1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
|
// Written in the D programming language.
/**
Source: $(PHOBOSSRC std/experimental/allocator/building_blocks/region.d)
*/
module std.experimental.allocator.building_blocks.region;
import std.experimental.allocator.building_blocks.null_allocator;
import std.experimental.allocator.common;
import std.typecons : Flag, Yes, No;
version (OSX)
version = Darwin;
else version (iOS)
version = Darwin;
else version (TVOS)
version = Darwin;
else version (WatchOS)
version = Darwin;
/**
A `Region` allocator allocates memory straight from one contiguous chunk.
There is no deallocation, and once the region is full, allocation requests
return `null`. Therefore, `Region`s are often used (a) in conjunction with
more sophisticated allocators; or (b) for batch-style very fast allocations
that deallocate everything at once.
The region only stores three pointers, corresponding to the current position in
the store and the limits. One allocation entails rounding up the allocation
size for alignment purposes, bumping the current pointer, and comparing it
against the limit.
If `ParentAllocator` is different from $(REF_ALTTEXT `NullAllocator`, NullAllocator, std,experimental,allocator,building_blocks,null_allocator), `Region`
deallocates the chunk of memory during destruction.
The `minAlign` parameter establishes alignment. If $(D minAlign > 1), the
sizes of all allocation requests are rounded up to a multiple of `minAlign`.
Applications aiming at maximum speed may want to choose $(D minAlign = 1) and
control alignment externally.
*/
struct Region(ParentAllocator = NullAllocator,
uint minAlign = platformAlignment,
Flag!"growDownwards" growDownwards = No.growDownwards)
{
static assert(minAlign.isGoodStaticAlignment);
static assert(ParentAllocator.alignment >= minAlign);
import std.traits : hasMember;
import std.typecons : Ternary;
// state
/**
The _parent allocator. Depending on whether `ParentAllocator` holds state
or not, this is a member variable or an alias for
`ParentAllocator.instance`.
*/
static if (stateSize!ParentAllocator)
{
ParentAllocator parent;
}
else
{
alias parent = ParentAllocator.instance;
}
private void* _current, _begin, _end;
private void* roundedBegin() const pure nothrow @trusted @nogc
{
return cast(void*) roundUpToAlignment(cast(size_t) _begin, alignment);
}
private void* roundedEnd() const pure nothrow @trusted @nogc
{
return cast(void*) roundDownToAlignment(cast(size_t) _end, alignment);
}
/**
Constructs a region backed by a user-provided store.
Assumes the memory was allocated with `ParentAllocator`
(if different from $(REF_ALTTEXT `NullAllocator`, NullAllocator, std,experimental,allocator,building_blocks,null_allocator)).
Params:
store = User-provided store backing up the region. If $(D
ParentAllocator) is different from $(REF_ALTTEXT `NullAllocator`, NullAllocator, std,experimental,allocator,building_blocks,null_allocator), memory is assumed to
have been allocated with `ParentAllocator`.
n = Bytes to allocate using `ParentAllocator`. This constructor is only
defined If `ParentAllocator` is different from $(REF_ALTTEXT `NullAllocator`, NullAllocator, std,experimental,allocator,building_blocks,null_allocator). If
`parent.allocate(n)` returns `null`, the region will be initialized
as empty (correctly initialized but unable to allocate).
*/
this(ubyte[] store) pure nothrow @nogc
{
_begin = store.ptr;
_end = store.ptr + store.length;
static if (growDownwards)
_current = roundedEnd();
else
_current = roundedBegin();
}
/// Ditto
static if (!is(ParentAllocator == NullAllocator) && !stateSize!ParentAllocator)
this(size_t n)
{
this(cast(ubyte[]) (parent.allocate(n.roundUpToAlignment(alignment))));
}
/// Ditto
static if (!is(ParentAllocator == NullAllocator) && stateSize!ParentAllocator)
this(ParentAllocator parent, size_t n)
{
this.parent = parent;
this(cast(ubyte[]) (parent.allocate(n.roundUpToAlignment(alignment))));
}
/*
TODO: The postblit of `BasicRegion` should be disabled because such objects
should not be copied around naively.
*/
/**
If `ParentAllocator` is not $(REF_ALTTEXT `NullAllocator`, NullAllocator, std,experimental,allocator,building_blocks,null_allocator) and defines `deallocate`,
the region defines a destructor that uses `ParentAllocator.deallocate` to free the
memory chunk.
*/
static if (!is(ParentAllocator == NullAllocator)
&& hasMember!(ParentAllocator, "deallocate"))
~this()
{
parent.deallocate(_begin[0 .. _end - _begin]);
}
/**
Rounds the given size to a multiple of the `alignment`
*/
size_t goodAllocSize(size_t n) const pure nothrow @safe @nogc
{
return n.roundUpToAlignment(alignment);
}
/**
Alignment offered.
*/
alias alignment = minAlign;
/**
Allocates `n` bytes of memory. The shortest path involves an alignment
adjustment (if $(D alignment > 1)), an increment, and a comparison.
Params:
n = number of bytes to allocate
Returns:
A properly-aligned buffer of size `n` or `null` if request could not
be satisfied.
