1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
|
// Written in the D programming language.
/**
This is a submodule of $(MREF std, algorithm).
It contains generic mutation algorithms.
$(SCRIPT inhibitQuickIndex = 1;)
$(BOOKTABLE Cheat Sheet,
$(TR $(TH Function Name) $(TH Description))
$(T2 bringToFront,
If `a = [1, 2, 3]` and `b = [4, 5, 6, 7]`,
`bringToFront(a, b)` leaves `a = [4, 5, 6]` and
`b = [7, 1, 2, 3]`.)
$(T2 copy,
Copies a range to another. If
`a = [1, 2, 3]` and `b = new int[5]`, then `copy(a, b)`
leaves `b = [1, 2, 3, 0, 0]` and returns `b[3 .. $]`.)
$(T2 fill,
Fills a range with a pattern,
e.g., if `a = new int[3]`, then `fill(a, 4)`
leaves `a = [4, 4, 4]` and `fill(a, [3, 4])` leaves
`a = [3, 4, 3]`.)
$(T2 initializeAll,
If `a = [1.2, 3.4]`, then `initializeAll(a)` leaves
`a = [double.init, double.init]`.)
$(T2 move,
`move(a, b)` moves `a` into `b`. `move(a)` reads `a`
destructively when necessary.)
$(T2 moveEmplace,
Similar to `move` but assumes `target` is uninitialized.)
$(T2 moveAll,
Moves all elements from one range to another.)
$(T2 moveEmplaceAll,
Similar to `moveAll` but assumes all elements in `target` are uninitialized.)
$(T2 moveSome,
Moves as many elements as possible from one range to another.)
$(T2 moveEmplaceSome,
Similar to `moveSome` but assumes all elements in `target` are uninitialized.)
$(T2 remove,
Removes elements from a range in-place, and returns the shortened
range.)
$(T2 reverse,
If `a = [1, 2, 3]`, `reverse(a)` changes it to `[3, 2, 1]`.)
$(T2 strip,
Strips all leading and trailing elements equal to a value, or that
satisfy a predicate.
If `a = [1, 1, 0, 1, 1]`, then `strip(a, 1)` and
`strip!(e => e == 1)(a)` returns `[0]`.)
$(T2 stripLeft,
Strips all leading elements equal to a value, or that satisfy a
predicate. If `a = [1, 1, 0, 1, 1]`, then `stripLeft(a, 1)` and
`stripLeft!(e => e == 1)(a)` returns `[0, 1, 1]`.)
$(T2 stripRight,
Strips all trailing elements equal to a value, or that satisfy a
predicate.
If `a = [1, 1, 0, 1, 1]`, then `stripRight(a, 1)` and
`stripRight!(e => e == 1)(a)` returns `[1, 1, 0]`.)
$(T2 swap,
Swaps two values.)
$(T2 swapAt,
Swaps two values by indices.)
$(T2 swapRanges,
Swaps all elements of two ranges.)
$(T2 uninitializedFill,
Fills a range (assumed uninitialized) with a value.)
)
Copyright: Andrei Alexandrescu 2008-.
License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(HTTP erdani.com, Andrei Alexandrescu)
Source: $(PHOBOSSRC std/algorithm/mutation.d)
Macros:
T2=$(TR $(TDNW $(LREF $1)) $(TD $+))
*/
module std.algorithm.mutation;
import std.range.primitives;
import std.traits : isArray, isAssignable, isBlitAssignable, isNarrowString,
Unqual, isSomeChar, isMutable;
import std.meta : allSatisfy;
import std.typecons : tuple, Tuple;
// bringToFront
/**
`bringToFront` takes two ranges `front` and `back`, which may
be of different types. Considering the concatenation of `front` and
`back` one unified range, `bringToFront` rotates that unified
range such that all elements in `back` are brought to the beginning
of the unified range. The relative ordering of elements in `front`
and `back`, respectively, remains unchanged.
The `bringToFront` function treats strings at the code unit
level and it is not concerned with Unicode character integrity.
`bringToFront` is designed as a function for moving elements
in ranges, not as a string function.
Performs $(BIGOH max(front.length, back.length)) evaluations of $(D
swap).
The `bringToFront` function can rotate elements in one buffer left or right, swap
buffers of equal length, and even move elements across disjoint
buffers of different types and different lengths.
Preconditions:
Either `front` and `back` are disjoint, or `back` is
reachable from `front` and `front` is not reachable from $(D
back).
Params:
front = an $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
back = a $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)
Returns:
The number of elements brought to the front, i.e., the length of `back`.
See_Also:
$(LINK2 http://en.cppreference.com/w/cpp/algorithm/rotate, STL's `rotate`)
*/
size_t bringToFront(InputRange, ForwardRange)(InputRange front, ForwardRange back)
if (isInputRange!InputRange && isForwardRange!ForwardRange)
{
import std.string : representation;
static if (isNarrowString!InputRange)
{
auto frontW = representation(front);
}
else
{
alias frontW = front;
}
static if (isNarrowString!ForwardRange)
{
auto backW = representation(back);
}
else
{
alias backW = back;
}
return bringToFrontImpl(frontW, backW);
}
/**
The simplest use of `bringToFront` is for rotating elements in a
buffer. For example:
*/
@safe unittest
{
auto arr = [4, 5, 6, 7, 1, 2, 3];
auto p = bringToFront(arr[0 .. 4], arr[4 .. $]);
assert(p == arr.length - 4);
assert(arr == [ 1, 2, 3, 4, 5, 6, 7 ]);
}
/**
The `front` range may actually "step over" the `back`
range. This is very useful with forward ranges that cannot compute
comfortably right-bounded subranges like `arr[0 .. 4]` above. In
the example below, `r2` is a right subrange of `r1`.
*/
@safe unittest
{
import std.algorithm.comparison : equal;
import std.container : SList;
import std.range.primitives : popFrontN;
auto list = SList!(int)(4, 5, 6, 7, 1, 2, 3);
auto r1 = list[];
auto r2 = list[]; popFrontN(r2, 4);
assert(equal(r2, [ 1, 2, 3 ]));
bringToFront(r1, r2);
assert(equal(list[], [ 1, 2, 3, 4, 5, 6, 7 ]));
}
/**
Elements can be swapped across ranges of different types:
*/
@safe unittest
{
import std.algorithm.comparison : equal;
import std.container : SList;
auto list = SList!(int)(4, 5, 6, 7);
auto vec = [ 1, 2, 3 ];
bringToFront(list[], vec);
assert(equal(list[], [ 1, 2, 3, 4 ]));
assert(equal(vec, [ 5, 6, 7 ]));
}
/**
Unicode integrity is not preserved:
*/
@safe unittest
{
import std.string : representation;
auto ar = representation("a".dup);
auto br = representation("ç".dup);
bringToFront(ar, br);
auto a = cast(char[]) ar;
auto b = cast(char[]) br;
// Illegal UTF-8
assert(a == "\303");
// Illegal UTF-8
assert(b == "\247a");
}
private size_t bringToFrontImpl(InputRange, ForwardRange)(InputRange front, ForwardRange back)
if (isInputRange!InputRange && isForwardRange!ForwardRange)
{
import std.array : sameHead;
import std.range : take, Take;
enum bool sameHeadExists = is(typeof(front.sameHead(back)));
size_t result;
for (bool semidone; !front.empty && !back.empty; )
{
static if (sameHeadExists)
{
if (front.sameHead(back)) break; // shortcut
}
// Swap elements until front and/or back ends.
auto back0 = back.save;
size_t nswaps;
do
{
static if (sameHeadExists)
{
// Detect the stepping-over condition.
if (front.sameHead(back0)) back0 = back.save;
}
swapFront(front, back);
++nswaps;
front.popFront();
back.popFront();
}
while (!front.empty && !back.empty);
if (!semidone) result += nswaps;
// Now deal with the remaining elements.
if (back.empty)
{
if (front.empty) break;
// Right side was shorter, which means that we've brought
// all the back elements to the front.
semidone = true;
// Next pass: bringToFront(front, back0) to adjust the rest.
back = back0;
}
else
{
assert(front.empty, "Expected front to be empty");
// Left side was shorter. Let's step into the back.
static if (is(InputRange == Take!ForwardRange))
{
front = take(back0, nswaps);
}
else
{
immutable subresult = bringToFront(take(back0, nswaps),
back);
if (!semidone) result += subresult;
break; // done
}
}
}
return result;
}
@safe unittest
{
import std.algorithm.comparison : equal;
import std.conv : text;
import std.random : Random = Xorshift, uniform;
// a more elaborate test
{
auto rnd = Random(123_456_789);
int[] a = new int[uniform(100, 200, rnd)];
int[] b = new int[uniform(100, 200, rnd)];
foreach (ref e; a) e = uniform(-100, 100, rnd);
foreach (ref e; b) e = uniform(-100, 100, rnd);
int[] c = a ~ b;
// writeln("a= ", a);
// writeln("b= ", b);
auto n = bringToFront(c[0 .. a.length], c[a.length .. $]);
//writeln("c= ", c);
assert(n == b.length);
assert(c == b ~ a, text(c, "\n", a, "\n", b));
}
// different types, moveFront, no sameHead
{
static struct R(T)
{
T[] data;
size_t i;
@property
{
R save() { return this; }
bool empty() { return i >= data.length; }
T front() { return data[i]; }
T front(real e) { return data[i] = cast(T) e; }
}
void popFront() { ++i; }
}
auto a = R!int([1, 2, 3, 4, 5]);
auto b = R!real([6, 7, 8, 9]);
auto n = bringToFront(a, b);
assert(n == 4);
assert(a.data == [6, 7, 8, 9, 1]);
assert(b.data == [2, 3, 4, 5]);
}
// front steps over back
{
int[] arr, r1, r2;
// back is shorter
arr = [4, 5, 6, 7, 1, 2, 3];
r1 = arr;
r2 = arr[4 .. $];
bringToFront(r1, r2) == 3 || assert(0);
assert(equal(arr, [1, 2, 3, 4, 5, 6, 7]));
// front is shorter
arr = [5, 6, 7, 1, 2, 3, 4];
r1 = arr;
r2 = arr[3 .. $];
bringToFront(r1, r2) == 4 || assert(0);
assert(equal(arr, [1, 2, 3, 4, 5, 6, 7]));
}
// https://issues.dlang.org/show_bug.cgi?id=16959
auto arr = ['4', '5', '6', '7', '1', '2', '3'];
auto p = bringToFront(arr[0 .. 4], arr[4 .. $]);
assert(p == arr.length - 4);
assert(arr == ['1', '2', '3', '4', '5', '6', '7']);
}
// Tests if types are arrays and support slice assign.
private enum bool areCopyCompatibleArrays(T1, T2) =
isArray!T1 && isArray!T2 && is(typeof(T2.init[] = T1.init[]));
// copy
/**
Copies the content of `source` into `target` and returns the
remaining (unfilled) part of `target`.
Preconditions: `target` shall have enough room to accommodate
the entirety of `source`.
Params:
source = an $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
target = an output range
Returns:
The unfilled part of target
*/
TargetRange copy(SourceRange, TargetRange)(SourceRange source, TargetRange target)
if (isInputRange!SourceRange && isOutputRange!(TargetRange, ElementType!SourceRange))
{
static if (areCopyCompatibleArrays!(SourceRange, TargetRange))
{
const tlen = target.length;
const slen = source.length;
assert(tlen >= slen,
"Cannot copy a source range into a smaller target range.");
immutable overlaps = () @trusted {
return source.ptr < target.ptr + tlen &&
target.ptr < source.ptr + slen; }();
if (overlaps)
{
if (source.ptr < target.ptr)
{
foreach_reverse (idx; 0 .. slen)
target[idx] = source[idx];
}
else
{
foreach (idx; 0 .. slen)
target[idx] = source[idx];
}
return target[slen .. tlen];
}
else
{
// Array specialization. This uses optimized memory copying
// routines under the hood and is about 10-20x faster than the
// generic implementation.
target[0 .. slen] = source[];
return target[slen .. $];
}
}
else
{
// Specialize for 2 random access ranges.
