field not length?");
} else {
assert(idx == 1 && "Invalid array struct access.");
if (!isSafeToStackAllocate(Alloc, EVI, DT, RemoveTailCallInsts)) {
return false;
}
}
break;
}
default:
// We are super conservative here, the only thing we want to be able to
// handle at this point is extracting len/ptr. More extensive analysis
// could be added later.
return false;
}
}
// All uses examined - memory not captured.
return true;
}
/// Returns true if the GC call passed in is safe to turn
/// into a stack allocation. This requires that the return value does not
/// escape from the function and no derived pointers are live at the call site
/// (i.e. if it's in a loop then the function can't use any pointer returned
/// from an earlier call after a new call has been made).
///
/// This is currently conservative where loops are involved: it can handle
/// simple loops, but returns false if any derived pointer is used in a
/// subsequent iteration.
///
/// Based on LLVM's PointerMayBeCaptured(), which only does escape analysis but
/// doesn't care about loops.
///
/// Alloc is the actual call to the runtime function, and V is the pointer to
/// the memory it returns (which might not be equal to Alloc in case of
/// functions returning D arrays).
///
/// If the value is used in a call instruction with the tail attribute set,
/// the attribute has to be removed before promoting the memory to the
/// stack. The affected instructions are added to RemoveTailCallInsts. If
/// the function returns false, these entries are meaningless.
bool isSafeToStackAllocate(BasicBlock::iterator Alloc, Value *V,
DominatorTree &DT,
SmallVector<CallInst *, 4> &RemoveTailCallInsts) {
assert(isa<PointerType>(V->getType()) && "Allocated value is not a pointer?");
SmallVector<Use *, 16> Worklist;
SmallSet<Use *, 16> Visited;
for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
++UI) {
Use *U = &(*UI);
Visited.insert(U);
Worklist.push_back(U);
}
while (!Worklist.empty()) {
Use *U = Worklist.pop_back_val();
Instruction *I = cast<Instruction>(U->getUser());
V = U->get();
switch (I->getOpcode()) {
case Instruction::Call:
case Instruction::Invoke: {
auto CB = llvm::cast<CallBase>(I);
// Not captured if the callee is readonly, doesn't return a copy through
// its return value and doesn't unwind (a readonly function can leak bits
// by throwing an exception or not depending on the input value).
if (CB->onlyReadsMemory() && CB->doesNotThrow() &&
I->getType() == llvm::Type::getVoidTy(I->getContext())) {
break;
}
// Not captured if only passed via 'nocapture' arguments. Note that
// calling a function pointer does not in itself cause the pointer to
// be captured. This is a subtle point considering that (for example)
// the callee might return its own address. It is analogous to saying
// that loading a value from a pointer does not cause the pointer to be
// captured, even though the loaded value might be the pointer itself
// (think of self-referential objects).
auto B = CB->arg_begin(), E = CB->arg_end();
for (auto A = B; A != E; ++A) {
if (A->get() == V) {
if (!CB->paramHasAttr(A - B, llvm::Attribute::AttrKind::NoCapture)) {
// The parameter is not marked 'nocapture' - captured.
return false;
}
if (auto call = dyn_cast<CallInst>(static_cast<Instruction *>(CB))) {
if (call->isTailCall()) {
RemoveTailCallInsts.push_back(call);
}
}
}
}
// Only passed via 'nocapture' arguments, or is the called function - not
// captured.
break;
}
case Instruction::Load:
// Loading from a pointer does not cause it to be captured.
break;
case Instruction::Store:
if (V == I->getOperand(0)) {
// Stored the pointer - it may be captured.
return false;
}
// Storing to the pointee does not cause the pointer to be captured.
break;
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::PHI:
case Instruction::Select:
// It's not safe to stack-allocate if this derived pointer is live across
// the original allocation.
if (mayBeUsedAfterRealloc(I, Alloc, DT)) {
return false;
}
// The original value is not captured via this if the new value isn't.
for (Instruction::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI) {
Use *U = &(*UI);
if (Visited.insert(U).second) {
Worklist.push_back(U);
}
}
break;
default:
// Something else - be conservative and say it is captured.
return false;
}
}
// All uses examined - not captured or live across original allocation.
return true;
}
|