*/
void[] allocate(size_t n) pure nothrow @trusted @nogc
{
const rounded = goodAllocSize(n);
if (n == 0 || rounded < n || available < rounded) return null;
static if (growDownwards)
{
assert(available >= rounded);
auto result = (_current - rounded)[0 .. n];
assert(result.ptr >= _begin);
_current = result.ptr;
assert(owns(result) == Ternary.yes);
}
else
{
auto result = _current[0 .. n];
_current += rounded;
}
return result;
}
/**
Allocates `n` bytes of memory aligned at alignment `a`.
Params:
n = number of bytes to allocate
a = alignment for the allocated block
Returns:
Either a suitable block of `n` bytes aligned at `a`, or `null`.
*/
void[] alignedAllocate(size_t n, uint a) pure nothrow @trusted @nogc
{
import std.math.traits : isPowerOf2;
assert(a.isPowerOf2);
const rounded = goodAllocSize(n);
if (n == 0 || rounded < n || available < rounded) return null;
static if (growDownwards)
{
auto tmpCurrent = _current - rounded;
auto result = tmpCurrent.alignDownTo(a);
if (result <= tmpCurrent && result >= _begin)
{
_current = result;
return cast(void[]) result[0 .. n];
}
}
else
{
// Just bump the pointer to the next good allocation
auto newCurrent = _current.alignUpTo(a);
if (newCurrent < _current || newCurrent > _end)
return null;
auto save = _current;
_current = newCurrent;
auto result = allocate(n);
if (result.ptr)
{
assert(result.length == n);
return result;
}
// Failed, rollback
_current = save;
}
return null;
}
/// Allocates and returns all memory available to this region.
void[] allocateAll() pure nothrow @trusted @nogc
{
static if (growDownwards)
{
auto result = _begin[0 .. available];
_current = _begin;
}
else
{
auto result = _current[0 .. available];
_current = _end;
}
return result;
}
/**
Expands an allocated block in place. Expansion will succeed only if the
block is the last allocated. Defined only if `growDownwards` is
`No.growDownwards`.
*/
static if (growDownwards == No.growDownwards)
bool expand(ref void[] b, size_t delta) pure nothrow @safe @nogc
{
assert(owns(b) == Ternary.yes || b is null);
assert((() @trusted => b.ptr + b.length <= _current)() || b is null);
if (b is null || delta == 0) return delta == 0;
auto newLength = b.length + delta;
if ((() @trusted => _current < b.ptr + b.length + alignment)())
{
immutable currentGoodSize = this.goodAllocSize(b.length);
immutable newGoodSize = this.goodAllocSize(newLength);
immutable goodDelta = newGoodSize - currentGoodSize;
// This was the last allocation! Allocate some more and we're done.
if (goodDelta == 0
|| (() @trusted => allocate(goodDelta).length == goodDelta)())
{
b = (() @trusted => b.ptr[0 .. newLength])();
assert((() @trusted => _current < b.ptr + b.length + alignment)());
return true;
}
}
return false;
}
/**
Deallocates `b`. This works only if `b` was obtained as the last call
to `allocate`; otherwise (i.e. another allocation has occurred since) it
does nothing.
Params:
b = Block previously obtained by a call to `allocate` against this
allocator (`null` is allowed).
*/
bool deallocate(void[] b) pure nothrow @nogc
{
assert(owns(b) == Ternary.yes || b.ptr is null);
auto rounded = goodAllocSize(b.length);
static if (growDownwards)
{
if (b.ptr == _current)
{
_current += rounded;
return true;
}
}
else
{
if (b.ptr + rounded == _current)
{
assert(b.ptr !is null || _current is null);
_current = b.ptr;
return true;
}
}
return false;
}
/**
Deallocates all memory allocated by this region, which can be subsequently
reused for new allocations.
*/
bool deallocateAll() pure nothrow @nogc
{
static if (growDownwards)
{
_current = roundedEnd();
}
else
{
_current = roundedBegin();
}
return true;
}
/**
Queries whether `b` has been allocated with this region.
Params:
b = Arbitrary block of memory (`null` is allowed; `owns(null)` returns
`false`).
Returns:
`true` if `b` has been allocated with this region, `false` otherwise.
*/
Ternary owns(const void[] b) const pure nothrow @trusted @nogc
{
return Ternary(b && (&b[0] >= _begin) && (&b[0] + b.length <= _end));
}
/**
Returns `Ternary.yes` if no memory has been allocated in this region,
`Ternary.no` otherwise. (Never returns `Ternary.unknown`.)
*/
Ternary empty() const pure nothrow @safe @nogc
{
static if (growDownwards)
return Ternary(_current == roundedEnd());
else
return Ternary(_current == roundedBegin());
}
/// Nonstandard property that returns bytes available for allocation.
size_t available() const @safe pure nothrow @nogc
{
static if (growDownwards)
{
return _current - _begin;
}
else
{
return _end - _current;
}
}
}
///
@system nothrow unittest
{
import std.algorithm.comparison : max;
import std.experimental.allocator.building_blocks.allocator_list
: AllocatorList;
import std.experimental.allocator.mallocator : Mallocator;
import std.typecons : Ternary;
// Create a scalable list of regions. Each gets at least 1MB at a time by
// using malloc.
