1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
// Written in the D programming language
/++
Module containing some basic benchmarking and timing functionality.
For convenience, this module publicly imports $(MREF core,time).
$(SCRIPT inhibitQuickIndex = 1;)
$(DIVC quickindex,
$(BOOKTABLE,
$(TR $(TH Category) $(TH Functions))
$(TR $(TD Main functionality) $(TD
$(LREF StopWatch)
$(LREF benchmark)
))
$(TR $(TD Flags) $(TD
$(LREF AutoStart)
))
))
$(RED Unlike the other modules in std.datetime, this module is not currently
publicly imported in std.datetime.package, because the old
versions of this functionality which use
$(REF TickDuration,core,time) are in std.datetime.package and would
conflict with the symbols in this module. After the old symbols have
gone through the deprecation cycle and have been fully removed, then
this module will be publicly imported in std.datetime.package. The
old, deprecated symbols has been removed from the documentation in
December 2019 and currently scheduled to be fully removed from Phobos
after 2.094.)
So, for now, when using std.datetime.stopwatch, if other modules from
std.datetime are needed, then either import them individually rather than
importing std.datetime, or use selective or static imports to import
std.datetime.stopwatch. e.g.
----------------------------------------------------------------------------
import std.datetime;
import std.datetime.stopwatch : benchmark, StopWatch;
----------------------------------------------------------------------------
The compiler will then know to use the symbols from std.datetime.stopwatch
rather than the deprecated ones from std.datetime.package.
License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(HTTP jmdavisprog.com, Jonathan M Davis) and Kato Shoichi
Source: $(PHOBOSSRC std/datetime/stopwatch.d)
+/
module std.datetime.stopwatch;
public import core.time;
import std.typecons : Flag;
version (LDC) import ldc.attributes;
/++
Used by StopWatch to indicate whether it should start immediately upon
construction.
If set to `AutoStart.no`, then the StopWatch is not started when it is
constructed.
Otherwise, if set to `AutoStart.yes`, then the StopWatch is started when
it is constructed.
+/
alias AutoStart = Flag!"autoStart";
/++
StopWatch is used to measure time just like one would do with a physical
stopwatch, including stopping, restarting, and/or resetting it.
$(REF MonoTime,core,time) is used to hold the time, and it uses the system's
monotonic clock, which is high precision and never counts backwards (unlike
the wall clock time, which $(I can) count backwards, which is why
$(REF SysTime,std,datetime,systime) should not be used for timing).
Note that the precision of StopWatch differs from system to system. It is
impossible for it to be the same for all systems, since the precision of the
system clock and other system-dependent and situation-dependent factors
(such as the overhead of a context switch between threads) varies from
system to system and can affect StopWatch's accuracy.
+/
struct StopWatch
{
public:
/++
Constructs a StopWatch. Whether it starts immediately depends on the
$(LREF AutoStart) argument.
If `StopWatch.init` is used, then the constructed StopWatch isn't
running (and can't be, since no constructor ran).
+/
this(AutoStart autostart) @safe nothrow @nogc
{
if (autostart)
start();
}
///
@system nothrow @nogc unittest
{
import core.thread : Thread;
{
auto sw = StopWatch(AutoStart.yes);
assert(sw.running);
Thread.sleep(usecs(1));
assert(sw.peek() > Duration.zero);
}
{
auto sw = StopWatch(AutoStart.no);
assert(!sw.running);
Thread.sleep(usecs(1));
assert(sw.peek() == Duration.zero);
}
{
StopWatch sw;
assert(!sw.running);
Thread.sleep(usecs(1));
assert(sw.peek() == Duration.zero);
}
assert(StopWatch.init == StopWatch(AutoStart.no));
assert(StopWatch.init != StopWatch(AutoStart.yes));
}
/++
Resets the StopWatch.
The StopWatch can be reset while it's running, and resetting it while
it's running will not cause it to stop.
