1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
|
// Written in the D programming language.
/**
Source: $(PHOBOSSRC std/experimental/allocator/building_blocks/kernighan_ritchie.d)
*/
module std.experimental.allocator.building_blocks.kernighan_ritchie;
import std.experimental.allocator.building_blocks.null_allocator :
NullAllocator;
//debug = KRRegion;
debug(KRRegion) import std.stdio;
// KRRegion
/**
`KRRegion` draws inspiration from the $(MREF_ALTTEXT region allocation
strategy, std,experimental,allocator,building_blocks,region) and also the
$(HTTP stackoverflow.com/questions/13159564/explain-this-implementation-of-malloc-from-the-kr-book,
famed allocator) described by Brian Kernighan and Dennis Ritchie in section 8.7
of the book $(HTTP amazon.com/exec/obidos/ASIN/0131103628/classicempire, "The C
Programming Language"), Second Edition, Prentice Hall, 1988.
$(H4 `KRRegion` = `Region` + Kernighan-Ritchie Allocator)
Initially, `KRRegion` starts in "region" mode: allocations are served from
the memory chunk in a region fashion. Thus, as long as there is enough memory
left, `KRRegion.allocate` has the performance profile of a region allocator.
Deallocation inserts (in $(BIGOH 1) time) the deallocated blocks in an
unstructured freelist, which is not read in region mode.
Once the region cannot serve an `allocate` request, `KRRegion` switches
to "free list" mode. It sorts the list of previously deallocated blocks by
address and serves allocation requests off that free list. The allocation and
deallocation follow the pattern described by Kernighan and Ritchie.
The recommended use of `KRRegion` is as a $(I region with deallocation). If the
`KRRegion` is dimensioned appropriately, it could often not enter free list
mode during its lifetime. Thus it is as fast as a simple region, whilst
offering deallocation at a small cost. When the region memory is exhausted,
the previously deallocated memory is still usable, at a performance cost. If
the region is not excessively large and fragmented, the linear allocation and
deallocation cost may still be compensated for by the good locality
characteristics.
If the chunk of memory managed is large, it may be desirable to switch
management to free list from the beginning. That way, memory may be used in a
more compact manner than region mode. To force free list mode, call $(D
switchToFreeList) shortly after construction or when deemed appropriate.
The smallest size that can be allocated is two words (16 bytes on 64-bit
systems, 8 bytes on 32-bit systems). This is because the free list management
needs two words (one for the length, the other for the next pointer in the
singly-linked list).
The `ParentAllocator` type parameter is the type of the allocator used to
allocate the memory chunk underlying the `KRRegion` object. Choosing the
default (`NullAllocator`) means the user is responsible for passing a buffer
at construction (and for deallocating it if necessary). Otherwise, `KRRegion`
automatically deallocates the buffer during destruction. For that reason, if
`ParentAllocator` is not `NullAllocator`, then `KRRegion` is not
copyable.
$(H4 Implementation Details)
In free list mode, `KRRegion` embeds a free blocks list onto the chunk of
memory. The free list is circular, coalesced, and sorted by address at all
times. Allocations and deallocations take time proportional to the number of
previously deallocated blocks. (In practice the cost may be lower, e.g. if
memory is deallocated in reverse order of allocation, all operations take
constant time.) Memory utilization is good (small control structure and no
per-allocation overhead). The disadvantages of freelist mode include proneness
to fragmentation, a minimum allocation size of two words, and linear worst-case
allocation and deallocation times.
Similarities of `KRRegion` (in free list mode) with the
Kernighan-Ritchie allocator:
$(UL
$(LI Free blocks have variable size and are linked in a singly-linked list.)
$(LI The freelist is maintained in increasing address order, which makes
coalescing easy.)
$(LI The strategy for finding the next available block is first fit.)
$(LI The free list is circular, with the last node pointing back to the first.)
$(LI Coalescing is carried during deallocation.)