auto batchAllocator = AllocatorList!(
(size_t n) => Region!Mallocator(max(n, 1024 * 1024))
)();
assert(batchAllocator.empty == Ternary.yes);
auto b = batchAllocator.allocate(101);
assert(b.length == 101);
assert(batchAllocator.empty == Ternary.no);
// This will cause a second allocation
b = batchAllocator.allocate(2 * 1024 * 1024);
assert(b.length == 2 * 1024 * 1024);
// Destructor will free the memory
}
@system nothrow @nogc unittest
{
import std.experimental.allocator.mallocator : Mallocator;
import std.typecons : Ternary;
static void testAlloc(Allocator)(ref Allocator a)
{
assert((() pure nothrow @safe @nogc => a.empty)() == Ternary.yes);
const b = a.allocate(101);
assert(b.length == 101);
assert((() nothrow @safe @nogc => a.owns(b))() == Ternary.yes);
// Ensure deallocate inherits from parent allocators
auto c = a.allocate(42);
assert(c.length == 42);
assert((() nothrow @nogc => a.deallocate(c))());
assert((() pure nothrow @safe @nogc => a.empty)() == Ternary.no);
}
// Create a 64 KB region allocated with malloc
auto reg = Region!(Mallocator, Mallocator.alignment,
Yes.growDownwards)(1024 * 64);
testAlloc(reg);
// Create a 64 KB shared region allocated with malloc
auto sharedReg = SharedRegion!(Mallocator, Mallocator.alignment,
Yes.growDownwards)(1024 * 64);
testAlloc(sharedReg);
}
@system nothrow @nogc unittest
{
import std.experimental.allocator.mallocator : AlignedMallocator;
import std.typecons : Ternary;
ubyte[] buf = cast(ubyte[]) AlignedMallocator.instance.alignedAllocate(64, 64);
auto reg = Region!(NullAllocator, 64, Yes.growDownwards)(buf);
assert(reg.alignedAllocate(10, 32).length == 10);
assert(!reg.available);
}
@system nothrow @nogc unittest
{
// test 'this(ubyte[] store)' constructed regions properly clean up
// their inner storage after destruction
import std.experimental.allocator.mallocator : Mallocator;
static shared struct LocalAllocator
{
nothrow @nogc:
enum alignment = Mallocator.alignment;
void[] buf;
bool deallocate(void[] b)
{
assert(buf.ptr == b.ptr && buf.length == b.length);
return true;
}
void[] allocate(size_t n)
{
return null;
}
}
enum bufLen = 10 * Mallocator.alignment;
void[] tmp = Mallocator.instance.allocate(bufLen);
LocalAllocator a;
a.buf = cast(typeof(a.buf)) tmp[1 .. $];
auto reg = Region!(LocalAllocator, Mallocator.alignment,
Yes.growDownwards)(cast(ubyte[]) a.buf);
auto sharedReg = SharedRegion!(LocalAllocator, Mallocator.alignment,
Yes.growDownwards)(cast(ubyte[]) a.buf);
reg.parent = a;
sharedReg.parent = a;
Mallocator.instance.deallocate(tmp);
}
version (StdUnittest)
@system unittest
{
import std.experimental.allocator.mallocator : Mallocator;
testAllocator!(() => Region!(Mallocator)(1024 * 64));
testAllocator!(() => Region!(Mallocator, Mallocator.alignment, Yes.growDownwards)(1024 * 64));
testAllocator!(() => SharedRegion!(Mallocator)(1024 * 64));
testAllocator!(() => SharedRegion!(Mallocator, Mallocator.alignment, Yes.growDownwards)(1024 * 64));
}
@system nothrow @nogc unittest
{
import std.experimental.allocator.mallocator : Mallocator;
auto reg = Region!(Mallocator)(1024 * 64);
auto b = reg.allocate(101);
assert(b.length == 101);
assert((() pure nothrow @safe @nogc => reg.expand(b, 20))());
assert((() pure nothrow @safe @nogc => reg.expand(b, 73))());
assert((() pure nothrow @safe @nogc => !reg.expand(b, 1024 * 64))());
assert((() nothrow @nogc => reg.deallocateAll())());
}
/**
`InSituRegion` is a convenient region that carries its storage within itself
(in the form of a statically-sized array).
The first template argument is the size of the region and the second is the
needed alignment. Depending on the alignment requested and platform details,
the actual available storage may be smaller than the compile-time parameter. To
make sure that at least `n` bytes are available in the region, use
$(D InSituRegion!(n + a - 1, a)).
Given that the most frequent use of `InSituRegion` is as a stack allocator, it
allocates starting at the end on systems where stack grows downwards, such that
hot memory is used first.
*/
struct InSituRegion(size_t size, size_t minAlign = platformAlignment)
{
import std.algorithm.comparison : max;
import std.conv : to;
import std.traits : hasMember;
import std.typecons : Ternary;
static assert(minAlign.isGoodStaticAlignment);
static assert(size >= minAlign);
version (X86) enum growDownwards = Yes.growDownwards;
else version (X86_64) enum growDownwards = Yes.growDownwards;
else version (ARM) enum growDownwards = Yes.growDownwards;
else version (AArch64) enum growDownwards = Yes.growDownwards;
else version (HPPA) enum growDownwards = No.growDownwards;
else version (PPC) enum growDownwards = Yes.growDownwards;
else version (PPC64) enum growDownwards = Yes.growDownwards;
else version (RISCV32) enum growDownwards = Yes.growDownwards;
else version (RISCV64) enum growDownwards = Yes.growDownwards;
else version (MIPS32) enum growDownwards = Yes.growDownwards;
else version (MIPS64) enum growDownwards = Yes.growDownwards;
else version (SPARC) enum growDownwards = Yes.growDownwards;
else version (SPARC64) enum growDownwards = Yes.growDownwards;
else version (SystemZ) enum growDownwards = Yes.growDownwards;
else static assert(0, "Dunno how the stack grows on this architecture.");
@disable this(this);
// state {
private Region!(NullAllocator, minAlign, growDownwards) _impl;
union
{
private ubyte[size] _store = void;
private double _forAlignmentOnly1;
}
// }
/**
An alias for `minAlign`, which must be a valid alignment (nonzero power
of 2). The start of the region and all allocation requests will be rounded
up to a multiple of the alignment.