// Typically 2 random access ranges are faster iterated by common
// index than by x.popFront(), y.popFront() pair
static if (isRandomAccessRange!SourceRange &&
hasLength!SourceRange &&
hasSlicing!TargetRange &&
isRandomAccessRange!TargetRange &&
hasLength!TargetRange)
{
auto len = source.length;
foreach (idx; 0 .. len)
target[idx] = source[idx];
return target[len .. target.length];
}
else
{
foreach (element; source)
put(target, element);
return target;
}
}
}
///
@safe unittest
{
int[] a = [ 1, 5 ];
int[] b = [ 9, 8 ];
int[] buf = new int[](a.length + b.length + 10);
auto rem = a.copy(buf); // copy a into buf
rem = b.copy(rem); // copy b into remainder of buf
assert(buf[0 .. a.length + b.length] == [1, 5, 9, 8]);
assert(rem.length == 10); // unused slots in buf
}
/**
As long as the target range elements support assignment from source
range elements, different types of ranges are accepted:
*/
@safe unittest
{
float[] src = [ 1.0f, 5 ];
double[] dest = new double[src.length];
src.copy(dest);
}
/**
To _copy at most `n` elements from a range, you may want to use
$(REF take, std,range):
*/
@safe unittest
{
import std.range;
int[] src = [ 1, 5, 8, 9, 10 ];
auto dest = new int[](3);
src.take(dest.length).copy(dest);
assert(dest == [ 1, 5, 8 ]);
}
/**
To _copy just those elements from a range that satisfy a predicate,
use $(LREF filter):
*/
@safe unittest
{
import std.algorithm.iteration : filter;
int[] src = [ 1, 5, 8, 9, 10, 1, 2, 0 ];
auto dest = new int[src.length];
auto rem = src
.filter!(a => (a & 1) == 1)
.copy(dest);
assert(dest[0 .. $ - rem.length] == [ 1, 5, 9, 1 ]);
}
/**
$(REF retro, std,range) can be used to achieve behavior similar to
$(LINK2 http://en.cppreference.com/w/cpp/algorithm/copy_backward, STL's `copy_backward`'):
*/
@safe unittest
{
import std.algorithm, std.range;
int[] src = [1, 2, 4];
int[] dest = [0, 0, 0, 0, 0];
src.retro.copy(dest.retro);
assert(dest == [0, 0, 1, 2, 4]);
}
// Test CTFE copy.
@safe unittest
{
enum c = copy([1,2,3], [4,5,6,7]);
assert(c == [7]);
}
@safe unittest
{
import std.algorithm.iteration : filter;
{
int[] a = [ 1, 5 ];
int[] b = [ 9, 8 ];
auto e = copy(filter!("a > 1")(a), b);
assert(b[0] == 5 && e.length == 1);
}
{
int[] a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
copy(a[5 .. 10], a[4 .. 9]);
assert(a[4 .. 9] == [6, 7, 8, 9, 10]);
}
// https://issues.dlang.org/show_bug.cgi?id=21724
{
int[] a = [1, 2, 3, 4];
copy(a[0 .. 2], a[1 .. 3]);
assert(a == [1, 1, 2, 4]);
}
// https://issues.dlang.org/show_bug.cgi?id=7898
{
enum v =
{
import std.algorithm;
int[] arr1 = [10, 20, 30, 40, 50];
int[] arr2 = arr1.dup;
copy(arr1, arr2);
return 35;
}();
assert(v == 35);
}
}
// https://issues.dlang.org/show_bug.cgi?id=13650
@safe unittest
{
import std.meta : AliasSeq;
static foreach (Char; AliasSeq!(char, wchar, dchar))
{{
Char[3] a1 = "123";
Char[6] a2 = "456789";
assert(copy(a1[], a2[]) is a2[3..$]);
assert(a1[] == "123");
assert(a2[] == "123789");
}}
}
// https://issues.dlang.org/show_bug.cgi?id=18804
@safe unittest
{
static struct NullSink
{
void put(E)(E) {}
}
int line = 0;
struct R
{
int front;
@property bool empty() { return line == 1; }
void popFront() { line = 1; }
}
R r;
copy(r, NullSink());
assert(line == 1);
}
/**
Assigns `value` to each element of input range `range`.
Alternatively, instead of using a single `value` to fill the `range`,
a `filler` $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)
can be provided. The length of `filler` and `range` do not need to match, but
`filler` must not be empty.
Params:
range = An
$(REF_ALTTEXT input range, isInputRange, std,range,primitives)
that exposes references to its elements and has assignable
elements
value = Assigned to each element of range
filler = A
$(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)
representing the _fill pattern.
Throws: If `filler` is empty.
See_Also:
$(LREF uninitializedFill)
$(LREF initializeAll)
*/
void fill(Range, Value)(auto ref Range range, auto ref Value value)
if ((isInputRange!Range && is(typeof(range.front = value)) ||
isSomeChar!Value && is(typeof(range[] = value))))
{
alias T = ElementType!Range;
static if (is(typeof(range[] = value)))
{
range[] = value;
}
else static if (is(typeof(range[] = T(value))))
{
range[] = T(value);
}
else
{
for ( ; !range.empty; range.popFront() )
{
range.front = value;
}
}
}
///
@safe unittest
{
int[] a = [ 1, 2, 3, 4 ];
fill(a, 5);
assert(a == [ 5, 5, 5, 5 ]);
}
// test fallback on mutable narrow strings
// https://issues.dlang.org/show_bug.cgi?id=16342
@safe unittest
{
char[] chars = ['a', 'b'];
fill(chars, 'c');
assert(chars == "cc");
char[2] chars2 = ['a', 'b'];
fill(chars2, 'c');
assert(chars2 == "cc");
wchar[] wchars = ['a', 'b'];
fill(wchars, wchar('c'));
assert(wchars == "cc"w);
dchar[] dchars = ['a', 'b'];
fill(dchars, dchar('c'));
assert(dchars == "cc"d);
}
@nogc @safe unittest
{
const(char)[] chars;
assert(chars.length == 0);
static assert(!__traits(compiles, fill(chars, 'c')));
wstring wchars;
assert(wchars.length == 0);
static assert(!__traits(compiles, fill(wchars, wchar('c'))));
}
@nogc @safe unittest
{
char[] chars;
fill(chars, 'c');
assert(chars == ""c);
}
@safe unittest
{
shared(char)[] chrs = ['r'];
fill(chrs, 'c');
assert(chrs == [shared(char)('c')]);
}
@nogc @safe unittest
{
struct Str(size_t len)
{
private char[len] _data;
void opIndexAssign(char value) @safe @nogc
{_data[] = value;}
}
Str!2 str;
str.fill(':');
assert(str._data == "::");
}
@safe unittest
{
char[] chars = ['a','b','c','d'];
chars[1 .. 3].fill(':');
assert(chars == "a::d");
}
// end https://issues.dlang.org/show_bug.cgi?id=16342
@safe unittest
{
import std.conv : text;
import std.internal.test.dummyrange;
int[] a = [ 1, 2, 3 ];
fill(a, 6);
assert(a == [ 6, 6, 6 ], text(a));
void fun0()
{
foreach (i; 0 .. 1000)
{
foreach (ref e; a) e = 6;
}
}
void fun1() { foreach (i; 0 .. 1000) fill(a, 6); }
// fill should accept InputRange
alias InputRange = DummyRange!(ReturnBy.Reference, Length.No, RangeType.Input);
enum filler = uint.max;
InputRange range;
fill(range, filler);
foreach (value; range.arr)
assert(value == filler);
}
@safe unittest
{
//ER8638_1 IS_NOT self assignable
static struct ER8638_1
{
void opAssign(int){}
}
//ER8638_1 IS self assignable
static struct ER8638_2
{
void opAssign(ER8638_2){}
void opAssign(int){}
}
auto er8638_1 = new ER8638_1[](10);
auto er8638_2 = new ER8638_2[](10);
er8638_1.fill(5); //generic case
er8638_2.fill(5); //opSlice(T.init) case
}
@safe unittest
{
{
int[] a = [1, 2, 3];
immutable(int) b = 0;
a.fill(b);
assert(a == [0, 0, 0]);
}
{
double[] a = [1, 2, 3];
immutable(int) b = 0;
a.fill(b);
assert(a == [0, 0, 0]);
}
}
/// ditto
void fill(InputRange, ForwardRange)(InputRange range, ForwardRange filler)
if (isInputRange!InputRange
&& (isForwardRange!ForwardRange
|| (isInputRange!ForwardRange && isInfinite!ForwardRange))
&& is(typeof(InputRange.init.front = ForwardRange.init.front)))
{
static if (isInfinite!ForwardRange)
{
//ForwardRange is infinite, no need for bounds checking or saving
static if (hasSlicing!ForwardRange && hasLength!InputRange
&& is(typeof(filler[0 .. range.length])))
{
copy(filler[0 .. range.length], range);
}
else
{
//manual feed
for ( ; !range.empty; range.popFront(), filler.popFront())
{
range.front = filler.front;
}
}
}
else
{
import std.exception : enforce;
enforce(!filler.empty, "Cannot fill range with an empty filler");
static if (hasLength!InputRange && hasLength!ForwardRange
&& is(typeof(range.length > filler.length)))
{
//Case we have access to length
immutable len = filler.length;
//Start by bulk copies
while (range.length > len)
{
range = copy(filler.save, range);
}
//and finally fill the partial range. No need to save here.
static if (hasSlicing!ForwardRange && is(typeof(filler[0 .. range.length])))
{
//use a quick copy
auto len2 = range.length;
range = copy(filler[0 .. len2], range);
}
else
{
//iterate. No need to check filler, it's length is longer than range's
for (; !range.empty; range.popFront(), filler.popFront())
{
range.front = filler.front;
}
}
}
else
{
//Most basic case.
auto bck = filler.save;
for (; !range.empty; range.popFront(), filler.popFront())
{
if (filler.empty) filler = bck.save;
range.front = filler.front;
}
}
}
}
///
@safe unittest
{
int[] a = [ 1, 2, 3, 4, 5 ];
int[] b = [ 8, 9 ];
fill(a, b);
assert(a == [ 8, 9, 8, 9, 8 ]);
}
@safe unittest
{
import std.exception : assertThrown;
import std.internal.test.dummyrange;
int[] a = [ 1, 2, 3, 4, 5 ];
int[] b = [1, 2];
fill(a, b);
assert(a == [ 1, 2, 1, 2, 1 ]);
// fill should accept InputRange
alias InputRange = DummyRange!(ReturnBy.Reference, Length.No, RangeType.Input);
InputRange range;
fill(range,[1,2]);
foreach (i,value;range.arr)
assert(value == (i%2 == 0?1:2));
//test with a input being a "reference forward" range
fill(a, new ReferenceForwardRange!int([8, 9]));
assert(a == [8, 9, 8, 9, 8]);
//test with a input being an "infinite input" range
fill(a, new ReferenceInfiniteInputRange!int());
assert(a == [0, 1, 2, 3, 4]);
//empty filler test
assertThrown(fill(a, a[$..$]));
}
/**
Initializes all elements of `range` with their `.init` value.