)
Differences from the Kernighan-Ritchie allocator:
$(UL
$(LI Once the chunk is exhausted, the Kernighan-Ritchie allocator allocates
another chunk using operating system primitives. For better composability, $(D
KRRegion) just gets full (returns `null` on new allocation requests). The
decision to allocate more blocks is deferred to a higher-level entity. For an
example, see the example below using `AllocatorList` in conjunction with $(D
KRRegion).)
$(LI Allocated blocks do not hold a size prefix. This is because in D the size
information is available in client code at deallocation time.)
)
*/
struct KRRegion(ParentAllocator = NullAllocator)
{
import std.experimental.allocator.common : stateSize, alignedAt;
import std.traits : hasMember;
import std.typecons : Ternary;
private static struct Node
{
import std.typecons : tuple, Tuple;
Node* next;
size_t size;
this(this) @disable;
void[] payload() inout
{
return (cast(ubyte*) &this)[0 .. size];
}
bool adjacent(in Node* right) const
{
assert(right);
auto p = payload;
return p.ptr < right && right < p.ptr + p.length + Node.sizeof;
}
bool coalesce(void* memoryEnd = null)
{
// Coalesce the last node before the memory end with any possible gap
if (memoryEnd
&& memoryEnd < payload.ptr + payload.length + Node.sizeof)
{
size += memoryEnd - (payload.ptr + payload.length);
return true;
}
if (!adjacent(next)) return false;
size = (cast(ubyte*) next + next.size) - cast(ubyte*) &this;
next = next.next;
return true;
}
Tuple!(void[], Node*) allocateHere(size_t bytes)
{
assert(bytes >= Node.sizeof);
assert(bytes % Node.alignof == 0);
assert(next);
assert(!adjacent(next));
if (size < bytes) return typeof(return)();
assert(size >= bytes);
immutable leftover = size - bytes;
if (leftover >= Node.sizeof)
{
// There's room for another node
auto newNode = cast(Node*) ((cast(ubyte*) &this) + bytes);
newNode.size = leftover;
newNode.next = next == &this ? newNode : next;
assert(next);
return tuple(payload, newNode);
}
// No slack space, just return next node
return tuple(payload, next == &this ? null : next);
}
}
// state
/**
If `ParentAllocator` holds state, `parent` is a public member of type
`KRRegion`. Otherwise, `parent` is an `alias` for
`ParentAllocator.instance`.
*/
static if (stateSize!ParentAllocator) ParentAllocator parent;
else alias parent = ParentAllocator.instance;
private void[] payload;
private Node* root;
private bool regionMode() const { return bytesUsedRegionMode != size_t.max; }
private void cancelRegionMode() { bytesUsedRegionMode = size_t.max; }
private size_t bytesUsedRegionMode = 0;
auto byNodePtr()
{
static struct Range
{
Node* start, current;
@property bool empty() { return !current; }
@property Node* front() { return current; }
void popFront()
{
assert(current && current.next);
current = current.next;
if (current == start) current = null;
}
@property Range save() { return this; }
}
import std.range : isForwardRange;
static assert(isForwardRange!Range);
return Range(root, root);
}
string toString()
{
import std.format : format;
string s = "KRRegion@";
s ~= format("%s-%s(0x%s[%s] %s", &this, &this + 1,
payload.ptr, payload.length,
regionMode ? "(region)" : "(freelist)");
Node* lastNode = null;
if (!regionMode)
{
foreach (node; byNodePtr)
{
s ~= format(", %sfree(0x%s[%s])",
lastNode && lastNode.adjacent(node) ? "+" : "",
cast(void*) node, node.size);
lastNode = node;
}
}
else
{
for (auto node = root; node; node = node.next)