----
InSituRegion!(4096) a1;
assert(a1.alignment == platformAlignment);
InSituRegion!(4096, 64) a2;
assert(a2.alignment == 64);
----
*/
alias alignment = minAlign;
private void lazyInit()
{
assert(!_impl._current);
_impl = typeof(_impl)(_store);
assert(_impl._current.alignedAt(alignment));
}
/**
Allocates `bytes` and returns them, or `null` if the region cannot
accommodate the request. For efficiency reasons, if $(D bytes == 0) the
function returns an empty non-null slice.
*/
void[] allocate(size_t n)
{
// Fast path
entry:
auto result = _impl.allocate(n);
if (result.length == n) return result;
// Slow path
if (_impl._current) return null; // no more room
lazyInit;
assert(_impl._current);
goto entry;
}
/**
As above, but the memory allocated is aligned at `a` bytes.
*/
void[] alignedAllocate(size_t n, uint a)
{
// Fast path
entry:
auto result = _impl.alignedAllocate(n, a);
if (result.length == n) return result;
// Slow path
if (_impl._current) return null; // no more room
lazyInit;
assert(_impl._current);
goto entry;
}
/**
Deallocates `b`. This works only if `b` was obtained as the last call
to `allocate`; otherwise (i.e. another allocation has occurred since) it
does nothing. This semantics is tricky and therefore `deallocate` is
defined only if `Region` is instantiated with `Yes.defineDeallocate`
as the third template argument.
Params:
b = Block previously obtained by a call to `allocate` against this
allocator (`null` is allowed).
*/
bool deallocate(void[] b)
{
if (!_impl._current) return b is null;
return _impl.deallocate(b);
}
/**
Returns `Ternary.yes` if `b` is the result of a previous allocation,
`Ternary.no` otherwise.
*/
Ternary owns(const void[] b) pure nothrow @safe @nogc
{
if (!_impl._current) return Ternary.no;
return _impl.owns(b);
}
/**
Expands an allocated block in place. Expansion will succeed only if the
block is the last allocated.
*/
static if (hasMember!(typeof(_impl), "expand"))
bool expand(ref void[] b, size_t delta)
{
if (!_impl._current) lazyInit;
return _impl.expand(b, delta);
}
/**
Deallocates all memory allocated with this allocator.
*/
bool deallocateAll()
{
// We don't care to lazily init the region
return _impl.deallocateAll;
}
/**
Allocates all memory available with this allocator.
*/
void[] allocateAll()
{
if (!_impl._current) lazyInit;
return _impl.allocateAll;
}
/**
Nonstandard function that returns the bytes available for allocation.
*/
size_t available()
{
if (!_impl._current) lazyInit;
return _impl.available;
}
}
///
@system unittest
{
// 128KB region, allocated to x86's cache line
InSituRegion!(128 * 1024, 16) r1;
auto a1 = r1.allocate(101);
assert(a1.length == 101);
// 128KB region, with fallback to the garbage collector.
import std.experimental.allocator.building_blocks.fallback_allocator
: FallbackAllocator;
import std.experimental.allocator.building_blocks.free_list
: FreeList;
import std.experimental.allocator.building_blocks.bitmapped_block
: BitmappedBlock;
import std.experimental.allocator.gc_allocator : GCAllocator;
FallbackAllocator!(InSituRegion!(128 * 1024), GCAllocator) r2;
const a2 = r2.allocate(102);
assert(a2.length == 102);
// Reap with GC fallback.
InSituRegion!(128 * 1024, 8) tmp3;
FallbackAllocator!(BitmappedBlock!(64, 8), GCAllocator) r3;
r3.primary = BitmappedBlock!(64, 8)(cast(ubyte[]) (tmp3.allocateAll()));
const a3 = r3.allocate(103);
assert(a3.length == 103);
// Reap/GC with a freelist for small objects up to 16 bytes.
