1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
|
// Written in the D programming language.
/**
Utility and ancillary artifacts of `std.experimental.allocator`. This module
shouldn't be used directly; its functionality will be migrated into more
appropriate parts of `std`.
Authors: $(HTTP erdani.com, Andrei Alexandrescu), Timon Gehr (`Ternary`)
Source: $(PHOBOSSRC std/experimental/allocator/common.d)
*/
module std.experimental.allocator.common;
import std.algorithm.comparison, std.traits;
/**
Returns the size in bytes of the state that needs to be allocated to hold an
object of type `T`. `stateSize!T` is zero for `struct`s that are not
nested and have no nonstatic member variables.
*/
template stateSize(T)
{
static if (is(T == class) || is(T == interface))
enum stateSize = __traits(classInstanceSize, T);
else static if (is(T == struct) || is(T == union))
enum stateSize = Fields!T.length || isNested!T ? T.sizeof : 0;
else static if (is(T == void))
enum size_t stateSize = 0;
else
enum stateSize = T.sizeof;
}
@safe @nogc nothrow pure
unittest
{
static assert(stateSize!void == 0);
struct A {}
static assert(stateSize!A == 0);
struct B { int x; }
static assert(stateSize!B == 4);
interface I1 {}
//static assert(stateSize!I1 == 2 * size_t.sizeof);
class C1 {}
static assert(stateSize!C1 == 3 * size_t.sizeof);
class C2 { char c; }
static assert(stateSize!C2 == 4 * size_t.sizeof);
static class C3 { char c; }
static assert(stateSize!C3 == 2 * size_t.sizeof + char.sizeof);
}
/**
Returns `true` if the `Allocator` has the alignment known at compile time;
otherwise it returns `false`.
*/
template hasStaticallyKnownAlignment(Allocator)
{
enum hasStaticallyKnownAlignment = __traits(compiles,
{enum x = Allocator.alignment;});
}
/**
`chooseAtRuntime` is a compile-time constant of type `size_t` that several
parameterized structures in this module recognize to mean deferral to runtime of
the exact value. For example, $(D BitmappedBlock!(Allocator, 4096)) (described in
detail below) defines a block allocator with block size of 4096 bytes, whereas
$(D BitmappedBlock!(Allocator, chooseAtRuntime)) defines a block allocator that has a
field storing the block size, initialized by the user.
*/
enum chooseAtRuntime = size_t.max - 1;
/**
`unbounded` is a compile-time constant of type `size_t` that several
parameterized structures in this module recognize to mean "infinite" bounds for
the parameter. For example, `Freelist` (described in detail below) accepts a
`maxNodes` parameter limiting the number of freelist items. If `unbounded`
is passed for `maxNodes`, then there is no limit and no checking for the
number of nodes.
*/
enum unbounded = size_t.max;
/**
The alignment that is guaranteed to accommodate any D object allocation on the
current platform.
*/
enum uint platformAlignment = std.algorithm.comparison.max(double.alignof, real.alignof);
/**
The default good size allocation is deduced as `n` rounded up to the
allocator's alignment.
*/
size_t goodAllocSize(A)(auto ref A a, size_t n)
{
return n.roundUpToMultipleOf(a.alignment);
}
/*
Returns s rounded up to a multiple of base.
*/
@safe @nogc nothrow pure
package size_t roundUpToMultipleOf(size_t s, uint base)
{
assert(base);
auto rem = s % base;
return rem ? s + base - rem : s;
}
@safe @nogc nothrow pure
unittest
{
assert(10.roundUpToMultipleOf(11) == 11);
assert(11.roundUpToMultipleOf(11) == 11);
assert(12.roundUpToMultipleOf(11) == 22);
assert(118.roundUpToMultipleOf(11) == 121);
}
/*
Returns `n` rounded up to a multiple of alignment, which must be a power of 2.