Assumes that the elements of the range are uninitialized.
This function is unavailable if `T` is a `struct` and `T.this()` is annotated
with `@disable`.
Params:
range = An
$(REF_ALTTEXT input range, isInputRange, std,range,primitives)
that exposes references to its elements and has assignable
elements
See_Also:
$(LREF fill)
$(LREF uninitializedFill)
*/
void initializeAll(Range)(Range range)
if (isInputRange!Range && hasLvalueElements!Range && hasAssignableElements!Range
&& __traits(compiles, { static ElementType!Range _; }))
{
import core.stdc.string : memset, memcpy;
import std.traits : hasElaborateAssign, isDynamicArray;
alias T = ElementType!Range;
static if (hasElaborateAssign!T)
{
import std.algorithm.internal : addressOf;
//Elaborate opAssign. Must go the memcpy/memset road.
static if (!__traits(isZeroInit, T))
{
for ( ; !range.empty ; range.popFront() )
{
import core.internal.lifetime : emplaceInitializer;
emplaceInitializer(range.front);
}
}
else
static if (isDynamicArray!Range)
memset(range.ptr, 0, range.length * T.sizeof);
else
for ( ; !range.empty ; range.popFront() )
memset(addressOf(range.front), 0, T.sizeof);
}
else
fill(range, T.init);
}
/// ditto
void initializeAll(Range)(Range range)
if (is(Range == char[]) || is(Range == wchar[]))
{
alias T = ElementEncodingType!Range;
range[] = T.init;
}
///
@system unittest
{
import core.stdc.stdlib : malloc, free;
struct S
{
int a = 10;
}
auto s = (cast(S*) malloc(5 * S.sizeof))[0 .. 5];
initializeAll(s);
assert(s == [S(10), S(10), S(10), S(10), S(10)]);
scope(exit) free(s.ptr);
}
@system unittest
{
import std.algorithm.iteration : filter;
import std.meta : AliasSeq;
import std.traits : hasElaborateAssign;
//Test strings:
//Must work on narrow strings.
//Must reject const
char[3] a = void;
a[].initializeAll();
assert(a[] == [char.init, char.init, char.init]);
string s;
assert(!__traits(compiles, s.initializeAll()));
assert(!__traits(compiles, s.initializeAll()));
assert(s.empty);
//Note: Cannot call uninitializedFill on narrow strings
enum e {e1, e2}
e[3] b1 = void;
b1[].initializeAll();
assert(b1[] == [e.e1, e.e1, e.e1]);
e[3] b2 = void;
b2[].uninitializedFill(e.e2);
assert(b2[] == [e.e2, e.e2, e.e2]);
static struct S1
{
int i;
}
static struct S2
{
int i = 1;
}
static struct S3
{
int i;
this(this){}
}
static struct S4
{
int i = 1;
this(this){}
}
static assert(!hasElaborateAssign!S1);
static assert(!hasElaborateAssign!S2);
static assert( hasElaborateAssign!S3);
static assert( hasElaborateAssign!S4);
assert(!typeid(S1).initializer().ptr);
assert( typeid(S2).initializer().ptr);
assert(!typeid(S3).initializer().ptr);
assert( typeid(S4).initializer().ptr);
static foreach (S; AliasSeq!(S1, S2, S3, S4))
{
//initializeAll
{
//Array
S[3] ss1 = void;
ss1[].initializeAll();
assert(ss1[] == [S.init, S.init, S.init]);
//Not array
S[3] ss2 = void;
auto sf = ss2[].filter!"true"();
sf.initializeAll();
assert(ss2[] == [S.init, S.init, S.init]);
}
//uninitializedFill
{
//Array
S[3] ss1 = void;
ss1[].uninitializedFill(S(2));
assert(ss1[] == [S(2), S(2), S(2)]);
//Not array
S[3] ss2 = void;
auto sf = ss2[].filter!"true"();
sf.uninitializedFill(S(2));
assert(ss2[] == [S(2), S(2), S(2)]);
}
}
}
// test that initializeAll works for arrays of static arrays of structs with
// elaborate assigns.
@system unittest
{
struct Int {
~this() {}
int x = 3;
}
Int[2] xs = [Int(1), Int(2)];
struct R {
bool done;
bool empty() { return done; }
ref Int[2] front() { return xs; }
void popFront() { done = true; }
}
initializeAll(R());
assert(xs[0].x == 3);
assert(xs[1].x == 3);
}
// https://issues.dlang.org/show_bug.cgi?id=22105
@system unittest
{
struct NoDefaultCtor
{
@disable this();
}
NoDefaultCtor[1] array = void;
static assert(!__traits(compiles, array[].initializeAll));
}
// move
/**
Moves `source` into `target`, via a destructive copy when necessary.
If `T` is a struct with a destructor or postblit defined, source is reset
to its `.init` value after it is moved into target, otherwise it is
left unchanged.
Preconditions:
If source has internal pointers that point to itself and doesn't define
opPostMove, it cannot be moved, and will trigger an assertion failure.
Params:
source = Data to copy.
target = Where to copy into. The destructor, if any, is invoked before the
copy is performed.
*/
void move(T)(ref T source, ref T target)
if (__traits(compiles, target = T.init))
{
moveImpl(target, source);
}
/// ditto
template move(T)
if (!__traits(compiles, imported!"std.traits".lvalueOf!T = T.init))
{
///
deprecated("Can't move into `target` as `" ~ T.stringof ~ "` can't be assigned")
void move(ref T source, ref T target) => moveImpl(target, source);
}
/// For non-struct types, `move` just performs `target = source`:
@safe unittest
{
Object obj1 = new Object;
Object obj2 = obj1;
Object obj3;
move(obj2, obj3);
assert(obj3 is obj1);
// obj2 unchanged
assert(obj2 is obj1);
}
///
pure nothrow @safe @nogc unittest
{
// Structs without destructors are simply copied
struct S1
{
int a = 1;
int b = 2;
}
S1 s11 = { 10, 11 };
S1 s12;
move(s11, s12);
assert(s12 == S1(10, 11));
assert(s11 == s12);
// But structs with destructors or postblits are reset to their .init value
// after copying to the target.
struct S2
{
int a = 1;
int b = 2;
~this() pure nothrow @safe @nogc { }
}
S2 s21 = { 3, 4 };
S2 s22;
move(s21, s22);
assert(s21 == S2(1, 2));
assert(s22 == S2(3, 4));
}
@safe unittest
{
import std.exception : assertCTFEable;
import std.traits;
assertCTFEable!((){
Object obj1 = new Object;
Object obj2 = obj1;
Object obj3;
move(obj2, obj3);
assert(obj3 is obj1);
static struct S1 { int a = 1, b = 2; }
S1 s11 = { 10, 11 };
S1 s12;
move(s11, s12);
assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11);
static struct S2 { int a = 1; int * b; }
S2 s21 = { 10, null };
s21.b = new int;
S2 s22;
move(s21, s22);
assert(s21 == s22);
});
// https://issues.dlang.org/show_bug.cgi?id=5661 test(1)
static struct S3
{
static struct X { int n = 0; ~this(){n = 0;} }
X x;
}
static assert(hasElaborateDestructor!S3);
S3 s31, s32;
s31.x.n = 1;
move(s31, s32);
assert(s31.x.n == 0);
assert(s32.x.n == 1);
// https://issues.dlang.org/show_bug.cgi?id=5661 test(2)
static struct S4
{
static struct X { int n = 0; this(this){n = 0;} }
X x;
}
static assert(hasElaborateCopyConstructor!S4);
S4 s41, s42;
s41.x.n = 1;
move(s41, s42);
assert(s41.x.n == 0);
assert(s42.x.n == 1);
// https://issues.dlang.org/show_bug.cgi?id=13990 test
class S5;
S5 s51;
S5 s52 = s51;
S5 s53;
move(s52, s53);
assert(s53 is s51);
}
@system unittest
{
static struct S
{
immutable int i;
~this() @safe {}
}
alias ol = __traits(getOverloads, std.algorithm.mutation, "move", true)[1];
static assert(__traits(isDeprecated, ol!S));
// uncomment after deprecation
//static assert(!__traits(compiles, { S a, b; move(a, b); }));
}
/// Ditto
T move(T)(return scope ref T source)
{
return moveImpl(source);
}
/// Non-copyable structs can still be moved:
pure nothrow @safe @nogc unittest
{
struct S
{
int a = 1;
@disable this(this);
~this() pure nothrow @safe @nogc {}
}
S s1;
s1.a = 2;
S s2 = move(s1);
assert(s1.a == 1);
assert(s2.a == 2);
}
/// `opPostMove` will be called if defined:
pure nothrow @safe @nogc unittest
{
struct S
{
int a;
void opPostMove(const ref S old)
{
assert(a == old.a);
a++;
}
}
S s1;
s1.a = 41;
S s2 = move(s1);
assert(s2.a == 42);
}
// https://issues.dlang.org/show_bug.cgi?id=20869
// `move` should propagate the attributes of `opPostMove`
@system unittest
{
static struct S
{
void opPostMove(const ref S old) nothrow @system
{
__gshared int i;
new int(i++); // Force @gc impure @system
}
}
alias T = void function() @system nothrow;
static assert(is(typeof({ S s; move(s); }) == T));
static assert(is(typeof({ S s; move(s, s); }) == T));
}
private void moveImpl(T)(ref scope T target, ref return scope T source)
{
import std.traits : hasElaborateDestructor;
static if (is(T == struct))
{
// Unsafe when compiling without -dip1000
if ((() @trusted => &source == &target)()) return;
// Destroy target before overwriting it
static if (hasElaborateDestructor!T) target.__xdtor();
}
// move and emplace source into target
moveEmplaceImpl(target, source);
}
private T moveImpl(T)(ref return scope T source)
{
// Properly infer safety from moveEmplaceImpl as the implementation below
// might void-initialize pointers in result and hence needs to be @trusted
if (false) moveEmplaceImpl(source, source);
return trustedMoveImpl(source);
}
private T trustedMoveImpl(T)(ref return scope T source) @trusted
{
T result = void;
moveEmplaceImpl(result, source);
return result;
}
@safe unittest
{
import std.exception : assertCTFEable;
import std.traits;
assertCTFEable!((){
Object obj1 = new Object;
Object obj2 = obj1;
Object obj3 = move(obj2);
assert(obj3 is obj1);
static struct S1 { int a = 1, b = 2; }
S1 s11 = { 10, 11 };
S1 s12 = move(s11);
assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11);
static struct S2 { int a = 1; int * b; }
S2 s21 = { 10, null };
s21.b = new int;
S2 s22 = move(s21);
assert(s21 == s22);
});
// https://issues.dlang.org/show_bug.cgi?id=5661 test(1)
static struct S3
{
static struct X { int n = 0; ~this(){n = 0;} }
X x;
}
static assert(hasElaborateDestructor!S3);
S3 s31;
s31.x.n = 1;
S3 s32 = move(s31);
assert(s31.x.n == 0);
assert(s32.x.n == 1);
// https://issues.dlang.org/show_bug.cgi?id=5661 test(2)
static struct S4
{
static struct X { int n = 0; this(this){n = 0;} }
X x;
}
static assert(hasElaborateCopyConstructor!S4);
S4 s41;
s41.x.n = 1;
S4 s42 = move(s41);
assert(s41.x.n == 0);
assert(s42.x.n == 1);
// https://issues.dlang.org/show_bug.cgi?id=13990 test
class S5;
S5 s51;
S5 s52 = s51;
S5 s53;
s53 = move(s52);
assert(s53 is s51);
}
@system unittest
{
static struct S { int n = 0; ~this() @system { n = 0; } }
S a, b;
static assert(!__traits(compiles, () @safe { move(a, b); }));
static assert(!__traits(compiles, () @safe { move(a); }));
a.n = 1;
() @trusted { move(a, b); }();