InSituRegion!(128 * 1024, 64) tmp4;
FreeList!(FallbackAllocator!(BitmappedBlock!(64, 64), GCAllocator), 0, 16) r4;
r4.parent.primary = BitmappedBlock!(64, 64)(cast(ubyte[]) (tmp4.allocateAll()));
const a4 = r4.allocate(104);
assert(a4.length == 104);
}
@system pure nothrow unittest
{
import std.typecons : Ternary;
InSituRegion!(4096, 1) r1;
auto a = r1.allocate(2001);
assert(a.length == 2001);
import std.conv : text;
assert(r1.available == 2095, text(r1.available));
// Ensure deallocate inherits from parent
assert((() nothrow @nogc => r1.deallocate(a))());
assert((() nothrow @nogc => r1.deallocateAll())());
InSituRegion!(65_536, 1024*4) r2;
assert(r2.available <= 65_536);
a = r2.allocate(2001);
assert(a.length == 2001);
const void[] buff = r2.allocate(42);
assert((() nothrow @safe @nogc => r2.owns(buff))() == Ternary.yes);
assert((() nothrow @nogc => r2.deallocateAll())());
}
version (CRuntime_Musl)
{
// sbrk and brk are disabled in Musl:
// https://git.musl-libc.org/cgit/musl/commit/?id=7a995fe706e519a4f55399776ef0df9596101f93
// https://git.musl-libc.org/cgit/musl/commit/?id=863d628d93ea341b6a32661a1654320ce69f6a07
}
version (DragonFlyBSD)
{
// sbrk is deprecated in favor of mmap (we could implement a mmap + MAP_NORESERVE + PROT_NONE version)
// brk has been removed
// https://www.dragonflydigest.com/2019/02/22/22586.html
// http://gitweb.dragonflybsd.org/dragonfly.git/commitdiff/dc676eaefa61b0f47bbea1c53eab86fd5ccd78c6
// http://gitweb.dragonflybsd.org/dragonfly.git/commitdiff/4b5665564ef37dc939a3a9ffbafaab9894c18885
// http://gitweb.dragonflybsd.org/dragonfly.git/commitdiff/8618d94a0e2ff8303ad93c123a3fa598c26a116e
}
else
{
private extern(C) void* sbrk(long) nothrow @nogc;
private extern(C) int brk(shared void*) nothrow @nogc;
}
/**
Allocator backed by $(D $(LINK2 https://en.wikipedia.org/wiki/Sbrk, sbrk))
for Posix systems. Due to the fact that `sbrk` is not thread-safe
$(HTTP lifecs.likai.org/2010/02/sbrk-is-not-thread-safe.html, by design),
`SbrkRegion` uses a mutex internally. This implies
that uncontrolled calls to `brk` and `sbrk` may affect the workings of $(D
SbrkRegion) adversely.
*/
version (CRuntime_Musl) {} else
version (DragonFlyBSD) {} else
version (Posix) struct SbrkRegion(uint minAlign = platformAlignment)
{
import core.sys.posix.pthread : pthread_mutex_init, pthread_mutex_destroy,
pthread_mutex_t, pthread_mutex_lock, pthread_mutex_unlock,
PTHREAD_MUTEX_INITIALIZER;
private static shared pthread_mutex_t sbrkMutex = PTHREAD_MUTEX_INITIALIZER;
import std.typecons : Ternary;
static assert(minAlign.isGoodStaticAlignment);
static assert(size_t.sizeof == (void*).sizeof);
private shared void* _brkInitial, _brkCurrent;
/**
Instance shared by all callers.
*/
static shared SbrkRegion instance;
/**
Standard allocator primitives.
*/
enum uint alignment = minAlign;
/**
Rounds the given size to a multiple of thew `alignment`
*/
size_t goodAllocSize(size_t n) shared const pure nothrow @safe @nogc
{
return n.roundUpToMultipleOf(alignment);
}
/// Ditto
void[] allocate(size_t bytes) shared @trusted nothrow @nogc
{
// Take alignment rounding into account
const rounded = goodAllocSize(bytes);
pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0);
scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0
|| assert(0);
// Assume sbrk returns the old break. Most online documentation confirms
// that, except for http://www.inf.udec.cl/~leo/Malloc_tutorial.pdf,
// which claims the returned value is not portable.
auto p = sbrk(rounded);
if (p == cast(void*) -1)
{
return null;
}
if (!_brkInitial)
{
_brkInitial = cast(shared) p;
assert(cast(size_t) _brkInitial % minAlign == 0,
"Too large alignment chosen for " ~ typeof(this).stringof);
}
_brkCurrent = cast(shared) (p + rounded);
return p[0 .. bytes];
}
/// Ditto
void[] alignedAllocate(size_t bytes, uint a) shared @trusted nothrow @nogc
{
pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0);
scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0
|| assert(0);
if (!_brkInitial)
{
// This is one extra call, but it'll happen only once.
_brkInitial = cast(shared) sbrk(0);
assert(cast(size_t) _brkInitial % minAlign == 0,
"Too large alignment chosen for " ~ typeof(this).stringof);
(_brkInitial != cast(void*) -1) || assert(0);
_brkCurrent = _brkInitial;
}
immutable size_t delta = cast(shared void*) roundUpToMultipleOf(
cast(size_t) _brkCurrent, a) - _brkCurrent;
// Still must make sure the total size is aligned to the allocator's
// alignment.
immutable rounded = (bytes + delta).roundUpToMultipleOf(alignment);
auto p = sbrk(rounded);
if (p == cast(void*) -1)
{
return null;
}
_brkCurrent = cast(shared) (p + rounded);
return p[delta .. delta + bytes];
}
/**
The `expand` method may only succeed if the argument is the last block
allocated. In that case, `expand` attempts to push the break pointer to
the right.