+/
void reset() @safe nothrow @nogc
{
if (_running)
_timeStarted = MonoTime.currTime;
_ticksElapsed = 0;
}
///
@system nothrow @nogc unittest
{
import core.thread : Thread;
auto sw = StopWatch(AutoStart.yes);
Thread.sleep(usecs(1));
sw.stop();
assert(sw.peek() > Duration.zero);
sw.reset();
assert(sw.peek() == Duration.zero);
}
@system nothrow @nogc unittest
{
import core.thread : Thread;
auto sw = StopWatch(AutoStart.yes);
Thread.sleep(msecs(1));
assert(sw.peek() > msecs(1));
immutable before = MonoTime.currTime;
// Just in case the system clock is slow enough or the system is fast
// enough for the call to MonoTime.currTime inside of reset to get
// the same that we just got by calling MonoTime.currTime.
Thread.sleep(usecs(1));
sw.reset();
assert(sw.peek() < msecs(1));
assert(sw._timeStarted > before);
assert(sw._timeStarted <= MonoTime.currTime);
}
/++
Starts the StopWatch.
start should not be called if the StopWatch is already running.
+/
void start() @safe nothrow @nogc
in { assert(!_running, "start was called when the StopWatch was already running."); }
do
{
_running = true;
_timeStarted = MonoTime.currTime;
}
///
@system nothrow @nogc unittest
{
import core.thread : Thread;
StopWatch sw;
assert(!sw.running);
assert(sw.peek() == Duration.zero);
sw.start();
assert(sw.running);
Thread.sleep(usecs(1));
assert(sw.peek() > Duration.zero);
}
/++
Stops the StopWatch.
stop should not be called if the StopWatch is not running.
+/
void stop() @safe nothrow @nogc
in { assert(_running, "stop was called when the StopWatch was not running."); }
do
{
_running = false;
_ticksElapsed += MonoTime.currTime.ticks - _timeStarted.ticks;
}
///
@system nothrow @nogc unittest
{
import core.thread : Thread;
auto sw = StopWatch(AutoStart.yes);
assert(sw.running);
Thread.sleep(usecs(1));
immutable t1 = sw.peek();
assert(t1 > Duration.zero);
sw.stop();
assert(!sw.running);
immutable t2 = sw.peek();
assert(t2 >= t1);
immutable t3 = sw.peek();
assert(t2 == t3);
}
/++
Peek at the amount of time that the the StopWatch has been running.
This does not include any time during which the StopWatch was stopped but
does include $(I all) of the time that it was running and not just the
time since it was started last.
Calling $(LREF reset) will reset this to `Duration.zero`.
+/
Duration peek() @safe const nothrow @nogc
{
enum hnsecsPerSecond = convert!("seconds", "hnsecs")(1);
immutable hnsecsMeasured = convClockFreq(_ticksElapsed, MonoTime.ticksPerSecond, hnsecsPerSecond);
return _running ? MonoTime.currTime - _timeStarted + hnsecs(hnsecsMeasured)
: hnsecs(hnsecsMeasured);
}
///
@system nothrow @nogc unittest
{
import core.thread : Thread;
auto sw = StopWatch(AutoStart.no);
assert(sw.peek() == Duration.zero);
sw.start();
Thread.sleep(usecs(1));
assert(sw.peek() >= usecs(1));
Thread.sleep(usecs(1));
assert(sw.peek() >= usecs(2));
sw.stop();
immutable stopped = sw.peek();
Thread.sleep(usecs(1));
assert(sw.peek() == stopped);
sw.start();
Thread.sleep(usecs(1));
assert(sw.peek() > stopped);
}
@safe nothrow @nogc unittest
{
assert(StopWatch.init.peek() == Duration.zero);
}
/++
Sets the total time which the StopWatch has been running (i.e. what peek
returns).
The StopWatch does not have to be stopped for setTimeElapsed to be
called, nor will calling it cause the StopWatch to stop.
+/
void setTimeElapsed(Duration timeElapsed) @safe nothrow @nogc
{
enum hnsecsPerSecond = convert!("seconds", "hnsecs")(1);
_ticksElapsed = convClockFreq(timeElapsed.total!"hnsecs", hnsecsPerSecond, MonoTime.ticksPerSecond);
_timeStarted = MonoTime.currTime;
}
///
@system nothrow @nogc unittest
{
import core.thread : Thread;
StopWatch sw;
sw.setTimeElapsed(hours(1));
// As discussed in MonoTime's documentation, converting between
// Duration and ticks is not exact, though it will be close.