assert(a.n == 0);
a.n = 1;
() @trusted { move(a); }();
assert(a.n == 0);
}
// https://issues.dlang.org/show_bug.cgi?id=6217
@safe unittest
{
import std.algorithm.iteration : map;
auto x = map!"a"([1,2,3]);
x = move(x);
}
// https://issues.dlang.org/show_bug.cgi?id=8055
@safe unittest
{
static struct S
{
int x;
~this()
{
assert(x == 0);
}
}
S foo(S s)
{
return move(s);
}
S a;
a.x = 0;
auto b = foo(a);
assert(b.x == 0);
}
// https://issues.dlang.org/show_bug.cgi?id=8057
@system unittest
{
int n = 10;
struct S
{
int x;
~this()
{
// Access to enclosing scope
assert(n == 10);
}
}
S foo(S s)
{
// Move nested struct
return move(s);
}
S a;
a.x = 1;
auto b = foo(a);
assert(b.x == 1);
// Regression https://issues.dlang.org/show_bug.cgi?id=8171
static struct Array(T)
{
// nested struct has no member
struct Payload
{
~this() {}
}
}
Array!int.Payload x = void;
move(x);
move(x, x);
}
private void moveEmplaceImpl(T)(ref scope T target, ref return scope T source)
{
import core.stdc.string : memcpy, memset;
import std.traits : hasAliasing, hasElaborateAssign,
hasElaborateCopyConstructor, hasElaborateDestructor,
hasElaborateMove,
isAssignable, isStaticArray;
static if (!is(T == class) && hasAliasing!T) if (!__ctfe)
{
import std.exception : doesPointTo;
assert(!(doesPointTo(source, source) && !hasElaborateMove!T),
"Cannot move object of type " ~ T.stringof ~ " with internal pointer unless `opPostMove` is defined.");
}
static if (is(T == struct))
{
// Unsafe when compiling without -dip1000
assert((() @trusted => &source !is &target)(), "source and target must not be identical");
static if (hasElaborateAssign!T || !isAssignable!T)
() @trusted { memcpy(&target, &source, T.sizeof); }();
else
target = source;
static if (hasElaborateMove!T)
__move_post_blt(target, source);
// If the source defines a destructor or a postblit hook, we must obliterate the
// object in order to avoid double freeing and undue aliasing
static if (hasElaborateDestructor!T || hasElaborateCopyConstructor!T)
{
// If T is nested struct, keep original context pointer
static if (__traits(isNested, T))
enum sz = T.sizeof - (void*).sizeof;
else
enum sz = T.sizeof;
static if (__traits(isZeroInit, T))
() @trusted { memset(&source, 0, sz); }();
else
() @trusted { memcpy(&source, __traits(initSymbol, T).ptr, sz); }();
}
}
else static if (isStaticArray!T)
{
for (size_t i = 0; i < source.length; ++i)
move(source[i], target[i]);
}
else
{
// Primitive data (including pointers and arrays) or class -
// assignment works great
target = source;
}
}
/**
* Similar to $(LREF move) but assumes `target` is uninitialized. This
* is more efficient because `source` can be blitted over `target`
* without destroying or initializing it first.
*
* Params:
* source = value to be moved into target
* target = uninitialized value to be filled by source
*/
void moveEmplace(T)(ref T source, ref T target) pure @system
{
moveEmplaceImpl(target, source);
}
///
pure nothrow @nogc @system unittest
{
static struct Foo
{
pure nothrow @nogc:
this(int* ptr) { _ptr = ptr; }
~this() { if (_ptr) ++*_ptr; }
int* _ptr;
}
int val;
Foo foo1 = void; // uninitialized
auto foo2 = Foo(&val); // initialized
assert(foo2._ptr is &val);
// Using `move(foo2, foo1)` would have an undefined effect because it would destroy
// the uninitialized foo1.
// moveEmplace directly overwrites foo1 without destroying or initializing it first.
moveEmplace(foo2, foo1);
assert(foo1._ptr is &val);
assert(foo2._ptr is null);
assert(val == 0);
}
// https://issues.dlang.org/show_bug.cgi?id=18913
@safe unittest
{
static struct NoCopy
{
int payload;
~this() { }
@disable this(this);
}
static void f(NoCopy[2]) { }
NoCopy[2] ncarray = [ NoCopy(1), NoCopy(2) ];
static assert(!__traits(compiles, f(ncarray)));
f(move(ncarray));
}
// moveAll
/**
Calls `move(a, b)` for each element `a` in `src` and the corresponding
element `b` in `tgt`, in increasing order.
Preconditions:
`walkLength(src) <= walkLength(tgt)`.
This precondition will be asserted. If you cannot ensure there is enough room in
`tgt` to accommodate all of `src` use $(LREF moveSome) instead.
Params:
src = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
movable elements.
tgt = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
elements that elements from `src` can be moved into.
Returns: The leftover portion of `tgt` after all elements from `src` have
been moved.
*/
InputRange2 moveAll(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt)
if (isInputRange!InputRange1 && isInputRange!InputRange2
&& is(typeof(move(src.front, tgt.front))))
{
return moveAllImpl!move(src, tgt);
}
///
pure nothrow @safe @nogc unittest
{
int[3] a = [ 1, 2, 3 ];
int[5] b;
assert(moveAll(a[], b[]) is b[3 .. $]);
assert(a[] == b[0 .. 3]);
int[3] cmp = [ 1, 2, 3 ];
assert(a[] == cmp[]);
}
/**
* Similar to $(LREF moveAll) but assumes all elements in `tgt` are
* uninitialized. Uses $(LREF moveEmplace) to move elements from
* `src` over elements from `tgt`.
*/
InputRange2 moveEmplaceAll(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt) @system
if (isInputRange!InputRange1 && isInputRange!InputRange2
&& is(typeof(moveEmplace(src.front, tgt.front))))
{
return moveAllImpl!moveEmplace(src, tgt);
}
///
pure nothrow @nogc @system unittest
{
static struct Foo
{
~this() pure nothrow @nogc { if (_ptr) ++*_ptr; }
int* _ptr;
}
int[3] refs = [0, 1, 2];
Foo[3] src = [Foo(&refs[0]), Foo(&refs[1]), Foo(&refs[2])];
Foo[5] dst = void;
auto tail = moveEmplaceAll(src[], dst[]); // move 3 value from src over dst
assert(tail.length == 2); // returns remaining uninitialized values
initializeAll(tail);
import std.algorithm.searching : all;
assert(src[].all!(e => e._ptr is null));
assert(dst[0 .. 3].all!(e => e._ptr !is null));
}
@system unittest
{
struct InputRange
{
ref int front() { return data[0]; }
void popFront() { data.popFront; }
bool empty() { return data.empty; }
int[] data;
}
auto a = InputRange([ 1, 2, 3 ]);
auto b = InputRange(new int[5]);
moveAll(a, b);
assert(a.data == b.data[0 .. 3]);
assert(a.data == [ 1, 2, 3 ]);
}
private InputRange2 moveAllImpl(alias moveOp, InputRange1, InputRange2)(
ref InputRange1 src, ref InputRange2 tgt)
{
import std.exception : enforce;
static if (isRandomAccessRange!InputRange1 && hasLength!InputRange1 && hasLength!InputRange2
&& hasSlicing!InputRange2 && isRandomAccessRange!InputRange2)
{
auto toMove = src.length;
assert(toMove <= tgt.length, "Source buffer needs to be smaller or equal to the target buffer.");
foreach (idx; 0 .. toMove)
moveOp(src[idx], tgt[idx]);
return tgt[toMove .. tgt.length];
}
else
{
for (; !src.empty; src.popFront(), tgt.popFront())
{
assert(!tgt.empty, "Source buffer needs to be smaller or equal to the target buffer.");
moveOp(src.front, tgt.front);
}
return tgt;
}
}
// moveSome
/**
Calls `move(a, b)` for each element `a` in `src` and the corresponding
element `b` in `tgt`, in increasing order, stopping when either range has been
exhausted.
Params:
src = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
movable elements.
tgt = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
elements that elements from `src` can be moved into.
Returns: The leftover portions of the two ranges after one or the other of the
ranges have been exhausted.
*/
Tuple!(InputRange1, InputRange2) moveSome(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt)
if (isInputRange!InputRange1 && isInputRange!InputRange2
&& is(typeof(move(src.front, tgt.front))))
{
return moveSomeImpl!move(src, tgt);
}
///
pure nothrow @safe @nogc unittest
{
int[5] a = [ 1, 2, 3, 4, 5 ];
int[3] b;
assert(moveSome(a[], b[])[0] is a[3 .. $]);
assert(a[0 .. 3] == b);
assert(a == [ 1, 2, 3, 4, 5 ]);
}
/**
* Same as $(LREF moveSome) but assumes all elements in `tgt` are
* uninitialized. Uses $(LREF moveEmplace) to move elements from
* `src` over elements from `tgt`.
*/
Tuple!(InputRange1, InputRange2) moveEmplaceSome(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt) @system
if (isInputRange!InputRange1 && isInputRange!InputRange2
&& is(typeof(move(src.front, tgt.front))))
{
return moveSomeImpl!moveEmplace(src, tgt);
}
///
pure nothrow @nogc @system unittest
{
static struct Foo
{
~this() pure nothrow @nogc { if (_ptr) ++*_ptr; }
int* _ptr;
}
int[4] refs = [0, 1, 2, 3];
Foo[4] src = [Foo(&refs[0]), Foo(&refs[1]), Foo(&refs[2]), Foo(&refs[3])];
Foo[3] dst = void;
auto res = moveEmplaceSome(src[], dst[]);
assert(res.length == 2);
import std.algorithm.searching : all;
assert(src[0 .. 3].all!(e => e._ptr is null));
assert(src[3]._ptr !is null);
assert(dst[].all!(e => e._ptr !is null));
}
private Tuple!(InputRange1, InputRange2) moveSomeImpl(alias moveOp, InputRange1, InputRange2)(
ref InputRange1 src, ref InputRange2 tgt)
{
for (; !src.empty && !tgt.empty; src.popFront(), tgt.popFront())
moveOp(src.front, tgt.front);
return tuple(src, tgt);
}
// SwapStrategy
/**
Defines the swapping strategy for algorithms that need to swap
elements in a range (such as partition and sort). The strategy
concerns the swapping of elements that are not the core concern of the
algorithm. For example, consider an algorithm that sorts $(D [ "abc",
"b", "aBc" ]) according to `toUpper(a) < toUpper(b)`. That
algorithm might choose to swap the two equivalent strings `"abc"`
and `"aBc"`. That does not affect the sorting since both
`["abc", "aBc", "b" ]` and `[ "aBc", "abc", "b" ]` are valid
outcomes.
Some situations require that the algorithm must NOT ever change the
relative ordering of equivalent elements (in the example above, only
`[ "abc", "aBc", "b" ]` would be the correct result). Such
algorithms are called $(B stable). If the ordering algorithm may swap
equivalent elements discretionarily, the ordering is called $(B
unstable).
Yet another class of algorithms may choose an intermediate tradeoff by
being stable only on a well-defined subrange of the range. There is no
established terminology for such behavior; this library calls it $(B
semistable).