*/
@safe @nogc nothrow pure
package size_t roundUpToAlignment(size_t n, uint alignment)
{
import std.math.traits : isPowerOf2;
assert(alignment.isPowerOf2);
immutable uint slack = cast(uint) n & (alignment - 1);
const result = slack
? n + alignment - slack
: n;
assert(result >= n);
return result;
}
@safe @nogc nothrow pure
unittest
{
assert(10.roundUpToAlignment(4) == 12);
assert(11.roundUpToAlignment(2) == 12);
assert(12.roundUpToAlignment(8) == 16);
assert(118.roundUpToAlignment(64) == 128);
}
/*
Returns `n` rounded down to a multiple of alignment, which must be a power of 2.
*/
@safe @nogc nothrow pure
package size_t roundDownToAlignment(size_t n, uint alignment)
{
import std.math.traits : isPowerOf2;
assert(alignment.isPowerOf2);
return n & ~size_t(alignment - 1);
}
@safe @nogc nothrow pure
unittest
{
assert(10.roundDownToAlignment(4) == 8);
assert(11.roundDownToAlignment(2) == 10);
assert(12.roundDownToAlignment(8) == 8);
assert(63.roundDownToAlignment(64) == 0);
}
/*
Advances the beginning of `b` to start at alignment `a`. The resulting buffer
may therefore be shorter. Returns the adjusted buffer, or null if obtaining a
non-empty buffer is impossible.
*/
@nogc nothrow pure
package void[] roundUpToAlignment(void[] b, uint a)
{
auto e = b.ptr + b.length;
auto p = cast(void*) roundUpToAlignment(cast(size_t) b.ptr, a);
if (e <= p) return null;
return p[0 .. e - p];
}
@nogc nothrow pure
@system unittest
{
void[] empty;
assert(roundUpToAlignment(empty, 4) == null);
char[128] buf;
// At least one pointer inside buf is 128-aligned
assert(roundUpToAlignment(buf, 128) !is null);
}
/*
Like `a / b` but rounds the result up, not down.
*/
@safe @nogc nothrow pure
package size_t divideRoundUp(size_t a, size_t b)
{
assert(b);
return (a + b - 1) / b;
}
/*
Returns `s` rounded up to a multiple of `base`.
*/
@nogc nothrow pure
package void[] roundStartToMultipleOf(void[] s, uint base)
{
assert(base);
auto p = cast(void*) roundUpToMultipleOf(
cast(size_t) s.ptr, base);
auto end = s.ptr + s.length;
return p[0 .. end - p];
}
nothrow pure
@system unittest
{
void[] p;
assert(roundStartToMultipleOf(p, 16) is null);
p = new ulong[10];
assert(roundStartToMultipleOf(p, 16) is p);
}
/*
Returns `s` rounded up to the nearest power of 2.
*/
@safe @nogc nothrow pure
package size_t roundUpToPowerOf2(size_t s)
{
import std.meta : AliasSeq;
assert(s <= (size_t.max >> 1) + 1);
--s;
static if (size_t.sizeof == 4)
alias Shifts = AliasSeq!(1, 2, 4, 8, 16);
else
alias Shifts = AliasSeq!(1, 2, 4, 8, 16, 32);
foreach (i; Shifts)
{
s |= s >> i;
}
return s + 1;
}
@safe @nogc nothrow pure
unittest
{
assert(0.roundUpToPowerOf2 == 0);
assert(1.roundUpToPowerOf2 == 1);
assert(2.roundUpToPowerOf2 == 2);
assert(3.roundUpToPowerOf2 == 4);
assert(7.roundUpToPowerOf2 == 8);
assert(8.roundUpToPowerOf2 == 8);
assert(10.roundUpToPowerOf2 == 16);
assert(11.roundUpToPowerOf2 == 16);
assert(12.roundUpToPowerOf2 == 16);
assert(118.roundUpToPowerOf2 == 128);
assert((size_t.max >> 1).roundUpToPowerOf2 == (size_t.max >> 1) + 1);
assert(((size_t.max >> 1) + 1).roundUpToPowerOf2 == (size_t.max >> 1) + 1);
}
/*
Returns the number of trailing zeros of `x`.