{
s ~= format(", %sfree(0x%s[%s])",
lastNode && lastNode.adjacent(node) ? "+" : "",
cast(void*) node, node.size);
lastNode = node;
}
}
s ~= ')';
return s;
}
private void assertValid(string s)
{
assert(!regionMode);
if (!payload.ptr)
{
assert(!root, s);
return;
}
if (!root)
{
return;
}
assert(root >= payload.ptr, s);
assert(root < payload.ptr + payload.length, s);
// Check that the list terminates
size_t n;
foreach (node; byNodePtr)
{
assert(node.next);
assert(!node.adjacent(node.next));
assert(n++ < payload.length / Node.sizeof, s);
}
}
private Node* sortFreelist(Node* root)
{
// Find a monotonic run
auto last = root;
for (;;)
{
if (!last.next) return root;
if (last > last.next) break;
assert(last < last.next);
last = last.next;
}
auto tail = last.next;
last.next = null;
tail = sortFreelist(tail);
return merge(root, tail);
}
private Node* merge(Node* left, Node* right)
{
assert(left != right);
if (!left) return right;
if (!right) return left;
if (left < right)
{
auto result = left;
result.next = merge(left.next, right);
return result;
}
auto result = right;
result.next = merge(left, right.next);
return result;
}
private void coalesceAndMakeCircular()
{
for (auto n = root;;)
{
assert(!n.next || n < n.next);
if (!n.next)
{
// Convert to circular
n.next = root;
break;
}
if (n.coalesce) continue; // possibly another coalesce
n = n.next;
}
}
/**
Create a `KRRegion`. If `ParentAllocator` is not `NullAllocator`,
`KRRegion`'s destructor will call `parent.deallocate`.
Params:
b = Block of memory to serve as support for the allocator. Memory must be
larger than two words and word-aligned.
n = Capacity desired. This constructor is defined only if $(D
ParentAllocator) is not `NullAllocator`.
*/
this(ubyte[] b)
{
if (b.length < Node.sizeof)
{
// Init as empty
assert(root is null);
assert(payload is null);
return;
}
assert(b.length >= Node.sizeof);
assert(b.ptr.alignedAt(Node.alignof));
assert(b.length >= 2 * Node.sizeof);
payload = b;
root = cast(Node*) b.ptr;
// Initialize the free list with all list
assert(regionMode);
root.next = null;
root.size = b.length;
debug(KRRegion) writefln("KRRegion@%s: init with %s[%s]", &this,
b.ptr, b.length);
}
/// Ditto
static if (!is(ParentAllocator == NullAllocator) && !stateSize!ParentAllocator)
this(size_t n)
{
assert(n > Node.sizeof);
this(cast(ubyte[])(parent.allocate(n)));
}
/// Ditto
static if (!is(ParentAllocator == NullAllocator) && stateSize!ParentAllocator)
this(ParentAllocator parent, size_t n)
{
assert(n > Node.sizeof);
this.parent = parent;
this(cast(ubyte[])(parent.allocate(n)));
}
/// Ditto
static if (!is(ParentAllocator == NullAllocator)
&& hasMember!(ParentAllocator, "deallocate"))
~this()
{
parent.deallocate(payload);
}
/**
Forces free list mode. If already in free list mode, does nothing.
Otherwise, sorts the free list accumulated so far and switches strategy for
future allocations to KR style.
*/
void switchToFreeList()
{
if (!regionMode) return;
cancelRegionMode;
if (!root) return;
root = sortFreelist(root);
coalesceAndMakeCircular;
}
/*
Noncopyable
*/
@disable this(this);
/**
Word-level alignment.
*/
enum alignment = Node.alignof;
/**
Allocates `n` bytes. Allocation searches the list of available blocks
until a free block with `n` or more bytes is found (first fit strategy).
The block is split (if larger) and returned.
Params: n = number of bytes to _allocate
Returns: A word-aligned buffer of `n` bytes, or `null`.
