1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
// Written in the D programming language.
/**
This package implements the hash-based message authentication code (_HMAC)
algorithm as defined in $(HTTP tools.ietf.org/html/rfc2104, RFC2104). See also
the corresponding $(HTTP en.wikipedia.org/wiki/Hash-based_message_authentication_code, Wikipedia article).
$(SCRIPT inhibitQuickIndex = 1;)
Macros:
License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).
Source: $(PHOBOSSRC std/digest/hmac.d)
*/
module std.digest.hmac;
import std.digest : isDigest, hasBlockSize, isDigestibleRange, DigestType;
import std.meta : allSatisfy;
@safe:
/**
* Template API HMAC implementation.
*
* This implements an _HMAC over the digest H. If H doesn't provide
* information about the block size, it can be supplied explicitly using
* the second overload.
*
* This type conforms to $(REF isDigest, std,digest).
*/
/// Compute HMAC over an input string
@safe unittest
{
import std.ascii : LetterCase;
import std.digest : toHexString;
import std.digest.sha : SHA1;
import std.string : representation;
auto secret = "secret".representation;
assert("The quick brown fox jumps over the lazy dog"
.representation
.hmac!SHA1(secret)
.toHexString!(LetterCase.lower) == "198ea1ea04c435c1246b586a06d5cf11c3ffcda6");
}
template HMAC(H)
if (isDigest!H && hasBlockSize!H)
{
alias HMAC = HMAC!(H, H.blockSize);
}
/**
* Overload of HMAC to be used if H doesn't provide information about its
* block size.
*/
struct HMAC(H, size_t hashBlockSize)
if (hashBlockSize % 8 == 0)
{
enum blockSize = hashBlockSize;
private H digest;
private ubyte[blockSize / 8] key;
/**
* Constructs the HMAC digest using the specified secret.
*/
this(scope const(ubyte)[] secret)
{
// if secret is too long, shorten it by computing its hash
typeof(digest.finish()) buffer = void;
typeof(secret) secretBytes = secret;
if (secret.length > blockSize / 8)
{
digest.start();
digest.put(secret);
buffer = digest.finish();
secretBytes = buffer[];
}
// if secret is too short, it will be padded with zeroes
// (the key buffer is already zero-initialized)
import std.algorithm.mutation : copy;
secretBytes.copy(key[]);
start();
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.sha : SHA1;
import std.string : representation;
auto hmac = HMAC!SHA1("My s3cR3T keY".representation);
hmac.put("Hello, world".representation);
static immutable expected = [
130, 32, 235, 44, 208, 141,
150, 232, 211, 214, 162, 195,
188, 127, 52, 89, 100, 68, 90, 216];
assert(hmac.finish() == expected);
}
/**
* Reinitializes the digest, making it ready for reuse.
*
* Note:
* The constructor leaves the digest in an initialized state, so that this
* method only needs to be called if an unfinished digest is to be reused.
*
* Returns:
* A reference to the digest for convenient chaining.
*/
ref HMAC!(H, blockSize) start() return
{
ubyte[blockSize / 8] ipad = void;
foreach (immutable i; 0 .. blockSize / 8)
ipad[i] = key[i] ^ 0x36;
digest.start();
digest.put(ipad[]);
return this;
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.sha : SHA1;
import std.string : representation;
string data1 = "Hello, world", data2 = "Hola mundo";
auto hmac = HMAC!SHA1("My s3cR3T keY".representation);
hmac.put(data1.representation);
hmac.start(); // reset digest
hmac.put(data2.representation); // start over
static immutable expected = [
122, 151, 232, 240, 249, 80,
19, 178, 186, 77, 110, 23, 208,
52, 11, 88, 34, 151, 192, 255];
assert(hmac.finish() == expected);
}
/**
* Feeds a piece of data into the hash computation. This method allows the
* type to be used as an $(REF OutputRange, std,range).
*
* Returns:
* A reference to the digest for convenient chaining.
*/
ref HMAC!(H, blockSize) put(in ubyte[] data...) return
{
digest.put(data);
return this;
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.hmac, std.digest.sha;
import std.string : representation;
string data1 = "Hello, world", data2 = "Hola mundo";
auto hmac = HMAC!SHA1("My s3cR3T keY".representation);
hmac.put(data1.representation)
.put(data2.representation);
static immutable expected = [
197, 57, 52, 3, 13, 194, 13,
36, 117, 228, 8, 11, 111, 51,
165, 3, 123, 31, 251, 113];
assert(hmac.finish() == expected);
}
/**
* Resets the digest and returns the finished hash.
*/
DigestType!H finish()
{
ubyte[blockSize / 8] opad = void;
foreach (immutable i; 0 .. blockSize / 8)
opad[i] = key[i] ^ 0x5c;
auto tmp = digest.finish();
digest.start();
digest.put(opad[]);
digest.put(tmp);
auto result = digest.finish();
start(); // reset the digest
return result;
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.sha : SHA1;
import std.string : representation;
string data1 = "Hello, world", data2 = "Hola mundo";
auto hmac = HMAC!SHA1("My s3cR3T keY".representation);
auto digest = hmac.put(data1.representation)
.put(data2.representation)
.finish();
static immutable expected = [
197, 57, 52, 3, 13, 194, 13,
36, 117, 228, 8, 11, 111, 51,
165, 3, 123, 31, 251, 113];
assert(digest == expected);
}
}
/// ditto
template hmac(H)
if (isDigest!H && hasBlockSize!H)
{
alias hmac = hmac!(H, H.blockSize);
}
/// ditto
template hmac(H, size_t blockSize)
if (isDigest!H)
{
/**
* Constructs an HMAC digest with the specified secret.