*/
@safe @nogc nothrow pure
package uint trailingZeros(ulong x)
{
import core.bitop : bsf;
return x == 0 ? 64 : bsf(x);
}
@safe @nogc nothrow pure
unittest
{
assert(trailingZeros(0) == 64);
assert(trailingZeros(1) == 0);
assert(trailingZeros(2) == 1);
assert(trailingZeros(3) == 0);
assert(trailingZeros(4) == 2);
}
/*
Returns `true` if `ptr` is aligned at `alignment`.
*/
@nogc nothrow pure
package bool alignedAt(T)(T* ptr, uint alignment)
{
return cast(size_t) ptr % alignment == 0;
}
/*
Returns the effective alignment of `ptr`, i.e. the largest power of two that is
a divisor of `ptr`.
*/
@nogc nothrow pure
package size_t effectiveAlignment(void* ptr)
{
return (cast(size_t) 1) << trailingZeros(cast(size_t) ptr);
}
@nogc nothrow pure
@system unittest
{
int x;
assert(effectiveAlignment(&x) >= int.alignof);
const max = (cast(size_t) 1) << (size_t.sizeof * 8 - 1);
assert(effectiveAlignment(cast(void*) max) == max);
}
/*
Aligns a pointer down to a specified alignment. The resulting pointer is less
than or equal to the given pointer.
*/
@nogc nothrow pure
package void* alignDownTo(return scope void* ptr, uint alignment)
{
import std.math.traits : isPowerOf2;
assert(alignment.isPowerOf2);
return cast(void*) (cast(size_t) ptr & ~(alignment - 1UL));
}
/*
Aligns a pointer up to a specified alignment. The resulting pointer is greater
than or equal to the given pointer.
*/
@nogc nothrow pure
package void* alignUpTo(return scope void* ptr, uint alignment)
{
import std.math.traits : isPowerOf2;
assert(alignment.isPowerOf2);
immutable uint slack = cast(size_t) ptr & (alignment - 1U);
return slack ? ptr + alignment - slack : ptr;
}
@safe @nogc nothrow pure
package bool isGoodStaticAlignment(uint x)
{
import std.math.traits : isPowerOf2;
return x.isPowerOf2;
}
@safe @nogc nothrow pure
package bool isGoodDynamicAlignment(uint x)
{
import std.math.traits : isPowerOf2;
return x.isPowerOf2 && x >= (void*).sizeof;
}
/**
The default `reallocate` function first attempts to use `expand`. If $(D
Allocator.expand) is not defined or returns `false`, `reallocate`
allocates a new block of memory of appropriate size and copies data from the old
block to the new block. Finally, if `Allocator` defines `deallocate`, $(D
reallocate) uses it to free the old memory block.
`reallocate` does not attempt to use `Allocator.reallocate` even if
defined. This is deliberate so allocators may use it internally within their own
implementation of `reallocate`.
*/
bool reallocate(Allocator)(ref Allocator a, ref void[] b, size_t s)
{
if (b.length == s) return true;
static if (hasMember!(Allocator, "expand"))
{
if (b.length <= s && a.expand(b, s - b.length)) return true;
}
auto newB = a.allocate(s);
if (newB.length != s) return false;
if (newB.length <= b.length) newB[] = b[0 .. newB.length];
else newB[0 .. b.length] = b[];
static if (hasMember!(Allocator, "deallocate"))
a.deallocate(b);
b = newB;
return true;
}
/**
The default `alignedReallocate` function first attempts to use `expand`.
If `Allocator.expand` is not defined or returns `false`, $(D
alignedReallocate) allocates a new block of memory of appropriate size and
copies data from the old block to the new block. Finally, if `Allocator`
defines `deallocate`, `alignedReallocate` uses it to free the old memory
block.
`alignedReallocate` does not attempt to use `Allocator.reallocate` even if
defined. This is deliberate so allocators may use it internally within their own
implementation of `reallocate`.