*/
void[] allocate(size_t n)
{
if (!n || !root) return null;
const actualBytes = goodAllocSize(n);
// Try the region first
if (regionMode)
{
// Only look at the head of the freelist
if (root.size >= actualBytes)
{
// Enough room for allocation
bytesUsedRegionMode += actualBytes;
void* result = root;
immutable balance = root.size - actualBytes;
if (balance >= Node.sizeof)
{
auto newRoot = cast(Node*) (result + actualBytes);
newRoot.next = root.next;
newRoot.size = balance;
root = newRoot;
}
else
{
root = null;
switchToFreeList;
}
return result[0 .. n];
}
// Not enough memory, switch to freelist mode and fall through
switchToFreeList;
}
// Try to allocate from next after the iterating node
for (auto pnode = root;;)
{
assert(!pnode.adjacent(pnode.next));
auto k = pnode.next.allocateHere(actualBytes);
if (k[0] !is null)
{
// awes
assert(k[0].length >= n);
if (root == pnode.next) root = k[1];
pnode.next = k[1];
return k[0][0 .. n];
}
pnode = pnode.next;
if (pnode == root) break;
}
return null;
}
/**
Deallocates `b`, which is assumed to have been previously allocated with
this allocator. Deallocation performs a linear search in the free list to
preserve its sorting order. It follows that blocks with higher addresses in
allocators with many free blocks are slower to deallocate.
Params: b = block to be deallocated
*/
nothrow @nogc
bool deallocate(void[] b)
{
debug(KRRegion) writefln("KRRegion@%s: deallocate(%s[%s])", &this,
b.ptr, b.length);
if (!b.ptr) return true;
assert(owns(b) == Ternary.yes);
assert(b.ptr.alignedAt(Node.alignof));
// Insert back in the freelist, keeping it sorted by address. Do not
// coalesce at this time. Instead, do it lazily during allocation.
auto n = cast(Node*) b.ptr;
n.size = goodAllocSize(b.length);
auto memoryEnd = payload.ptr + payload.length;
if (regionMode)
{
assert(root);
// Insert right after root
bytesUsedRegionMode -= n.size;
n.next = root.next;
root.next = n;
return true;
}
if (!root)
{
// What a sight for sore eyes
root = n;
root.next = root;
// If the first block freed is the last one allocated,
// maybe there's a gap after it.
root.coalesce(memoryEnd);
return true;
}
version (assert) foreach (test; byNodePtr)
{
assert(test != n);
}
// Linear search
auto pnode = root;
do
{
assert(pnode && pnode.next);
assert(pnode != n);
assert(pnode.next != n);
if (pnode < pnode.next)
{
if (pnode > n || n > pnode.next) continue;
// Insert in between pnode and pnode.next
n.next = pnode.next;
pnode.next = n;
n.coalesce;
pnode.coalesce;
root = pnode;
return true;
}
else if (pnode < n)
{
// Insert at the end of the list
// Add any possible gap at the end of n to the length of n
n.next = pnode.next;
pnode.next = n;
n.coalesce(memoryEnd);
pnode.coalesce;
root = pnode;
return true;
}
else if (n < pnode.next)
{
// Insert at the front of the list
n.next = pnode.next;
pnode.next = n;
n.coalesce;
root = n;
return true;
}
}
while ((pnode = pnode.next) != root);
assert(0, "Wrong parameter passed to deallocate");
}
/**
Allocates all memory available to this allocator. If the allocator is empty,
returns the entire available block of memory. Otherwise, it still performs
a best-effort allocation: if there is no fragmentation (e.g. `allocate`
has been used but not `deallocate`), allocates and returns the only
available block of memory.
The operation takes time proportional to the number of adjacent free blocks
at the front of the free list. These blocks get coalesced, whether
`allocateAll` succeeds or fails due to fragmentation.