*/
bool expand(ref void[] b, size_t delta) shared nothrow @trusted @nogc
{
if (b is null || delta == 0) return delta == 0;
assert(_brkInitial && _brkCurrent); // otherwise where did b come from?
pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0);
scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0
|| assert(0);
// Take alignment rounding into account
const rounded = goodAllocSize(b.length);
const slack = rounded - b.length;
if (delta <= slack)
{
b = b.ptr[0 .. b.length + delta];
return true;
}
if (_brkCurrent != b.ptr + rounded) return false;
// Great, can expand the last block
delta -= slack;
const roundedDelta = goodAllocSize(delta);
auto p = sbrk(roundedDelta);
if (p == cast(void*) -1)
{
return false;
}
_brkCurrent = cast(shared) (p + roundedDelta);
b = b.ptr[0 .. b.length + slack + delta];
return true;
}
/// Ditto
Ternary owns(const void[] b) shared pure nothrow @trusted @nogc
{
// No need to lock here.
assert(!_brkCurrent || !b || &b[0] + b.length <= _brkCurrent);
return Ternary(_brkInitial && b && (&b[0] >= _brkInitial));
}
/**
The `deallocate` method only works (and returns `true`) on systems
that support reducing the break address (i.e. accept calls to `sbrk`
with negative offsets). OSX does not accept such. In addition the argument
must be the last block allocated.
*/
bool deallocate(void[] b) shared nothrow @nogc
{
// Take alignment rounding into account
const rounded = goodAllocSize(b.length);
pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0);
scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0
|| assert(0);
if (_brkCurrent != b.ptr + rounded) return false;
assert(b.ptr >= _brkInitial);
if (sbrk(-rounded) == cast(void*) -1)
return false;
_brkCurrent = cast(shared) b.ptr;
return true;
}
/**
The `deallocateAll` method only works (and returns `true`) on systems
that support reducing the break address (i.e. accept calls to `sbrk`
with negative offsets). OSX does not accept such.
*/
nothrow @nogc
bool deallocateAll() shared
{
pthread_mutex_lock(cast(pthread_mutex_t*) &sbrkMutex) == 0 || assert(0);
scope(exit) pthread_mutex_unlock(cast(pthread_mutex_t*) &sbrkMutex) == 0
|| assert(0);
return !_brkInitial || brk(_brkInitial) == 0;
}
/// Standard allocator API.
Ternary empty() shared pure nothrow @safe @nogc
{
// Also works when they're both null.
return Ternary(_brkCurrent == _brkInitial);
}
}
version (CRuntime_Musl) {} else
version (DragonFlyBSD) {} else
version (Posix) @system nothrow @nogc unittest
{
// Let's test the assumption that sbrk(n) returns the old address
const p1 = sbrk(0);
const p2 = sbrk(4096);
assert(p1 == p2);
const p3 = sbrk(0);
assert(p3 == p2 + 4096);
// Try to reset brk, but don't make a fuss if it doesn't work
sbrk(-4096);
}
version (CRuntime_Musl) {} else
version (DragonFlyBSD) {} else
version (Posix) @system nothrow @nogc unittest
{
import std.typecons : Ternary;
import std.algorithm.comparison : min;
alias alloc = SbrkRegion!(min(8, platformAlignment)).instance;
assert((() nothrow @safe @nogc => alloc.empty)() == Ternary.yes);
auto a = alloc.alignedAllocate(2001, 4096);
assert(a.length == 2001);
assert((() nothrow @safe @nogc => alloc.empty)() == Ternary.no);
auto oldBrkCurr = alloc._brkCurrent;
auto b = alloc.allocate(2001);
assert(b.length == 2001);
assert((() nothrow @safe @nogc => alloc.expand(b, 0))());
assert(b.length == 2001);
// Expand with a small size to fit the rounded slack due to alignment
assert((() nothrow @safe @nogc => alloc.expand(b, 1))());
assert(b.length == 2002);
// Exceed the rounded slack due to alignment
assert((() nothrow @safe @nogc => alloc.expand(b, 10))());
assert(b.length == 2012);
assert((() nothrow @safe @nogc => alloc.owns(a))() == Ternary.yes);
assert((() nothrow @safe @nogc => alloc.owns(b))() == Ternary.yes);
// reducing the brk does not work on OSX
version (Darwin) {} else
{
assert((() nothrow @nogc => alloc.deallocate(b))());
// Check that expand and deallocate work well
assert(oldBrkCurr == alloc._brkCurrent);
assert((() nothrow @nogc => alloc.deallocate(a))());
assert((() nothrow @nogc => alloc.deallocateAll())());
}
const void[] c = alloc.allocate(2001);
assert(c.length == 2001);
assert((() nothrow @safe @nogc => alloc.owns(c))() == Ternary.yes);
assert((() nothrow @safe @nogc => alloc.owns(null))() == Ternary.no);
}
/**
The threadsafe version of the `Region` allocator.
Allocations and deallocations are lock-free based using $(REF cas, core,atomic).
*/
shared struct SharedRegion(ParentAllocator = NullAllocator,
uint minAlign = platformAlignment,
Flag!"growDownwards" growDownwards = No.growDownwards)
{
static assert(minAlign.isGoodStaticAlignment);
static assert(ParentAllocator.alignment >= minAlign);
import std.traits : hasMember;
import std.typecons : Ternary;
// state
/**
The _parent allocator. Depending on whether `ParentAllocator` holds state
or not, this is a member variable or an alias for
`ParentAllocator.instance`.
*/
static if (stateSize!ParentAllocator)
{
ParentAllocator parent;
}
else
{
alias parent = ParentAllocator.instance;
}
private shared void* _current, _begin, _end;
private void* roundedBegin() const pure nothrow @trusted @nogc
{
return cast(void*) roundUpToAlignment(cast(size_t) _begin, alignment);
}
private void* roundedEnd() const pure nothrow @trusted @nogc
{
return cast(void*) roundDownToAlignment(cast(size_t) _end, alignment);
}
/**
Constructs a region backed by a user-provided store.