*/
bool alignedReallocate(Allocator)(ref Allocator alloc,
ref void[] b, size_t s, uint a)
if (hasMember!(Allocator, "alignedAllocate"))
{
static if (hasMember!(Allocator, "expand"))
{
if (b.length <= s && b.ptr.alignedAt(a)
&& alloc.expand(b, s - b.length)) return true;
}
else
{
if (b.length == s && b.ptr.alignedAt(a)) return true;
}
auto newB = alloc.alignedAllocate(s, a);
if (newB.length != s) return false;
if (newB.length <= b.length) newB[] = b[0 .. newB.length];
else newB[0 .. b.length] = b[];
static if (hasMember!(Allocator, "deallocate"))
alloc.deallocate(b);
b = newB;
return true;
}
@system unittest
{
bool called = false;
struct DummyAllocator
{
void[] alignedAllocate(size_t size, uint alignment)
{
called = true;
return null;
}
}
struct DummyAllocatorExpand
{
void[] alignedAllocate(size_t size, uint alignment)
{
return null;
}
bool expand(ref void[] b, size_t length)
{
called = true;
return true;
}
}
char[128] buf;
uint alignment = 32;
auto alignedPtr = roundUpToMultipleOf(cast(size_t) buf.ptr, alignment);
auto diff = alignedPtr - cast(size_t) buf.ptr;
// Align the buffer to 'alignment'
void[] b = cast(void[]) (buf.ptr + diff)[0 .. buf.length - diff];
DummyAllocator a1;
// Ask for same length and alignment, should not call 'alignedAllocate'
assert(alignedReallocate(a1, b, b.length, alignment));
assert(!called);
// Ask for same length, different alignment
// should call 'alignedAllocate' if not aligned to new value
alignedReallocate(a1, b, b.length, alignment + 1);
assert(b.ptr.alignedAt(alignment + 1) || called);
called = false;
DummyAllocatorExpand a2;
// Ask for bigger length, same alignment, should call 'expand'
assert(alignedReallocate(a2, b, b.length + 1, alignment));
assert(called);
called = false;
// Ask for bigger length, different alignment
// should call 'alignedAllocate' if not aligned to new value
alignedReallocate(a2, b, b.length + 1, alignment + 1);
assert(b.ptr.alignedAt(alignment + 1) || !called);
}
/**
Forwards each of the methods in `funs` (if defined) to `member`.
*/
/*package*/ string forwardToMember(string member, string[] funs...)
{
string result = " import std.traits : hasMember, Parameters;\n";
foreach (fun; funs)
{
result ~= "
static if (hasMember!(typeof("~member~"), `"~fun~"`))
auto ref "~fun~"(Parameters!(typeof("~member~"."~fun~")) args)
{
return "~member~"."~fun~"(args);
}\n";
}
return result;
}
version (StdUnittest)
{
package void testAllocator(alias make)()
{
import std.conv : text;
import std.math.traits : isPowerOf2;
import std.stdio : writeln, stderr;
import std.typecons : Ternary;
alias A = typeof(make());
scope(failure) stderr.writeln("testAllocator failed for ", A.stringof);
auto a = make();
// Test alignment
static assert(A.alignment.isPowerOf2);
// Test goodAllocSize
assert(a.goodAllocSize(1) >= A.alignment,
text(a.goodAllocSize(1), " < ", A.alignment));
assert(a.goodAllocSize(11) >= 11.roundUpToMultipleOf(A.alignment));
assert(a.goodAllocSize(111) >= 111.roundUpToMultipleOf(A.alignment));
// Test allocate
assert(a.allocate(0) is null);
auto b1 = a.allocate(1);
assert(b1.length == 1);
auto b2 = a.allocate(2);
assert(b2.length == 2);
assert(b2.ptr + b2.length <= b1.ptr || b1.ptr + b1.length <= b2.ptr);
// Test allocateZeroed
static if (hasMember!(A, "allocateZeroed"))