*/
void[] allocateAll()
{
if (regionMode) switchToFreeList;
if (root && root.next == root)
return allocate(root.size);
return null;
}
///
@system unittest
{
import std.experimental.allocator.gc_allocator : GCAllocator;
auto alloc = KRRegion!GCAllocator(1024 * 64);
const b1 = alloc.allocate(2048);
assert(b1.length == 2048);
const b2 = alloc.allocateAll;
assert(b2.length == 1024 * 62);
}
/**
Deallocates all memory currently allocated, making the allocator ready for
other allocations. This is a $(BIGOH 1) operation.
*/
pure nothrow @nogc
bool deallocateAll()
{
debug(KRRegion) assertValid("deallocateAll");
debug(KRRegion) scope(exit) assertValid("deallocateAll");
root = cast(Node*) payload.ptr;
// Reset to regionMode
bytesUsedRegionMode = 0;
if (root)
{
root.next = null;
root.size = payload.length;
}
return true;
}
/**
Checks whether the allocator is responsible for the allocation of `b`.
It does a simple $(BIGOH 1) range check. `b` should be a buffer either
allocated with `this` or obtained through other means.
*/
pure nothrow @trusted @nogc
Ternary owns(void[] b)
{
debug(KRRegion) assertValid("owns");
debug(KRRegion) scope(exit) assertValid("owns");
return Ternary(b && payload && (&b[0] >= &payload[0])
&& (&b[0] < &payload[0] + payload.length));
}
/**
Adjusts `n` to a size suitable for allocation (two words or larger,
word-aligned).
*/
pure nothrow @safe @nogc
static size_t goodAllocSize(size_t n)
{
import std.experimental.allocator.common : roundUpToMultipleOf;
return n <= Node.sizeof
? Node.sizeof : n.roundUpToMultipleOf(alignment);
}
/**
Returns: `Ternary.yes` if the allocator is empty, `Ternary.no` otherwise.
Never returns `Ternary.unknown`.
*/
pure nothrow @safe @nogc
Ternary empty()
{
if (regionMode)
return Ternary(bytesUsedRegionMode == 0);
return Ternary(root && root.size == payload.length);
}
}
/**
`KRRegion` is preferable to `Region` as a front for a general-purpose
allocator if `deallocate` is needed, yet the actual deallocation traffic is
relatively low. The example below shows a `KRRegion` using stack storage
fronting the GC allocator.
*/
@system unittest
{
import std.experimental.allocator.building_blocks.fallback_allocator
: fallbackAllocator;
import std.experimental.allocator.gc_allocator : GCAllocator;
import std.typecons : Ternary;
// KRRegion fronting a general-purpose allocator
ubyte[1024 * 128] buf;
auto alloc = fallbackAllocator(KRRegion!()(buf), GCAllocator.instance);
auto b = alloc.allocate(100);
assert(b.length == 100);
assert((() pure nothrow @safe @nogc => alloc.primary.owns(b))() == Ternary.yes);
}
/**
The code below defines a scalable allocator consisting of 1 MB (or larger)
blocks fetched from the garbage-collected heap. Each block is organized as a
KR-style heap. More blocks are allocated and freed on a need basis.
This is the closest example to the allocator introduced in the K$(AMP)R book.
It should perform slightly better because instead of searching through one
large free list, it searches through several shorter lists in LRU order. Also,
it actually returns memory to the operating system when possible.
*/
@system unittest
{
import std.algorithm.comparison : max;
import std.experimental.allocator.building_blocks.allocator_list
: AllocatorList;
import std.experimental.allocator.mmap_allocator : MmapAllocator;
AllocatorList!(n => KRRegion!MmapAllocator(max(n * 16, 1024 * 1024))) alloc;
}
@system unittest
{
import std.algorithm.comparison : max;
import std.experimental.allocator.building_blocks.allocator_list
: AllocatorList;
import std.experimental.allocator.mallocator : Mallocator;
import std.typecons : Ternary;
/*
Create a scalable allocator consisting of 1 MB (or larger) blocks fetched
from the garbage-collected heap. Each block is organized as a KR-style
heap. More blocks are allocated and freed on a need basis.