*
* Returns:
* An instance of HMAC that can be fed data as desired, and finished
* to compute the final hash when done.
*/
auto hmac(scope const(ubyte)[] secret)
{
return HMAC!(H, blockSize)(secret);
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.sha : SHA1;
import std.string : representation;
string data1 = "Hello, world", data2 = "Hola mundo";
auto digest = hmac!SHA1("My s3cR3T keY".representation)
.put(data1.representation)
.put(data2.representation)
.finish();
static immutable expected = [
197, 57, 52, 3, 13, 194, 13, 36,
117, 228, 8, 11, 111, 51, 165,
3, 123, 31, 251, 113];
assert(digest == expected);
}
/**
* Computes an _HMAC digest over the given range of data with the
* specified secret.
*
* Returns:
* The final _HMAC hash.
*/
DigestType!H hmac(T...)(scope T data, scope const(ubyte)[] secret)
if (allSatisfy!(isDigestibleRange, typeof(data)))
{
import std.range.primitives : put;
auto hash = HMAC!(H, blockSize)(secret);
foreach (datum; data)
put(hash, datum);
return hash.finish();
}
///
@safe pure nothrow @nogc unittest
{
import std.algorithm.iteration : map;
import std.digest.sha : SHA1;
import std.string : representation;
string data = "Hello, world";
auto digest = data.representation
.map!(a => cast(ubyte)(a+1))
.hmac!SHA1("My s3cR3T keY".representation);
static assert(is(typeof(digest) == ubyte[20]));
static immutable expected = [
163, 208, 118, 179, 216, 93,
17, 10, 84, 200, 87, 104, 244,
111, 136, 214, 167, 210, 58, 10];
assert(digest == expected);
}
}
///
@safe pure nothrow @nogc unittest
{
import std.digest.sha : SHA1;
import std.string : representation;
string data1 = "Hello, world", data2 = "Hola mundo";
auto hmac = HMAC!SHA1("My s3cR3T keY".representation);
auto digest = hmac.put(data1.representation)
.put(data2.representation)
.finish();
static immutable expected = [
197, 57, 52, 3, 13, 194, 13,
36, 117, 228, 8, 11, 111, 51,
165, 3, 123, 31, 251, 113];
assert(digest == expected);
}
@safe pure nothrow @nogc
unittest
{
import std.digest.md : MD5;
import std.range : isOutputRange;
static assert(isOutputRange!(HMAC!MD5, ubyte));
static assert(isDigest!(HMAC!MD5));
static assert(hasBlockSize!(HMAC!MD5) && HMAC!MD5.blockSize == MD5.blockSize);
}
@safe pure nothrow
unittest
{
import std.digest.md : MD5;
import std.digest.sha : SHA1, SHA256;
// Note, can't be UFCS because we don't want to import inside
// version (StdUnittest).
import std.digest : toHexString, LetterCase;
alias hex = toHexString!(LetterCase.lower);
ubyte[] nada;
assert(hex(hmac!MD5 (nada, nada)) == "74e6f7298a9c2d168935f58c001bad88");
assert(hex(hmac!SHA1 (nada, nada)) == "fbdb1d1b18aa6c08324b7d64b71fb76370690e1d");
assert(hex(hmac!SHA256(nada, nada)) == "b613679a0814d9ec772f95d778c35fc5ff1697c493715653c6c712144292c5ad");
import std.string : representation;
auto key = "key".representation,
long_key = ("012345678901234567890123456789012345678901"
~"234567890123456789012345678901234567890123456789").representation,
data1 = "The quick brown fox ".representation,
data2 = "jumps over the lazy dog".representation,
data = data1 ~ data2;
assert(hex(data.hmac!MD5 (key)) == "80070713463e7749b90c2dc24911e275");
assert(hex(data.hmac!SHA1 (key)) == "de7c9b85b8b78aa6bc8a7a36f70a90701c9db4d9");
assert(hex(data.hmac!SHA256(key)) == "f7bc83f430538424b13298e6aa6fb143ef4d59a14946175997479dbc2d1a3cd8");
assert(hex(data.hmac!MD5 (long_key)) == "e1728d68e05beae186ea768561963778");
assert(hex(data.hmac!SHA1 (long_key)) == "560d3cd77316e57ab4bba0c186966200d2b37ba3");
assert(hex(data.hmac!SHA256(long_key)) == "a1b0065a5d1edd93152c677e1bc1b1e3bc70d3a76619842e7f733f02b8135c04");
assert(hmac!MD5 (key).put(data1).put(data2).finish == data.hmac!MD5 (key));
assert(hmac!SHA1 (key).put(data1).put(data2).finish == data.hmac!SHA1 (key));
assert(hmac!SHA256(key).put(data1).put(data2).finish == data.hmac!SHA256(key));
}
|