{{
auto b3 = a.allocateZeroed(8);
if (b3 !is null)
{
assert(b3.length == 8);
foreach (e; cast(ubyte[]) b3)
assert(e == 0);
}
}}
// Test alignedAllocate
static if (hasMember!(A, "alignedAllocate"))
{{
auto b3 = a.alignedAllocate(1, 256);
assert(b3.length <= 1);
assert(b3.ptr.alignedAt(256));
assert(a.alignedReallocate(b3, 2, 512));
assert(b3.ptr.alignedAt(512));
static if (hasMember!(A, "alignedDeallocate"))
{
a.alignedDeallocate(b3);
}
}}
else
{
static assert(!hasMember!(A, "alignedDeallocate"));
// This seems to be a bug in the compiler:
//static assert(!hasMember!(A, "alignedReallocate"), A.stringof);
}
static if (hasMember!(A, "allocateAll"))
{{
auto aa = make();
if (aa.allocateAll().ptr)
{
// Can't get any more memory
assert(!aa.allocate(1).ptr);
}
auto ab = make();
const b4 = ab.allocateAll();
assert(b4.length);
// Can't get any more memory
assert(!ab.allocate(1).ptr);
}}
static if (hasMember!(A, "expand"))
{{
assert(a.expand(b1, 0));
auto len = b1.length;
if (a.expand(b1, 102))
{
assert(b1.length == len + 102, text(b1.length, " != ", len + 102));
}
auto aa = make();
void[] b5 = null;
assert(aa.expand(b5, 0));
assert(b5 is null);
assert(!aa.expand(b5, 1));
assert(b5.length == 0);
}}
void[] b6 = null;
assert(a.reallocate(b6, 0));
assert(b6.length == 0);
assert(a.reallocate(b6, 1));
assert(b6.length == 1, text(b6.length));
assert(a.reallocate(b6, 2));
assert(b6.length == 2);
// Test owns
static if (hasMember!(A, "owns"))
{{
assert(a.owns(null) == Ternary.no);
assert(a.owns(b1) == Ternary.yes);
assert(a.owns(b2) == Ternary.yes);
assert(a.owns(b6) == Ternary.yes);
}}
static if (hasMember!(A, "resolveInternalPointer"))
{{
void[] p;
assert(a.resolveInternalPointer(null, p) == Ternary.no);
Ternary r = a.resolveInternalPointer(b1.ptr, p);
assert(p.ptr is b1.ptr && p.length >= b1.length);
r = a.resolveInternalPointer(b1.ptr + b1.length / 2, p);
assert(p.ptr is b1.ptr && p.length >= b1.length);
r = a.resolveInternalPointer(b2.ptr, p);
assert(p.ptr is b2.ptr && p.length >= b2.length);
r = a.resolveInternalPointer(b2.ptr + b2.length / 2, p);
assert(p.ptr is b2.ptr && p.length >= b2.length);
r = a.resolveInternalPointer(b6.ptr, p);
assert(p.ptr is b6.ptr && p.length >= b6.length);
r = a.resolveInternalPointer(b6.ptr + b6.length / 2, p);
assert(p.ptr is b6.ptr && p.length >= b6.length);
static int[10] b7 = [ 1, 2, 3 ];
assert(a.resolveInternalPointer(b7.ptr, p) == Ternary.no);
assert(a.resolveInternalPointer(b7.ptr + b7.length / 2, p) == Ternary.no);
assert(a.resolveInternalPointer(b7.ptr + b7.length, p) == Ternary.no);
int[3] b8 = [ 1, 2, 3 ];
assert(a.resolveInternalPointer(b8.ptr, p) == Ternary.no);
assert(a.resolveInternalPointer(b8.ptr + b8.length / 2, p) == Ternary.no);
assert(a.resolveInternalPointer(b8.ptr + b8.length, p) == Ternary.no);
}}
}
package void testAllocatorObject(RCAllocInterface)(RCAllocInterface a)
{
// this used to be a template constraint, but moving it inside prevents
// unnecessary import of std.experimental.allocator
import std.experimental.allocator : RCIAllocator, RCISharedAllocator;
static assert(is(RCAllocInterface == RCIAllocator)
|| is (RCAllocInterface == RCISharedAllocator));
import std.conv : text;
import std.math.traits : isPowerOf2;