*/
AllocatorList!(n => KRRegion!Mallocator(max(n * 16, 1024 * 1024)),
NullAllocator) alloc;
void[][50] array;
foreach (i; 0 .. array.length)
{
auto length = i * 10_000 + 1;
array[i] = alloc.allocate(length);
assert(array[i].ptr);
assert(array[i].length == length);
}
import std.random : randomShuffle;
randomShuffle(array[]);
foreach (i; 0 .. array.length)
{
assert(array[i].ptr);
assert((() pure nothrow @safe @nogc => alloc.owns(array[i]))() == Ternary.yes);
() nothrow @nogc { alloc.deallocate(array[i]); }();
}
}
@system unittest
{
import std.algorithm.comparison : max;
import std.experimental.allocator.building_blocks.allocator_list
: AllocatorList;
import std.experimental.allocator.mmap_allocator : MmapAllocator;
import std.typecons : Ternary;
/*
Create a scalable allocator consisting of 1 MB (or larger) blocks fetched
from the garbage-collected heap. Each block is organized as a KR-style
heap. More blocks are allocated and freed on a need basis.
*/
AllocatorList!((n) {
auto result = KRRegion!MmapAllocator(max(n * 2, 1024 * 1024));
return result;
}) alloc;
void[][99] array;
foreach (i; 0 .. array.length)
{
auto length = i * 10_000 + 1;
array[i] = alloc.allocate(length);
assert(array[i].ptr);
foreach (j; 0 .. i)
{
assert(array[i].ptr != array[j].ptr);
}
assert(array[i].length == length);
}
import std.random : randomShuffle;
randomShuffle(array[]);
foreach (i; 0 .. array.length)
{
assert((() pure nothrow @safe @nogc => alloc.owns(array[i]))() == Ternary.yes);
() nothrow @nogc { alloc.deallocate(array[i]); }();
}
}
version (StdUnittest)
@system unittest
{
import std.algorithm.comparison : max;
import std.experimental.allocator.building_blocks.allocator_list
: AllocatorList;
import std.experimental.allocator.common : testAllocator;
import std.experimental.allocator.gc_allocator : GCAllocator;
testAllocator!(() => AllocatorList!(
n => KRRegion!GCAllocator(max(n * 16, 1024 * 1024)))());
}
@system unittest
{
import std.experimental.allocator.gc_allocator : GCAllocator;
auto alloc = KRRegion!GCAllocator(1024 * 1024);
void[][] array;
foreach (i; 1 .. 4)
{
array ~= alloc.allocate(i);
assert(array[$ - 1].length == i);
}
() nothrow @nogc { alloc.deallocate(array[1]); }();
() nothrow @nogc { alloc.deallocate(array[0]); }();
() nothrow @nogc { alloc.deallocate(array[2]); }();
assert(alloc.allocateAll().length == 1024 * 1024);
}
@system unittest
{
import std.experimental.allocator.gc_allocator : GCAllocator;
import std.typecons : Ternary;
auto alloc = KRRegion!()(
cast(ubyte[])(GCAllocator.instance.allocate(1024 * 1024)));
const store = alloc.allocate(KRRegion!().sizeof);
auto p = cast(KRRegion!()* ) store.ptr;
import core.lifetime : emplace;
import core.stdc.string : memcpy;
import std.conv : text;
memcpy(p, &alloc, alloc.sizeof);
emplace(&alloc);
void[][100] array;
foreach (i; 0 .. array.length)
{
auto length = 100 * i + 1;
array[i] = p.allocate(length);
assert(array[i].length == length, text(array[i].length));
assert((() pure nothrow @safe @nogc => p.owns(array[i]))() == Ternary.yes);
}
import std.random : randomShuffle;
randomShuffle(array[]);
foreach (i; 0 .. array.length)
{
assert((() pure nothrow @safe @nogc => p.owns(array[i]))() == Ternary.yes);