Assumes the memory was allocated with `ParentAllocator`
(if different from $(REF_ALTTEXT `NullAllocator`, NullAllocator, std,experimental,allocator,building_blocks,null_allocator)).
Params:
store = User-provided store backing up the region. If `ParentAllocator`
is different from $(REF_ALTTEXT `NullAllocator`, NullAllocator, std,experimental,allocator,building_blocks,null_allocator), memory is assumed to
have been allocated with `ParentAllocator`.
n = Bytes to allocate using `ParentAllocator`. This constructor is only
defined If `ParentAllocator` is different from $(REF_ALTTEXT `NullAllocator`, NullAllocator, std,experimental,allocator,building_blocks,null_allocator). If
`parent.allocate(n)` returns `null`, the region will be initialized
as empty (correctly initialized but unable to allocate).
*/
this(ubyte[] store) pure nothrow @nogc
{
_begin = cast(typeof(_begin)) store.ptr;
_end = cast(typeof(_end)) (store.ptr + store.length);
static if (growDownwards)
_current = cast(typeof(_current)) roundedEnd();
else
_current = cast(typeof(_current)) roundedBegin();
}
/// Ditto
static if (!is(ParentAllocator == NullAllocator))
this(size_t n)
{
this(cast(ubyte[]) (parent.allocate(n.roundUpToAlignment(alignment))));
}
/**
Rounds the given size to a multiple of the `alignment`
*/
size_t goodAllocSize(size_t n) const pure nothrow @safe @nogc
{
return n.roundUpToAlignment(alignment);
}
/**
Alignment offered.
*/
alias alignment = minAlign;
/**
Allocates `n` bytes of memory. The allocation is served by atomically incrementing
a pointer which keeps track of the current used space.
Params:
n = number of bytes to allocate
Returns:
A properly-aligned buffer of size `n`, or `null` if request could not
be satisfied.
*/
void[] allocate(size_t n) pure nothrow @trusted @nogc
{
import core.atomic : cas, atomicLoad;
if (n == 0) return null;
const rounded = goodAllocSize(n);
shared void* localCurrent, localNewCurrent;
static if (growDownwards)
{
do
{
localCurrent = atomicLoad(_current);
localNewCurrent = localCurrent - rounded;
if (localNewCurrent > localCurrent || localNewCurrent < _begin)
return null;
} while (!cas(&_current, localCurrent, localNewCurrent));
return cast(void[]) localNewCurrent[0 .. n];
}
else
{
do
{
localCurrent = atomicLoad(_current);
localNewCurrent = localCurrent + rounded;
if (localNewCurrent < localCurrent || localNewCurrent > _end)
return null;
} while (!cas(&_current, localCurrent, localNewCurrent));
return cast(void[]) localCurrent[0 .. n];
}
assert(0, "Unexpected error in SharedRegion.allocate");
}
/**
Deallocates `b`. This works only if `b` was obtained as the last call
to `allocate`; otherwise (i.e. another allocation has occurred since) it
does nothing.
Params:
b = Block previously obtained by a call to `allocate` against this
allocator (`null` is allowed).
*/
bool deallocate(void[] b) pure nothrow @nogc
{
import core.atomic : cas, atomicLoad;
const rounded = goodAllocSize(b.length);
shared void* localCurrent, localNewCurrent;
// The cas is done only once, because only the last allocation can be reverted
localCurrent = atomicLoad(_current);
static if (growDownwards)
{
localNewCurrent = localCurrent + rounded;
if (b.ptr == localCurrent)
return cas(&_current, localCurrent, localNewCurrent);
}
else
{
localNewCurrent = localCurrent - rounded;
if (b.ptr == localNewCurrent)
return cas(&_current, localCurrent, localNewCurrent);
}
return false;
}
/**
Deallocates all memory allocated by this region, which can be subsequently
reused for new allocations.
*/
bool deallocateAll() pure nothrow @nogc
{
import core.atomic : atomicStore;
static if (growDownwards)
{
atomicStore(_current, cast(shared(void*)) roundedEnd());
}
else
{
atomicStore(_current, cast(shared(void*)) roundedBegin());
}
return true;
}
/**
Allocates `n` bytes of memory aligned at alignment `a`.
Params:
n = number of bytes to allocate
a = alignment for the allocated block
Returns:
Either a suitable block of `n` bytes aligned at `a`, or `null`.
*/
void[] alignedAllocate(size_t n, uint a) pure nothrow @trusted @nogc
{
import core.atomic : cas, atomicLoad;
import std.math.traits : isPowerOf2;
assert(a.isPowerOf2);
if (n == 0) return null;
const rounded = goodAllocSize(n);
shared void* localCurrent, localNewCurrent;
static if (growDownwards)
{
do
{
localCurrent = atomicLoad(_current);
auto alignedCurrent = cast(void*)(localCurrent - rounded);
localNewCurrent = cast(shared(void*)) alignedCurrent.alignDownTo(a);
if (alignedCurrent > localCurrent || localNewCurrent > alignedCurrent ||
localNewCurrent < _begin)
return null;
} while (!cas(&_current, localCurrent, localNewCurrent));
return cast(void[]) localNewCurrent[0 .. n];
}
else
{
do
{
localCurrent = atomicLoad(_current);
auto alignedCurrent = alignUpTo(cast(void*) localCurrent, a);
localNewCurrent = cast(shared(void*)) (alignedCurrent + rounded);
if (alignedCurrent < localCurrent || localNewCurrent < alignedCurrent ||
localNewCurrent > _end)
return null;
} while (!cas(&_current, localCurrent, localNewCurrent));
return cast(void[]) (localNewCurrent - rounded)[0 .. n];
}
assert(0, "Unexpected error in SharedRegion.alignedAllocate");
}
/**
Queries whether `b` has been allocated with this region.