Generally, the `stable` ordering strategy may be more costly in
time and/or space than the other two because it imposes additional
constraints. Similarly, `semistable` may be costlier than $(D
unstable). As (semi-)stability is not needed very often, the ordering
algorithms in this module parameterized by `SwapStrategy` all
choose `SwapStrategy.unstable` as the default.
*/
enum SwapStrategy
{
/**
Allows freely swapping of elements as long as the output
satisfies the algorithm's requirements.
*/
unstable,
/**
In algorithms partitioning ranges in two, preserve relative
ordering of elements only to the left of the partition point.
*/
semistable,
/**
Preserve the relative ordering of elements to the largest
extent allowed by the algorithm's requirements.
*/
stable,
}
///
@safe unittest
{
int[] a = [0, 1, 2, 3];
assert(remove!(SwapStrategy.stable)(a, 1) == [0, 2, 3]);
a = [0, 1, 2, 3];
assert(remove!(SwapStrategy.unstable)(a, 1) == [0, 3, 2]);
}
///
@safe unittest
{
import std.algorithm.sorting : partition;
// Put stuff greater than 3 on the left
auto arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert(partition!(a => a > 3, SwapStrategy.stable)(arr) == [1, 2, 3]);
assert(arr == [4, 5, 6, 7, 8, 9, 10, 1, 2, 3]);
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert(partition!(a => a > 3, SwapStrategy.semistable)(arr) == [2, 3, 1]);
assert(arr == [4, 5, 6, 7, 8, 9, 10, 2, 3, 1]);
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert(partition!(a => a > 3, SwapStrategy.unstable)(arr) == [3, 2, 1]);
assert(arr == [10, 9, 8, 4, 5, 6, 7, 3, 2, 1]);
}
private template isValidIntegralTuple(T)
{
import std.traits : isIntegral;
import std.typecons : isTuple;
static if (isTuple!T)
{
enum isValidIntegralTuple = T.length == 2 &&
isIntegral!(typeof(T.init[0])) && isIntegral!(typeof(T.init[0]));
}
else
{
enum isValidIntegralTuple = isIntegral!T;
}
}
/**
Eliminates elements at given offsets from `range` and returns the shortened
range.
For example, here is how to remove a single element from an array:
$(RUNNABLE_EXAMPLE
----
import std.algorithm.mutation;
string[] a = [ "a", "b", "c", "d" ];
a = a.remove(1); // remove element at offset 1
assert(a == [ "a", "c", "d"]);
----
)
Note that `remove` does not change the length of the original range directly;
instead, it returns the shortened range. If its return value is not assigned to
the original range, the original range will retain its original length, though
its contents will have changed:
$(RUNNABLE_EXAMPLE
----
import std.algorithm.mutation;
int[] a = [ 3, 5, 7, 8 ];
assert(remove(a, 1) == [ 3, 7, 8 ]);
assert(a == [ 3, 7, 8, 8 ]);
----
)
The element at offset `1` has been removed and the rest of the elements have
shifted up to fill its place, however, the original array remains of the same
length. This is because all functions in `std.algorithm` only change $(I
content), not $(I topology). The value `8` is repeated because $(LREF move) was
invoked to rearrange elements, and on integers `move` simply copies the source
to the destination. To replace `a` with the effect of the removal, simply
assign the slice returned by `remove` to it, as shown in the first example.
$(H3 $(LNAME2 remove-multiple, Removing multiple elements))
Multiple indices can be passed into `remove`. In that case,
elements at the respective indices are all removed. The indices must
be passed in increasing order, otherwise an exception occurs.
$(RUNNABLE_EXAMPLE
----
import std.algorithm.mutation;
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove(a, 1, 3, 5) ==
[ 0, 2, 4, 6, 7, 8, 9, 10 ]);
----
)
Note that all indices refer to slots in the $(I original) array, not
in the array as it is being progressively shortened.
Tuples of two integral offsets can be supplied to remove a range of indices:
$(RUNNABLE_EXAMPLE
----
import std.algorithm.mutation, std.typecons;
int[] a = [ 3, 4, 5, 6, 7];
// remove elements at indices 1 and 2
assert(remove(a, tuple(1, 3)) == [ 3, 6, 7 ]);
----
)
The tuple passes in a range closed to the left and open to
the right (consistent with built-in slices), e.g. `tuple(1, 3)`
means indices `1` and `2` but not `3`.
Finally, any combination of integral offsets and tuples composed of two integral
offsets can be passed in:
$(RUNNABLE_EXAMPLE
----
import std.algorithm.mutation, std.typecons;
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
a = remove(a, 1, tuple(3, 5), 9);
assert(a == [ 0, 2, 5, 6, 7, 8, 10 ]);
----
)
In this case, the slots at positions 1, 3, 4, and 9 are removed from
the array.
$(H3 $(LNAME2 remove-moving, Moving strategy))
If the need is to remove some elements in the range but the order of
the remaining elements does not have to be preserved, you may want to
pass `SwapStrategy.unstable` to `remove`.
$(RUNNABLE_EXAMPLE
----
import std.algorithm.mutation;
int[] a = [ 0, 1, 2, 3 ];
assert(remove!(SwapStrategy.unstable)(a, 1) == [ 0, 3, 2 ]);
----
)
In the case above, the element at slot `1` is removed, but replaced
with the last element of the range. Taking advantage of the relaxation
of the stability requirement, `remove` moved elements from the end
of the array over the slots to be removed. This way there is less data
movement to be done which improves the execution time of the function.
`remove` works on bidirectional ranges that have assignable
lvalue elements. The moving strategy is (listed from fastest to slowest):
$(UL
$(LI If $(D s == SwapStrategy.unstable && isRandomAccessRange!Range &&
hasLength!Range && hasLvalueElements!Range), then elements are moved from the
end of the range into the slots to be filled. In this case, the absolute
minimum of moves is performed.)
$(LI Otherwise, if $(D s ==
SwapStrategy.unstable && isBidirectionalRange!Range && hasLength!Range
&& hasLvalueElements!Range), then elements are still moved from the
end of the range, but time is spent on advancing between slots by repeated
calls to `range.popFront`.)
$(LI Otherwise, elements are moved
incrementally towards the front of `range`; a given element is never
moved several times, but more elements are moved than in the previous
cases.)
)
Params:
s = a SwapStrategy to determine if the original order needs to be preserved
range = a $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,range,primitives)
with a length member
offset = which element(s) to remove
Returns:
A range containing elements of `range` with 1 or more elements removed.
*/
Range remove
(SwapStrategy s = SwapStrategy.stable, Range, Offset ...)
(Range range, Offset offset)
if (Offset.length >= 1 && allSatisfy!(isValidIntegralTuple, Offset))
{
// Activate this check when the deprecation of non-integral tuples is over
//import std.traits : isIntegral;
//import std.typecons : isTuple;
//static foreach (T; Offset)
//{
//static if (isTuple!T)
//{
//static assert(T.length == 2 &&
//isIntegral!(typeof(T.init[0])) && isIntegral!(typeof(T.init[0])),
//"Each offset must be an integral or a tuple of two integrals." ~
//"Use `arr.remove(pos1, pos2)` or `arr.remove(tuple(start, begin))`");
//}
//else
//{
//static assert(isIntegral!T,
//"Each offset must be an integral or a tuple of two integrals." ~
//"Use `arr.remove(pos1, pos2)` or `arr.remove(tuple(start, begin))`");
//}
//}
return removeImpl!s(range, offset);
}
/// ditto
deprecated("Use of non-integral tuples is deprecated. Use remove(tuple(start, end).")
Range remove
(SwapStrategy s = SwapStrategy.stable, Range, Offset ...)
(Range range, Offset offset)
if (Offset.length >= 1 && !allSatisfy!(isValidIntegralTuple, Offset))
{
return removeImpl!s(range, offset);
}
///
@safe pure unittest
{
import std.typecons : tuple;
auto a = [ 0, 1, 2, 3, 4, 5 ];
assert(remove!(SwapStrategy.stable)(a, 1) == [ 0, 2, 3, 4, 5 ]);
a = [ 0, 1, 2, 3, 4, 5 ];
assert(remove!(SwapStrategy.stable)(a, 1, 3) == [ 0, 2, 4, 5] );
a = [ 0, 1, 2, 3, 4, 5 ];
assert(remove!(SwapStrategy.stable)(a, 1, tuple(3, 6)) == [ 0, 2 ]);
a = [ 0, 1, 2, 3, 4, 5 ];
assert(remove!(SwapStrategy.unstable)(a, 1) == [0, 5, 2, 3, 4]);
a = [ 0, 1, 2, 3, 4, 5 ];
assert(remove!(SwapStrategy.unstable)(a, tuple(1, 4)) == [0, 5, 4]);
}
///
@safe pure unittest
{
import std.typecons : tuple;
// Delete an index
assert([4, 5, 6].remove(1) == [4, 6]);
// Delete multiple indices
assert([4, 5, 6, 7, 8].remove(1, 3) == [4, 6, 8]);
// Use an indices range
assert([4, 5, 6, 7, 8].remove(tuple(1, 3)) == [4, 7, 8]);
// Use an indices range and individual indices
assert([4, 5, 6, 7, 8].remove(0, tuple(1, 3), 4) == [7]);
}
/// `SwapStrategy.unstable` is faster, but doesn't guarantee the same order of the original array
@safe pure unittest
{
assert([5, 6, 7, 8].remove!(SwapStrategy.stable)(1) == [5, 7, 8]);
assert([5, 6, 7, 8].remove!(SwapStrategy.unstable)(1) == [5, 8, 7]);
}
private auto removeImpl(SwapStrategy s, Range, Offset...)(Range range, Offset offset)
{
static if (isNarrowString!Range)
{
static assert(isMutable!(typeof(range[0])),
"Elements must be mutable to remove");
static assert(s == SwapStrategy.stable,
"Only stable removing can be done for character arrays");
return removeStableString(range, offset);
}
else
{
static assert(isBidirectionalRange!Range,
"Range must be bidirectional");
static assert(hasLvalueElements!Range,
"Range must have Lvalue elements (see std.range.hasLvalueElements)");
static if (s == SwapStrategy.unstable)
{
static assert(hasLength!Range,
"Range must have `length` for unstable remove");
return removeUnstable(range, offset);
}
else static if (s == SwapStrategy.stable)
return removeStable(range, offset);
else
static assert(false,
"Only SwapStrategy.stable and SwapStrategy.unstable are supported");
}
}
@safe unittest
{
import std.exception : assertThrown;
import std.range;
// https://issues.dlang.org/show_bug.cgi?id=10173
int[] test = iota(0, 10).array();
assertThrown(remove!(SwapStrategy.stable)(test, tuple(2, 4), tuple(1, 3)));
assertThrown(remove!(SwapStrategy.unstable)(test, tuple(2, 4), tuple(1, 3)));
assertThrown(remove!(SwapStrategy.stable)(test, 2, 4, 1, 3));
assertThrown(remove!(SwapStrategy.unstable)(test, 2, 4, 1, 3));
}
@safe unittest
{
import std.range;
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1) ==
[ 0, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.unstable)(a, 0, 10) ==
[ 9, 1, 2, 3, 4, 5, 6, 7, 8 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.unstable)(a, 0, tuple(9, 11)) ==
[ 8, 1, 2, 3, 4, 5, 6, 7 ]);
// https://issues.dlang.org/show_bug.cgi?id=5224
a = [ 1, 2, 3, 4 ];
assert(remove!(SwapStrategy.unstable)(a, 2) ==
[ 1, 2, 4 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1, 5) ==
[ 0, 2, 3, 4, 6, 7, 8, 9, 10 ]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1, 3, 5)
== [ 0, 2, 4, 6, 7, 8, 9, 10]);
a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove!(SwapStrategy.stable)(a, 1, tuple(3, 5))
== [ 0, 2, 5, 6, 7, 8, 9, 10]);
a = iota(0, 10).array();
assert(remove!(SwapStrategy.unstable)(a, tuple(1, 4), tuple(6, 7))
== [0, 9, 8, 7, 4, 5]);
}
// https://issues.dlang.org/show_bug.cgi?id=11576
@safe unittest
{
auto arr = [1,2,3];
arr = arr.remove!(SwapStrategy.unstable)(2);
assert(arr == [1,2]);
}
// https://issues.dlang.org/show_bug.cgi?id=12889
@safe unittest
{
import std.range;
int[1][] arr = [[0], [1], [2], [3], [4], [5], [6]];
auto orig = arr.dup;
foreach (i; iota(arr.length))
{
assert(orig == arr.remove!(SwapStrategy.unstable)(tuple(i,i)));
assert(orig == arr.remove!(SwapStrategy.stable)(tuple(i,i)));
}
}
@safe unittest
{
char[] chars = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'];
remove(chars, 4);
assert(chars == ['a', 'b', 'c', 'd', 'f', 'g', 'h', 'h']);
char[] bigChars = "∑œ∆¬é˚˙ƒé∂ß¡¡".dup;
assert(remove(bigChars, tuple(4, 6), 8) == ("∑œ∆¬˙ƒ∂ß¡¡"));
import std.exception : assertThrown;
assertThrown(remove(bigChars.dup, 1, 0));
assertThrown(remove(bigChars.dup, tuple(4, 3)));
}
private Range removeUnstable(Range, Offset...)(Range range, Offset offset)
{
Tuple!(size_t, "pos", size_t, "len")[offset.length] blackouts;
foreach (i, v; offset)
{
static if (is(typeof(v[0]) : size_t) && is(typeof(v[1]) : size_t))
{
blackouts[i].pos = v[0];
blackouts[i].len = v[1] - v[0];
}
else
{
static assert(is(typeof(v) : size_t), typeof(v).stringof);
blackouts[i].pos = v;
blackouts[i].len = 1;
}
static if (i > 0)
{
import std.exception : enforce;
enforce(blackouts[i - 1].pos + blackouts[i - 1].len
<= blackouts[i].pos,
"remove(): incorrect ordering of elements to remove");
}
}
size_t left = 0, right = offset.length - 1;
auto tgt = range.save;
size_t tgtPos = 0;
while (left <= right)
{
// Look for a blackout on the right
if (blackouts[right].pos + blackouts[right].len >= range.length)
{
range.popBackExactly(blackouts[right].len);
// Since right is unsigned, we must check for this case, otherwise
// we might turn it into size_t.max and the loop condition will not
// fail when it should.