() nothrow @nogc { p.deallocate(array[i]); }();
}
auto b = p.allocateAll();
assert(b.length == 1024 * 1024 - KRRegion!().sizeof, text(b.length));
}
@system unittest
{
import std.typecons : Ternary;
import std.experimental.allocator.gc_allocator : GCAllocator;
auto alloc = KRRegion!()(
cast(ubyte[])(GCAllocator.instance.allocate(1024 * 1024)));
auto p = alloc.allocateAll();
assert(p.length == 1024 * 1024);
assert((() nothrow @nogc => alloc.deallocateAll())());
assert(alloc.empty() == Ternary.yes);
p = alloc.allocateAll();
assert(p.length == 1024 * 1024);
}
@system unittest
{
import std.random : randomCover;
import std.typecons : Ternary;
// Both sequences must work on either system
// A sequence of allocs which generates the error described in issue 16564
// that is a gap at the end of buf from the perspective of the allocator
// for 64 bit systems (leftover balance = 8 bytes < 16)
int[] sizes64 = [18904, 2008, 74904, 224, 111904, 1904, 52288, 8];
// for 32 bit systems (leftover balance < 8)
int[] sizes32 = [81412, 107068, 49892, 23768];
void test(int[] sizes)
{
align(size_t.sizeof) ubyte[256 * 1024] buf;
auto a = KRRegion!()(buf);
void[][] bufs;
foreach (size; sizes)
{
bufs ~= a.allocate(size);
}
foreach (b; bufs.randomCover)
{
() nothrow @nogc { a.deallocate(b); }();
}
assert((() pure nothrow @safe @nogc => a.empty)() == Ternary.yes);
}
test(sizes64);
test(sizes32);
}
@system unittest
{
import std.typecons : Ternary;
// For 64 bits, we allocate in multiples of 8, but the minimum alloc size is 16.
// This can create gaps.
// This test is an example of such a case. The gap is formed between the block
// allocated for the second value in sizes and the third. There is also a gap
// at the very end. (total lost 2 * word)
int[] sizes64 = [2008, 18904, 74904, 224, 111904, 1904, 52288, 8];
int[] sizes32 = [81412, 107068, 49892, 23768];
int word64 = 8;
int word32 = 4;
void test(int[] sizes, int word)
{
align(size_t.sizeof) ubyte[256 * 1024] buf;
auto a = KRRegion!()(buf);
void[][] bufs;
foreach (size; sizes)
{
bufs ~= a.allocate(size);
}
() nothrow @nogc { a.deallocate(bufs[1]); }();
bufs ~= a.allocate(sizes[1] - word);
() nothrow @nogc { a.deallocate(bufs[0]); }();
foreach (i; 2 .. bufs.length)
{
() nothrow @nogc { a.deallocate(bufs[i]); }();
}
assert((() pure nothrow @safe @nogc => a.empty)() == Ternary.yes);
}
test(sizes64, word64);
test(sizes32, word32);
}
@system unittest
{
import std.experimental.allocator.gc_allocator : GCAllocator;
auto a = KRRegion!GCAllocator(1024 * 1024);
assert((() pure nothrow @safe @nogc => a.goodAllocSize(1))() == typeof(*a.root).sizeof);
}
@system unittest
{ import std.typecons : Ternary;
ubyte[1024] b;
auto alloc = KRRegion!()(b);
auto k = alloc.allocate(128);
assert(k.length == 128);
assert(alloc.empty == Ternary.no);
assert(alloc.deallocate(k));
assert(alloc.empty == Ternary.yes);
k = alloc.allocate(512);
assert(k.length == 512);
assert(alloc.empty == Ternary.no);
assert(alloc.deallocate(k));
assert(alloc.empty == Ternary.yes);
k = alloc.allocate(1024);
assert(k.length == 1024);
assert(alloc.empty == Ternary.no);
assert(alloc.deallocate(k));
assert(alloc.empty == Ternary.yes);
}
|