Params:
b = Arbitrary block of memory (`null` is allowed; `owns(null)` returns
`false`).
Returns:
`true` if `b` has been allocated with this region, `false` otherwise.
*/
Ternary owns(const void[] b) const pure nothrow @trusted @nogc
{
return Ternary(b && (&b[0] >= _begin) && (&b[0] + b.length <= _end));
}
/**
Returns `Ternary.yes` if no memory has been allocated in this region,
`Ternary.no` otherwise. (Never returns `Ternary.unknown`.)
*/
Ternary empty() const pure nothrow @safe @nogc
{
import core.atomic : atomicLoad;
auto localCurrent = atomicLoad(_current);
static if (growDownwards)
return Ternary(localCurrent == roundedEnd());
else
return Ternary(localCurrent == roundedBegin());
}
/**
If `ParentAllocator` is not $(REF_ALTTEXT `NullAllocator`, NullAllocator, std,experimental,allocator,building_blocks,null_allocator) and defines `deallocate`,
the region defines a destructor that uses `ParentAllocator.deallocate` to free the
memory chunk.
*/
static if (!is(ParentAllocator == NullAllocator)
&& hasMember!(ParentAllocator, "deallocate"))
~this()
{
parent.deallocate(cast(void[]) _begin[0 .. _end - _begin]);
}
}
@system unittest
{
import std.experimental.allocator.mallocator : Mallocator;
static void testAlloc(Allocator)(ref Allocator a, bool growDownwards)
{
import core.thread : ThreadGroup;
import std.algorithm.sorting : sort;
import core.internal.spinlock : SpinLock;
SpinLock lock = SpinLock(SpinLock.Contention.brief);
enum numThreads = 100;
void[][numThreads] buf;
size_t count = 0;
void fun()
{
void[] b = a.allocate(63);
assert(b.length == 63);
lock.lock();
buf[count] = b;
count++;
lock.unlock();
}
auto tg = new ThreadGroup;
foreach (i; 0 .. numThreads)
{
tg.create(&fun);
}
tg.joinAll();
sort!((a, b) => a.ptr < b.ptr)(buf[0 .. numThreads]);
foreach (i; 0 .. numThreads - 1)
{
assert(buf[i].ptr + a.goodAllocSize(buf[i].length) == buf[i + 1].ptr);
}
assert(!a.deallocate(buf[1]));
foreach (i; 0 .. numThreads)
{
if (!growDownwards)
assert(a.deallocate(buf[numThreads - 1 - i]));
else
assert(a.deallocate(buf[i]));
}
assert(a.deallocateAll());
void[] b = a.allocate(63);
assert(b.length == 63);
assert(a.deallocate(b));
}
auto a1 = SharedRegion!(Mallocator, Mallocator.alignment,
Yes.growDownwards)(1024 * 64);
auto a2 = SharedRegion!(Mallocator, Mallocator.alignment,
No.growDownwards)(1024 * 64);
testAlloc(a1, true);
testAlloc(a2, false);
}
@system unittest
{
import std.experimental.allocator.mallocator : Mallocator;
static void testAlloc(Allocator)(ref Allocator a, bool growDownwards)
{
import core.thread : ThreadGroup;
import std.algorithm.sorting : sort;
import core.internal.spinlock : SpinLock;
SpinLock lock = SpinLock(SpinLock.Contention.brief);
enum numThreads = 100;
void[][2 * numThreads] buf;
size_t count = 0;
void fun()
{
void[] b = a.allocate(63);
assert(b.length == 63);
lock.lock();
buf[count] = b;
count++;
lock.unlock();
b = a.alignedAllocate(63, 32);
assert(b.length == 63);
assert(cast(size_t) b.ptr % 32 == 0);
lock.lock();
buf[count] = b;
count++;
lock.unlock();
}
auto tg = new ThreadGroup;
foreach (i; 0 .. numThreads)
{
tg.create(&fun);
}
tg.joinAll();
sort!((a, b) => a.ptr < b.ptr)(buf[0 .. 2 * numThreads]);
foreach (i; 0 .. 2 * numThreads - 1)
{
assert(buf[i].ptr + buf[i].length <= buf[i + 1].ptr);
}
assert(!a.deallocate(buf[1]));
assert(a.deallocateAll());
void[] b = a.allocate(13);
assert(b.length == 13);
assert(a.deallocate(b));
}
auto a1 = SharedRegion!(Mallocator, Mallocator.alignment,
Yes.growDownwards)(1024 * 64);
auto a2 = SharedRegion!(Mallocator, Mallocator.alignment,
No.growDownwards)(1024 * 64);
testAlloc(a1, true);
testAlloc(a2, false);
}
|