if (right > 0)
{
--right;
continue;
}
else
break;
}
// Advance to next blackout on the left
assert(blackouts[left].pos >= tgtPos, "Next blackout on the left shouldn't appear before the target.");
tgt.popFrontExactly(blackouts[left].pos - tgtPos);
tgtPos = blackouts[left].pos;
// Number of elements to the right of blackouts[right]
immutable tailLen = range.length - (blackouts[right].pos + blackouts[right].len);
size_t toMove = void;
if (tailLen < blackouts[left].len)
{
toMove = tailLen;
blackouts[left].pos += toMove;
blackouts[left].len -= toMove;
}
else
{
toMove = blackouts[left].len;
++left;
}
tgtPos += toMove;
foreach (i; 0 .. toMove)
{
move(range.back, tgt.front);
range.popBack();
tgt.popFront();
}
}
return range;
}
private Range removeStable(Range, Offset...)(Range range, Offset offset)
{
auto result = range;
auto src = range, tgt = range;
size_t pos;
foreach (pass, i; offset)
{
static if (is(typeof(i[0])) && is(typeof(i[1])))
{
auto from = i[0], delta = i[1] - i[0];
}
else
{
auto from = i;
enum delta = 1;
}
static if (pass > 0)
{
import std.exception : enforce;
enforce(pos <= from,
"remove(): incorrect ordering of elements to remove");
for (; pos < from; ++pos, src.popFront(), tgt.popFront())
{
move(src.front, tgt.front);
}
}
else
{
src.popFrontExactly(from);
tgt.popFrontExactly(from);
pos = from;
}
// now skip source to the "to" position
src.popFrontExactly(delta);
result.popBackExactly(delta);
pos += delta;
}
// leftover move
moveAll(src, tgt);
return result;
}
private Range removeStableString(Range, Offset...)(Range range, Offset offsets)
{
import std.utf : stride;
size_t charIdx = 0;
size_t dcharIdx = 0;
size_t charShift = 0;
void skipOne()
{
charIdx += stride(range[charIdx .. $]);
++dcharIdx;
}
void copyBackOne()
{
auto encodedLen = stride(range[charIdx .. $]);
foreach (j; charIdx .. charIdx + encodedLen)
range[j - charShift] = range[j];
charIdx += encodedLen;
++dcharIdx;
}
foreach (pass, i; offsets)
{
static if (is(typeof(i[0])) && is(typeof(i[1])))
{
auto from = i[0];
auto delta = i[1] - i[0];
}
else
{
auto from = i;
enum delta = 1;
}
import std.exception : enforce;
enforce(dcharIdx <= from && delta >= 0,
"remove(): incorrect ordering of elements to remove");
while (dcharIdx < from)
static if (pass == 0)
skipOne();
else
copyBackOne();
auto mark = charIdx;
while (dcharIdx < from + delta)
skipOne();
charShift += charIdx - mark;
}
foreach (i; charIdx .. range.length)
range[i - charShift] = range[i];
return range[0 .. $ - charShift];
}
// Use of dynamic arrays as offsets is too error-prone
// https://issues.dlang.org/show_bug.cgi?id=12086
// Activate these tests once the deprecation period of remove with non-integral tuples is over
@safe unittest
{
//static assert(!__traits(compiles, [0, 1, 2, 3, 4].remove([1, 3]) == [0, 3, 4]));
static assert(__traits(compiles, [0, 1, 2, 3, 4].remove(1, 3) == [0, 2, 4]));
//static assert(!__traits(compiles, assert([0, 1, 2, 3, 4].remove([1, 3, 4]) == [0, 3, 4])));
//static assert(!__traits(compiles, assert([0, 1, 2, 3, 4].remove(tuple(1, 3, 4)) == [0, 3, 4])));
import std.range : only;
//static assert(!__traits(compiles, assert([0, 1, 2, 3, 4].remove(only(1, 3)) == [0, 3, 4])));
static assert(__traits(compiles, assert([0, 1, 2, 3, 4].remove(1, 3) == [0, 2, 4])));
}
/**
Reduces the length of the
$(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,range,primitives) `range` by removing
elements that satisfy `pred`. If `s = SwapStrategy.unstable`,
elements are moved from the right end of the range over the elements
to eliminate. If `s = SwapStrategy.stable` (the default),
elements are moved progressively to front such that their relative
order is preserved. Returns the filtered range.
Params:
range = a bidirectional ranges with lvalue elements
or mutable character arrays
Returns:
the range with all of the elements where `pred` is `true`
removed
*/
Range remove(alias pred, SwapStrategy s = SwapStrategy.stable, Range)(Range range)
{
import std.functional : unaryFun;
alias pred_ = unaryFun!pred;
static if (isNarrowString!Range)
{
static assert(isMutable!(typeof(range[0])),
"Elements must be mutable to remove");
static assert(s == SwapStrategy.stable,
"Only stable removing can be done for character arrays");
return removePredString!pred_(range);
}
else
{
static assert(isBidirectionalRange!Range,
"Range must be bidirectional");
static assert(hasLvalueElements!Range,
"Range must have Lvalue elements (see std.range.hasLvalueElements)");
static if (s == SwapStrategy.unstable)
return removePredUnstable!pred_(range);
else static if (s == SwapStrategy.stable)
return removePredStable!pred_(range);
else
static assert(false,
"Only SwapStrategy.stable and SwapStrategy.unstable are supported");
}
}
///
@safe unittest
{
static immutable base = [1, 2, 3, 2, 4, 2, 5, 2];
int[] arr = base[].dup;
// using a string-based predicate
assert(remove!("a == 2")(arr) == [ 1, 3, 4, 5 ]);
// The original array contents have been modified,
// so we need to reset it to its original state.
// The length is unmodified however.
arr[] = base[];
// using a lambda predicate
assert(remove!(a => a == 2)(arr) == [ 1, 3, 4, 5 ]);
}
@safe unittest
{
int[] a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ];
assert(remove!("a == 2", SwapStrategy.unstable)(a) ==
[ 1, 6, 3, 5, 3, 4, 5 ]);
a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ];
assert(remove!("a == 2", SwapStrategy.stable)(a) ==
[ 1, 3, 3, 4, 5, 5, 6 ]);
}
@nogc @safe unittest
{
// @nogc test
static int[] arr = [0,1,2,3,4,5,6,7,8,9];
alias pred = e => e < 5;
auto r = arr[].remove!(SwapStrategy.unstable)(0);
r = r.remove!(SwapStrategy.stable)(0);
r = r.remove!(pred, SwapStrategy.unstable);
r = r.remove!(pred, SwapStrategy.stable);
}
@safe unittest
{
import std.algorithm.comparison : min;
import std.algorithm.searching : all, any;
import std.algorithm.sorting : isStrictlyMonotonic;
import std.array : array;
import std.meta : AliasSeq;
import std.range : iota, only;
import std.typecons : Tuple;
alias E = Tuple!(int, int);
alias S = Tuple!(E);
S[] soffsets;
foreach (start; 0 .. 5)
foreach (end; min(start+1,5) .. 5)
soffsets ~= S(E(start,end));
alias D = Tuple!(E, E);
D[] doffsets;
foreach (start1; 0 .. 10)
foreach (end1; min(start1+1,10) .. 10)
foreach (start2; end1 .. 10)
foreach (end2; min(start2+1,10) .. 10)
doffsets ~= D(E(start1,end1),E(start2,end2));
alias T = Tuple!(E, E, E);
T[] toffsets;
foreach (start1; 0 .. 15)
foreach (end1; min(start1+1,15) .. 15)
foreach (start2; end1 .. 15)
foreach (end2; min(start2+1,15) .. 15)
foreach (start3; end2 .. 15)
foreach (end3; min(start3+1,15) .. 15)
toffsets ~= T(E(start1,end1),E(start2,end2),E(start3,end3));
static void verify(O...)(int[] r, int len, int removed, bool stable, O offsets)
{
assert(r.length == len - removed);
assert(!stable || r.isStrictlyMonotonic);
assert(r.all!(e => all!(o => e < o[0] || e >= o[1])(offsets.only)));
}
static foreach (offsets; AliasSeq!(soffsets,doffsets,toffsets))
foreach (os; offsets)
{
int len = 5*os.length;
auto w = iota(0, len).array;
auto x = w.dup;
auto y = w.dup;
auto z = w.dup;
alias pred = e => any!(o => o[0] <= e && e < o[1])(only(os.expand));
w = w.remove!(SwapStrategy.unstable)(os.expand);
x = x.remove!(SwapStrategy.stable)(os.expand);
y = y.remove!(pred, SwapStrategy.unstable);
z = z.remove!(pred, SwapStrategy.stable);
int removed;
foreach (o; os)
removed += o[1] - o[0];
verify(w, len, removed, false, os[]);
verify(x, len, removed, true, os[]);
verify(y, len, removed, false, os[]);
verify(z, len, removed, true, os[]);
assert(w == y);
assert(x == z);
}
}
@safe unittest
{
char[] chars = "abcdefg".dup;
assert(chars.remove!(dc => dc == 'c' || dc == 'f') == "abdeg");
assert(chars == "abdegfg");
assert(chars.remove!"a == 'd'" == "abegfg");
char[] bigChars = "¥^¨^©é√∆π".dup;
assert(bigChars.remove!(dc => dc == "¨"d[0] || dc == "é"d[0]) == "¥^^©√∆π");
}
private Range removePredUnstable(alias pred, Range)(Range range)
{
auto result = range;
for (;!range.empty;)
{
if (!pred(range.front))
{
range.popFront();
continue;
}
move(range.back, range.front);
range.popBack();
result.popBack();
}
return result;
}
private Range removePredStable(alias pred, Range)(Range range)
{
auto result = range;
auto tgt = range;
for (; !range.empty; range.popFront())
{
if (pred(range.front))
{
// yank this guy
result.popBack();
continue;
}
// keep this guy
move(range.front, tgt.front);
tgt.popFront();
}
return result;
}
private Range removePredString(alias pred, SwapStrategy s = SwapStrategy.stable, Range)
(Range range)
{
import std.utf : decode;
import std.functional : unaryFun;
alias pred_ = unaryFun!pred;
size_t charIdx = 0;
size_t charShift = 0;
while (charIdx < range.length)
{
size_t start = charIdx;
if (pred_(decode(range, charIdx)))
{
charShift += charIdx - start;
break;
}
}
while (charIdx < range.length)
{
size_t start = charIdx;
auto doRemove = pred_(decode(range, charIdx));
auto encodedLen = charIdx - start;
if (doRemove)
charShift += encodedLen;
else
foreach (i; start .. charIdx)
range[i - charShift] = range[i];
}
return range[0 .. $ - charShift];
}
// reverse
/**
Reverses `r` in-place. Performs `r.length / 2` evaluations of `swap`.