// How exact it is depends on the frequency/resolution of the
// system's monotonic clock.
assert(abs(sw.peek() - hours(1)) < usecs(1));
sw.start();
Thread.sleep(usecs(1));
assert(sw.peek() > hours(1) + usecs(1));
}
/++
Returns whether this StopWatch is currently running.
+/
@property bool running() @safe const pure nothrow @nogc
{
return _running;
}
///
@safe nothrow @nogc unittest
{
StopWatch sw;
assert(!sw.running);
sw.start();
assert(sw.running);
sw.stop();
assert(!sw.running);
}
private:
// We track the ticks for the elapsed time rather than a Duration so that we
// don't lose any precision.
bool _running = false; // Whether the StopWatch is currently running
MonoTime _timeStarted; // The time the StopWatch started measuring (i.e. when it was started or reset).
long _ticksElapsed; // Total time that the StopWatch ran before it was stopped last.
}
/// Measure a time in milliseconds, microseconds, or nanoseconds
@safe nothrow @nogc unittest
{
auto sw = StopWatch(AutoStart.no);
sw.start();
// ... Insert operations to be timed here ...
sw.stop();
long msecs = sw.peek.total!"msecs";
long usecs = sw.peek.total!"usecs";
long nsecs = sw.peek.total!"nsecs";
assert(usecs >= msecs * 1000);
assert(nsecs >= usecs * 1000);
}
///
@system nothrow @nogc unittest
{
import core.thread : Thread;
auto sw = StopWatch(AutoStart.yes);
Duration t1 = sw.peek();
Thread.sleep(usecs(1));
Duration t2 = sw.peek();
assert(t2 > t1);
Thread.sleep(usecs(1));
sw.stop();
Duration t3 = sw.peek();
assert(t3 > t2);
Duration t4 = sw.peek();
assert(t3 == t4);
sw.start();
Thread.sleep(usecs(1));
Duration t5 = sw.peek();
assert(t5 > t4);
// If stopping or resetting the StopWatch is not required, then
// MonoTime can easily be used by itself without StopWatch.
auto before = MonoTime.currTime;
// do stuff...
auto timeElapsed = MonoTime.currTime - before;
}
/++
Benchmarks code for speed assessment and comparison.
Params:
fun = aliases of callable objects (e.g. function names). Each callable
object should take no arguments.
n = The number of times each function is to be executed.
Returns:
The amount of time (as a $(REF Duration,core,time)) that it took to call
each function `n` times. The first value is the length of time that
it took to call `fun[0]` `n` times. The second value is the length
of time it took to call `fun[1]` `n` times. Etc.
+/
Duration[fun.length] benchmark(fun...)(uint n)
{
Duration[fun.length] result;
auto sw = StopWatch(AutoStart.yes);
foreach (i, unused; fun)
{
sw.reset();
foreach (_; 0 .. n)
fun[i]();
result[i] = sw.peek();
}
return result;
}
///
@safe unittest
{
import std.conv : to;
int a;
void f0() {}
void f1() { auto b = a; }
void f2() { auto b = to!string(a); }
auto r = benchmark!(f0, f1, f2)(10_000);
Duration f0Result = r[0]; // time f0 took to run 10,000 times
Duration f1Result = r[1]; // time f1 took to run 10,000 times
Duration f2Result = r[2]; // time f2 took to run 10,000 times
}
@safe nothrow unittest
{
import std.conv : to;
int a;
@optStrategy("none") // LDC
void f0() nothrow {}
void f1() nothrow @trusted {
// do not allow any optimizer to optimize this function away
import core.thread : getpid;
import core.stdc.stdio : printf;
auto b = getpid.to!string;
if (getpid == 1) // never happens, but prevents optimization
printf("%p", &b);
}
auto sw = StopWatch(AutoStart.yes);
auto r = benchmark!(f0, f1)(1000);
auto total = sw.peek();
assert(r[0] >= Duration.zero);
assert(r[1] >= Duration.zero);
assert(r[0] <= total);
assert(r[1] <= total);
}
@safe nothrow @nogc unittest
{
int f0Count;
int f1Count;
int f2Count;
void f0() nothrow @nogc { ++f0Count; }
void f1() nothrow @nogc { ++f1Count; }
void f2() nothrow @nogc { ++f2Count; }
auto r = benchmark!(f0, f1, f2)(552);
assert(f0Count == 552);
assert(f1Count == 552);
assert(f2Count == 552);
}
|