import std.stdio : writeln, stderr;
import std.typecons : Ternary;
scope(failure) stderr.writeln("testAllocatorObject failed for ",
RCAllocInterface.stringof);
assert(!a.isNull);
// Test alignment
assert(a.alignment.isPowerOf2);
// Test goodAllocSize
assert(a.goodAllocSize(1) >= a.alignment,
text(a.goodAllocSize(1), " < ", a.alignment));
assert(a.goodAllocSize(11) >= 11.roundUpToMultipleOf(a.alignment));
assert(a.goodAllocSize(111) >= 111.roundUpToMultipleOf(a.alignment));
// Test empty
assert(a.empty != Ternary.no);
// Test allocate
assert(a.allocate(0) is null);
auto b1 = a.allocate(1);
assert(b1.length == 1);
auto b2 = a.allocate(2);
assert(b2.length == 2);
assert(b2.ptr + b2.length <= b1.ptr || b1.ptr + b1.length <= b2.ptr);
// Test alignedAllocate
{
// If not implemented it will return null, so those should pass
auto b3 = a.alignedAllocate(1, 256);
assert(b3.length <= 1);
assert(b3.ptr.alignedAt(256));
if (a.alignedReallocate(b3, 1, 256))
{
// If it is false, then the wrapped allocator did not implement
// this
assert(a.alignedReallocate(b3, 2, 512));
assert(b3.ptr.alignedAt(512));
}
}
// Test allocateAll
{
auto aa = a.allocateAll();
if (aa.ptr)
{
// Can't get any more memory
assert(!a.allocate(1).ptr);
a.deallocate(aa);
}
const b4 = a.allocateAll();
if (b4.ptr)
{
// Can't get any more memory
assert(!a.allocate(1).ptr);
}
}
// Test expand
{
assert(a.expand(b1, 0));
auto len = b1.length;
if (a.expand(b1, 102))
{
assert(b1.length == len + 102, text(b1.length, " != ", len + 102));
}
}
void[] b6 = null;
assert(a.reallocate(b6, 0));
assert(b6.length == 0);
assert(a.reallocate(b6, 1));
assert(b6.length == 1, text(b6.length));
assert(a.reallocate(b6, 2));
assert(b6.length == 2);
// Test owns
{
if (a.owns(null) != Ternary.unknown)
{
assert(a.owns(null) == Ternary.no);
assert(a.owns(b1) == Ternary.yes);
assert(a.owns(b2) == Ternary.yes);
assert(a.owns(b6) == Ternary.yes);
}
}
// Test resolveInternalPointer
{
void[] p;
if (a.resolveInternalPointer(null, p) != Ternary.unknown)
{
assert(a.resolveInternalPointer(null, p) == Ternary.no);
Ternary r = a.resolveInternalPointer(b1.ptr, p);
assert(p.ptr is b1.ptr && p.length >= b1.length);
r = a.resolveInternalPointer(b1.ptr + b1.length / 2, p);
assert(p.ptr is b1.ptr && p.length >= b1.length);
r = a.resolveInternalPointer(b2.ptr, p);
assert(p.ptr is b2.ptr && p.length >= b2.length);
r = a.resolveInternalPointer(b2.ptr + b2.length / 2, p);
assert(p.ptr is b2.ptr && p.length >= b2.length);
r = a.resolveInternalPointer(b6.ptr, p);
assert(p.ptr is b6.ptr && p.length >= b6.length);
r = a.resolveInternalPointer(b6.ptr + b6.length / 2, p);
assert(p.ptr is b6.ptr && p.length >= b6.length);
static int[10] b7 = [ 1, 2, 3 ];
assert(a.resolveInternalPointer(b7.ptr, p) == Ternary.no);
assert(a.resolveInternalPointer(b7.ptr + b7.length / 2, p) == Ternary.no);
assert(a.resolveInternalPointer(b7.ptr + b7.length, p) == Ternary.no);
int[3] b8 = [ 1, 2, 3 ];
assert(a.resolveInternalPointer(b8.ptr, p) == Ternary.no);
assert(a.resolveInternalPointer(b8.ptr + b8.length / 2, p) == Ternary.no);
assert(a.resolveInternalPointer(b8.ptr + b8.length, p) == Ternary.no);
}
}
// Test deallocateAll
{
if (a.deallocateAll())
{
if (a.empty != Ternary.unknown)
{
assert(a.empty == Ternary.yes);
}
}
}
}
}
|