UTF sequences consisting of multiple code units are preserved properly.
Params:
r = a $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,range,primitives)
with either swappable elements, a random access range with a length member,
or a narrow string
Returns: `r`
Note:
When passing a string with unicode modifiers on characters, such as `\u0301`,
this function will not properly keep the position of the modifier. For example,
reversing `ba\u0301d` ("bád") will result in d\u0301ab ("d́ab") instead of
`da\u0301b` ("dáb").
See_Also: $(REF retro, std,range) for a lazy reverse without changing `r`
*/
Range reverse(Range)(Range r)
if (isBidirectionalRange!Range &&
(hasSwappableElements!Range ||
(hasAssignableElements!Range && hasLength!Range && isRandomAccessRange!Range) ||
(isNarrowString!Range && isAssignable!(ElementType!Range))))
{
static if (isRandomAccessRange!Range && hasLength!Range)
{
//swapAt is in fact the only way to swap non lvalue ranges
immutable last = r.length - 1;
immutable steps = r.length / 2;
for (size_t i = 0; i < steps; i++)
{
r.swapAt(i, last - i);
}
return r;
}
else static if (isNarrowString!Range && isAssignable!(ElementType!Range))
{
import std.string : representation;
import std.utf : stride;
auto raw = representation(r);
for (size_t i = 0; i < r.length;)
{
immutable step = stride(r, i);
if (step > 1)
{
.reverse(raw[i .. i + step]);
i += step;
}
else
{
++i;
}
}
reverse(raw);
return r;
}
else
{
while (!r.empty)
{
swap(r.front, r.back);
r.popFront();
if (r.empty) break;
r.popBack();
}
return r;
}
}
///
@safe unittest
{
int[] arr = [ 1, 2, 3 ];
assert(arr.reverse == [ 3, 2, 1 ]);
}
@safe unittest
{
int[] range = null;
reverse(range);
range = [ 1 ];
reverse(range);
assert(range == [1]);
range = [1, 2];
reverse(range);
assert(range == [2, 1]);
range = [1, 2, 3];
assert(range.reverse == [3, 2, 1]);
}
///
@safe unittest
{
char[] arr = "hello\U00010143\u0100\U00010143".dup;
assert(arr.reverse == "\U00010143\u0100\U00010143olleh");
}
@safe unittest
{
void test(string a, string b)
{
auto c = a.dup;
reverse(c);
assert(c == b, c ~ " != " ~ b);
}
test("a", "a");
test(" ", " ");
test("\u2029", "\u2029");
test("\u0100", "\u0100");
test("\u0430", "\u0430");
test("\U00010143", "\U00010143");
test("abcdefcdef", "fedcfedcba");
test("hello\U00010143\u0100\U00010143", "\U00010143\u0100\U00010143olleh");
}
/**
The strip group of functions allow stripping of either leading, trailing,
or both leading and trailing elements.
The `stripLeft` function will strip the `front` of the range,
the `stripRight` function will strip the `back` of the range,
while the `strip` function will strip both the `front` and `back`
of the range.
Note that the `strip` and `stripRight` functions require the range to
be a $(LREF BidirectionalRange) range.
All of these functions come in two varieties: one takes a target element,
where the range will be stripped as long as this element can be found.
The other takes a lambda predicate, where the range will be stripped as
long as the predicate returns true.
Params:
range = a $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,range,primitives)
or $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
element = the elements to remove
Returns:
a Range with all of range except element at the start and end
*/
Range strip(Range, E)(Range range, E element)
if (isBidirectionalRange!Range && is(typeof(range.front == element) : bool))
{
return range.stripLeft(element).stripRight(element);
}
/// ditto
Range strip(alias pred, Range)(Range range)
if (isBidirectionalRange!Range && is(typeof(pred(range.back)) : bool))
{
return range.stripLeft!pred().stripRight!pred();
}
/// ditto
Range stripLeft(Range, E)(Range range, E element)
if (isInputRange!Range && is(typeof(range.front == element) : bool))
{
import std.algorithm.searching : find;
return find!((auto ref a) => a != element)(range);
}
/// ditto
Range stripLeft(alias pred, Range)(Range range)
if (isInputRange!Range && is(typeof(pred(range.front)) : bool))
{
import std.algorithm.searching : find;
import std.functional : not;
return find!(not!pred)(range);
}
/// ditto
Range stripRight(Range, E)(Range range, E element)
if (isBidirectionalRange!Range && is(typeof(range.back == element) : bool))
{
for (; !range.empty; range.popBack())
{
if (range.back != element)
break;
}
return range;
}
/// ditto
Range stripRight(alias pred, Range)(Range range)
if (isBidirectionalRange!Range && is(typeof(pred(range.back)) : bool))
{
for (; !range.empty; range.popBack())
{
if (!pred(range.back))
break;
}
return range;
}
/// Strip leading and trailing elements equal to the target element.
@safe pure unittest
{
assert(" foobar ".strip(' ') == "foobar");
assert("00223.444500".strip('0') == "223.4445");
assert("ëëêéüŗōpéêëë".strip('ë') == "êéüŗōpéê");
assert([1, 1, 0, 1, 1].strip(1) == [0]);
assert([0.0, 0.01, 0.01, 0.0].strip(0).length == 2);
}
/// Strip leading and trailing elements while the predicate returns true.
@safe pure unittest
{
assert(" foobar ".strip!(a => a == ' ')() == "foobar");
assert("00223.444500".strip!(a => a == '0')() == "223.4445");
assert("ëëêéüŗōpéêëë".strip!(a => a == 'ë')() == "êéüŗōpéê");
assert([1, 1, 0, 1, 1].strip!(a => a == 1)() == [0]);
assert([0.0, 0.01, 0.5, 0.6, 0.01, 0.0].strip!(a => a < 0.4)().length == 2);
}
/// Strip leading elements equal to the target element.
@safe pure unittest
{
assert(" foobar ".stripLeft(' ') == "foobar ");
assert("00223.444500".stripLeft('0') == "223.444500");
assert("ůůűniçodêéé".stripLeft('ů') == "űniçodêéé");
assert([1, 1, 0, 1, 1].stripLeft(1) == [0, 1, 1]);
assert([0.0, 0.01, 0.01, 0.0].stripLeft(0).length == 3);
}
/// Strip leading elements while the predicate returns true.
@safe pure unittest
{
assert(" foobar ".stripLeft!(a => a == ' ')() == "foobar ");
assert("00223.444500".stripLeft!(a => a == '0')() == "223.444500");
assert("ůůűniçodêéé".stripLeft!(a => a == 'ů')() == "űniçodêéé");
assert([1, 1, 0, 1, 1].stripLeft!(a => a == 1)() == [0, 1, 1]);
assert([0.0, 0.01, 0.10, 0.5, 0.6].stripLeft!(a => a < 0.4)().length == 2);
}
/// Strip trailing elements equal to the target element.
@safe pure unittest
{
assert(" foobar ".stripRight(' ') == " foobar");
assert("00223.444500".stripRight('0') == "00223.4445");
assert("ùniçodêéé".stripRight('é') == "ùniçodê");
assert([1, 1, 0, 1, 1].stripRight(1) == [1, 1, 0]);
assert([0.0, 0.01, 0.01, 0.0].stripRight(0).length == 3);
}
/// Strip trailing elements while the predicate returns true.
@safe pure unittest
{
assert(" foobar ".stripRight!(a => a == ' ')() == " foobar");
assert("00223.444500".stripRight!(a => a == '0')() == "00223.4445");
assert("ùniçodêéé".stripRight!(a => a == 'é')() == "ùniçodê");
assert([1, 1, 0, 1, 1].stripRight!(a => a == 1)() == [1, 1, 0]);
assert([0.0, 0.01, 0.10, 0.5, 0.6].stripRight!(a => a > 0.4)().length == 3);
}
// swap
/**
Swaps `lhs` and `rhs`. The instances `lhs` and `rhs` are moved in
memory, without ever calling `opAssign`, nor any other function. `T`
need not be assignable at all to be swapped.
If `lhs` and `rhs` reference the same instance, then nothing is done.
`lhs` and `rhs` must be mutable. If `T` is a struct or union, then
its fields must also all be (recursively) mutable.
Params:
lhs = Data to be swapped with `rhs`.
rhs = Data to be swapped with `lhs`.
*/
void swap(T)(ref T lhs, ref T rhs)
if (is(typeof(lhs.proxySwap(rhs))))
{
lhs.proxySwap(rhs);
}
/// ditto
void swap(T)(ref T lhs, ref T rhs) @trusted pure nothrow @nogc
if (isBlitAssignable!T && !is(typeof(lhs.proxySwap(rhs))))
{
import std.traits : hasAliasing, hasElaborateAssign, isAssignable,
isStaticArray;
static if (hasAliasing!T) if (!__ctfe)
{
import std.exception : doesPointTo;
assert(!doesPointTo(lhs, lhs), "Swap: lhs internal pointer.");
assert(!doesPointTo(rhs, rhs), "Swap: rhs internal pointer.");
assert(!doesPointTo(lhs, rhs), "Swap: lhs points to rhs.");
assert(!doesPointTo(rhs, lhs), "Swap: rhs points to lhs.");
}
static if (hasElaborateAssign!T || !isAssignable!T)
{
if (&lhs != &rhs)
{
static if (__traits(compiles, lhs.tupleof = rhs.tupleof))
{
if (__ctfe)
{
// can't reinterpret cast
foreach (i, ref e; lhs.tupleof)
swap(e, rhs.tupleof[i]);
return;
}
}
// For structs with non-trivial assignment, move memory directly
ubyte[T.sizeof] t = void;
auto a = (cast(ubyte*) &lhs)[0 .. T.sizeof];
auto b = (cast(ubyte*) &rhs)[0 .. T.sizeof];
t[] = a[];
a[] = b[];
b[] = t[];
}
}
else
{
//Avoid assigning overlapping arrays. Dynamic arrays are fine, because
//it's their ptr and length properties which get assigned rather
//than their elements when assigning them, but static arrays are value
//types and therefore all of their elements get copied as part of
//assigning them, which would be assigning overlapping arrays if lhs
//and rhs were the same array.
static if (isStaticArray!T)
{
if (lhs.ptr == rhs.ptr)
return;
}
// For non-elaborate-assign types, suffice to do the classic swap
static if (__traits(hasCopyConstructor, T))
{
// don't invoke any elaborate constructors either
T tmp = void;
tmp = lhs;
}
else
auto tmp = lhs;
lhs = rhs;
rhs = tmp;
}
}
///
@safe unittest
{
// Swapping POD (plain old data) types:
int a = 42, b = 34;
swap(a, b);
assert(a == 34 && b == 42);
// Swapping structs with indirection:
static struct S { int x; char c; int[] y; }
S s1 = { 0, 'z', [ 1, 2 ] };
S s2 = { 42, 'a', [ 4, 6 ] };
swap(s1, s2);
assert(s1.x == 42);
assert(s1.c == 'a');
assert(s1.y == [ 4, 6 ]);
assert(s2.x == 0);
assert(s2.c == 'z');
assert(s2.y == [ 1, 2 ]);
// Immutables cannot be swapped:
immutable int imm1 = 1, imm2 = 2;
static assert(!__traits(compiles, swap(imm1, imm2)));
int c = imm1 + 0;
int d = imm2 + 0;
swap(c, d);
assert(c == 2);
assert(d == 1);
}
///
@safe unittest
{
// Non-copyable types can still be swapped.
static struct NoCopy
{
this(this) { assert(0); }
int n;
string s;
}
NoCopy nc1, nc2;
nc1.n = 127; nc1.s = "abc";
nc2.n = 513; nc2.s = "uvwxyz";
swap(nc1, nc2);
assert(nc1.n == 513 && nc1.s == "uvwxyz");
assert(nc2.n == 127 && nc2.s == "abc");
swap(nc1, nc1);
swap(nc2, nc2);
assert(nc1.n == 513 && nc1.s == "uvwxyz");
assert(nc2.n == 127 && nc2.s == "abc");
// Types containing non-copyable fields can also be swapped.
static struct NoCopyHolder
{
NoCopy noCopy;
}
NoCopyHolder h1, h2;
h1.noCopy.n = 31; h1.noCopy.s = "abc";
h2.noCopy.n = 65; h2.noCopy.s = null;
swap(h1, h2);
assert(h1.noCopy.n == 65 && h1.noCopy.s == null);
assert(h2.noCopy.n == 31 && h2.noCopy.s == "abc");
swap(h1, h1);
swap(h2, h2);
assert(h1.noCopy.n == 65 && h1.noCopy.s == null);
assert(h2.noCopy.n == 31 && h2.noCopy.s == "abc");
// Const types cannot be swapped.
const NoCopy const1, const2;
assert(const1.n == 0 && const2.n == 0);
static assert(!__traits(compiles, swap(const1, const2)));
}
// https://issues.dlang.org/show_bug.cgi?id=4789
@safe unittest
{
int[1] s = [1];
swap(s, s);
int[3] a = [1, 2, 3];
swap(a[1], a[2]);
assert(a == [1, 3, 2]);
}
@safe unittest
{
static struct NoAssign
{
int i;
void opAssign(NoAssign) @disable;
}
auto s1 = NoAssign(1);
auto s2 = NoAssign(2);
swap(s1, s2);
assert(s1.i == 2);
assert(s2.i == 1);
}
@safe unittest
{
struct S
{
const int i;
int i2 = 2;
int i3 = 3;
}
S s;
static assert(!__traits(compiles, swap(s, s)));
swap(s.i2, s.i3);
assert(s.i2 == 3);
assert(s.i3 == 2);
}
// https://issues.dlang.org/show_bug.cgi?id=11853
@safe unittest
{
import std.traits : isAssignable;
alias T = Tuple!(int, double);
static assert(isAssignable!T);
}
// https://issues.dlang.org/show_bug.cgi?id=12024
@safe unittest
{
import std.datetime;
SysTime a, b;
swap(a, b);
}
// https://issues.dlang.org/show_bug.cgi?id=9975
@system unittest
{
import std.exception : doesPointTo, mayPointTo;
static struct S2
{
union
{
size_t sz;
string s;
}
}
S2 a , b;
a.sz = -1;
assert(!doesPointTo(a, b));
assert( mayPointTo(a, b));
swap(a, b);
//Note: we can catch an error here, because there is no RAII in this test
import std.exception : assertThrown;
void* p, pp;
p = &p;
assertThrown!Error(move(p));
assertThrown!Error(move(p, pp));
assertThrown!Error(swap(p, pp));
}
@system unittest
{
static struct A
{
int* x;
this(this) { x = new int; }
}
A a1, a2;
swap(a1, a2);
static struct B
{
int* x;
void opAssign(B) { x = new int; }
}
B b1, b2;
swap(b1, b2);
}
// https://issues.dlang.org/show_bug.cgi?id=20732
@safe unittest
{
static struct A
{
int x;
this(scope ref return const A other)
{
import std.stdio;
x = other.x;
// note, struct functions inside @safe functions infer ALL
// attributes, so the following 3 lines are meant to prevent this.
new int; // prevent @nogc inference
writeln("impure"); // prevent pure inference
throw new Exception(""); // prevent nothrow inference
}
}
A a1, a2;
swap(a1, a2);
A[1] a3, a4;
swap(a3, a4);
}
// https://issues.dlang.org/show_bug.cgi?id=21429
@safe unittest
{
enum e = (){
Tuple!int a = 5, b = 6;
swap(a, b);
assert(a[0] == 6);
assert(b[0] == 5);
return 0;
}();
}
/**
Swaps two elements in-place of a range `r`,
specified by their indices `i1` and `i2`.
Params:
r = a range with swappable elements
i1 = first index
i2 = second index
*/
void swapAt(R)(auto ref R r, size_t i1, size_t i2)
{
static if (is(typeof(&r.swapAt)))
{
r.swapAt(i1, i2);
}
else static if (is(typeof(&r[i1])))
{
swap(r[i1], r[i2]);
}
else
{
if (i1 == i2) return;
auto t1 = r.moveAt(i1);
auto t2 = r.moveAt(i2);
r[i2] = t1;
r[i1] = t2;
}
}
///
pure @safe nothrow unittest
{
import std.algorithm.comparison : equal;
auto a = [1, 2, 3];
a.swapAt(1, 2);
assert(a.equal([1, 3, 2]));
}
pure @safe nothrow unittest
{
import std.algorithm.comparison : equal;
auto a = [4, 5, 6];
a.swapAt(1, 1);
assert(a.equal([4, 5, 6]));
}
pure @safe nothrow unittest
{
// test non random access ranges
import std.algorithm.comparison : equal;
import std.array : array;
char[] b = ['a', 'b', 'c'];
b.swapAt(1, 2);
assert(b.equal(['a', 'c', 'b']));
int[3] c = [1, 2, 3];
c.swapAt(1, 2);
assert(c.array.equal([1, 3, 2]));
// opIndex returns lvalue
struct RandomIndexType(T)
{
T payload;
@property ref auto opIndex(size_t i)
{
return payload[i];
}
}
auto d = RandomIndexType!(int[])([4, 5, 6]);
d.swapAt(1, 2);
assert(d.payload.equal([4, 6, 5]));
// custom moveAt and opIndexAssign
struct RandomMoveAtType(T)
{
T payload;
ElementType!T moveAt(size_t i)
{
return payload.moveAt(i);
}
void opIndexAssign(ElementType!T val, size_t idx)
{
payload[idx] = val;
}
}
auto e = RandomMoveAtType!(int[])([7, 8, 9]);
e.swapAt(1, 2);
assert(e.payload.equal([7, 9, 8]));
// custom swapAt
struct RandomSwapAtType(T)
{
T payload;
void swapAt(size_t i)
{
return payload.swapAt(i);
}
}
auto f = RandomMoveAtType!(int[])([10, 11, 12]);
swapAt(f, 1, 2);
assert(f.payload.equal([10, 12, 11]));
}
private void swapFront(R1, R2)(R1 r1, R2 r2)
if (isInputRange!R1 && isInputRange!R2)
{
static if (is(typeof(swap(r1.front, r2.front))))
{
swap(r1.front, r2.front);
}
else
{
auto t1 = moveFront(r1), t2 = moveFront(r2);
r1.front = move(t2);
r2.front = move(t1);
}
}
// swapRanges
/**
Swaps all elements of `r1` with successive elements in `r2`.
Returns a tuple containing the remainder portions of `r1` and $(D
r2) that were not swapped (one of them will be empty). The ranges may
be of different types but must have the same element type and support
swapping.
Params:
r1 = an $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
with swappable elements
r2 = an $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
with swappable elements
Returns:
Tuple containing the remainder portions of r1 and r2 that were not swapped
*/
Tuple!(InputRange1, InputRange2)
swapRanges(InputRange1, InputRange2)(InputRange1 r1, InputRange2 r2)
if (hasSwappableElements!InputRange1 && hasSwappableElements!InputRange2
&& is(ElementType!InputRange1 == ElementType!InputRange2))
{
for (; !r1.empty && !r2.empty; r1.popFront(), r2.popFront())
{
swap(r1.front, r2.front);
}
return tuple(r1, r2);
}
///
@safe unittest
{
import std.range : empty;
int[] a = [ 100, 101, 102, 103 ];
int[] b = [ 0, 1, 2, 3 ];
auto c = swapRanges(a[1 .. 3], b[2 .. 4]);
assert(c[0].empty && c[1].empty);
assert(a == [ 100, 2, 3, 103 ]);
assert(b == [ 0, 1, 101, 102 ]);
}
/**
Initializes each element of `range` with `value`.
Assumes that the elements of the range are uninitialized.
This is of interest for structs that
define copy constructors (for all other types, $(LREF fill) and
uninitializedFill are equivalent).
Params:
range = An
$(REF_ALTTEXT input range, isInputRange, std,range,primitives)
that exposes references to its elements and has assignable
elements
value = Assigned to each element of range
See_Also:
$(LREF fill)
$(LREF initializeAll)
*/
void uninitializedFill(Range, Value)(Range range, Value value)
if (isInputRange!Range && hasLvalueElements!Range && is(typeof(range.front = value)))
{
import std.traits : hasElaborateAssign;
alias T = ElementType!Range;
static if (hasElaborateAssign!T)
{
import core.internal.lifetime : emplaceRef;
// Must construct stuff by the book
for (; !range.empty; range.popFront())
emplaceRef!T(range.front, value);
}
else
// Doesn't matter whether fill is initialized or not
return fill(range, value);
}
///
nothrow @system unittest
{
import core.stdc.stdlib : malloc, free;
auto s = (cast(int*) malloc(5 * int.sizeof))[0 .. 5];
uninitializedFill(s, 42);
assert(s == [ 42, 42, 42, 42, 42 ]);
scope(exit) free(s.ptr);
}
|