1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
|
//===-- arrays.cpp --------------------------------------------------------===//
//
// LDC – the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//
#include "gen/arrays.h"
#include "dmd/aggregate.h"
#include "dmd/declaration.h"
#include "dmd/dsymbol.h"
#include "dmd/errors.h"
#include "dmd/expression.h"
#include "dmd/init.h"
#include "dmd/module.h"
#include "dmd/mtype.h"
#include "gen/dvalue.h"
#include "gen/funcgenstate.h"
#include "gen/irstate.h"
#include "gen/llvm.h"
#include "gen/llvmhelpers.h"
#include "gen/logger.h"
#include "gen/runtime.h"
#include "gen/tollvm.h"
#include "ir/irfunction.h"
#include "ir/irmodule.h"
static void DtoSetArray(DValue *array, LLValue *dim, LLValue *ptr);
////////////////////////////////////////////////////////////////////////////////
namespace {
LLValue *DtoSlice(LLValue *ptr, LLValue *length, LLType *elemType = nullptr) {
if (!elemType)
elemType = ptr->getType()->getContainedType(0);
elemType = i1ToI8(voidToI8(elemType));
return DtoAggrPair(length, DtoBitCast(ptr, elemType->getPointerTo()));
}
LLValue *DtoSlice(Expression *e) {
DValue *dval = toElem(e);
if (dval->type->toBasetype()->ty == TY::Tsarray) {
// Convert static array to slice
return DtoSlice(DtoLVal(dval), DtoArrayLen(dval));
}
return DtoRVal(dval);
}
}
////////////////////////////////////////////////////////////////////////////////
static LLValue *DtoSlicePtr(Expression *e) {
DValue *dval = toElem(e);
Loc loc;
LLStructType *type = DtoArrayType(LLType::getInt8Ty(gIR->context()));
Type *vt = dval->type->toBasetype();
if (vt->ty == TY::Tarray) {
return makeLValue(loc, dval);
}
bool isStaticArray = vt->ty == TY::Tsarray;
LLValue *val = isStaticArray ? DtoLVal(dval) : makeLValue(loc, dval);
LLValue *array = DtoRawAlloca(type, 0, ".array");
LLValue *len = isStaticArray ? DtoArrayLen(dval) : DtoConstSize_t(1);
DtoStore(len, DtoGEP(array, 0u, 0));
DtoStore(DtoBitCast(val, getVoidPtrType()), DtoGEP(array, 0, 1));
return array;
}
////////////////////////////////////////////////////////////////////////////////
LLStructType *DtoArrayType(Type *arrayTy) {
assert(arrayTy->nextOf());
llvm::Type *elems[] = {DtoSize_t(), DtoPtrToType(arrayTy->nextOf())};
return llvm::StructType::get(gIR->context(), elems, false);
}
LLStructType *DtoArrayType(LLType *t) {
llvm::Type *elems[] = {DtoSize_t(), getPtrToType(t)};
return llvm::StructType::get(gIR->context(), elems, false);
}
////////////////////////////////////////////////////////////////////////////////
LLArrayType *DtoStaticArrayType(Type *t) {
t = t->toBasetype();
assert(t->ty == TY::Tsarray);
TypeSArray *tsa = static_cast<TypeSArray *>(t);
Type *tnext = tsa->nextOf();
return LLArrayType::get(DtoMemType(tnext), tsa->dim->toUInteger());
}
////////////////////////////////////////////////////////////////////////////////
void DtoSetArrayToNull(LLValue *v) {
IF_LOG Logger::println("DtoSetArrayToNull");
LOG_SCOPE;
DtoStore(LLConstant::getNullValue(getPointeeType(v)), v);
}
////////////////////////////////////////////////////////////////////////////////
static void DtoArrayInit(const Loc &loc, LLValue *ptr, LLValue *length,
DValue *elementValue) {
IF_LOG Logger::println("DtoArrayInit");
LOG_SCOPE;
// Let's first optimize all zero/i8 initializations down to a memset.
// This simplifies codegen later on as llvm null's have no address!
if (!elementValue->isLVal() || !DtoIsInMemoryOnly(elementValue->type)) {
LLValue *val = DtoRVal(elementValue);
LLConstant *constantVal = isaConstant(val);
bool isNullConstant = (constantVal && constantVal->isNullValue());
if (isNullConstant || val->getType() == LLType::getInt8Ty(gIR->context())) {
LLValue *size = length;
size_t elementSize = getTypeAllocSize(val->getType());
if (elementSize != 1) {
size = gIR->ir->CreateMul(length, DtoConstSize_t(elementSize),
".arraysize");
}
DtoMemSet(ptr, isNullConstant ? DtoConstUbyte(0) : val, size);
return;
}
}
// create blocks
llvm::BasicBlock *condbb = gIR->insertBB("arrayinit.cond");
llvm::BasicBlock *bodybb = gIR->insertBBAfter(condbb, "arrayinit.body");
llvm::BasicBlock *endbb = gIR->insertBBAfter(bodybb, "arrayinit.end");
// initialize iterator
LLValue *itr = DtoAllocaDump(DtoConstSize_t(0), 0, "arrayinit.itr");
// move into the for condition block, ie. start the loop
assert(!gIR->scopereturned());
llvm::BranchInst::Create(condbb, gIR->scopebb());
// replace current scope
gIR->ir->SetInsertPoint(condbb);
// create the condition
LLValue *cond_val =
gIR->ir->CreateICmpNE(DtoLoad(itr), length, "arrayinit.condition");
// conditional branch
assert(!gIR->scopereturned());
llvm::BranchInst::Create(bodybb, endbb, cond_val, gIR->scopebb());
// rewrite scope
gIR->ir->SetInsertPoint(bodybb);
LLValue *itr_val = DtoLoad(itr);
// assign array element value
DLValue arrayelem(elementValue->type->toBasetype(),
DtoGEP1(ptr, itr_val, "arrayinit.arrayelem"));
DtoAssign(loc, &arrayelem, elementValue, EXP::blit);
// increment iterator
DtoStore(gIR->ir->CreateAdd(itr_val, DtoConstSize_t(1), "arrayinit.new_itr"),
itr);
// loop
llvm::BranchInst::Create(condbb, gIR->scopebb());
// rewrite the scope
gIR->ir->SetInsertPoint(endbb);
}
////////////////////////////////////////////////////////////////////////////////
static Type *DtoArrayElementType(Type *arrayType) {
assert(arrayType->toBasetype()->nextOf());
Type *t = arrayType->toBasetype()->nextOf()->toBasetype();
while (t->ty == TY::Tsarray) {
t = t->nextOf()->toBasetype();
}
return t;
}
////////////////////////////////////////////////////////////////////////////////
static LLValue *computeSize(LLValue *length, size_t elementSize) {
return elementSize == 1
? length
: gIR->ir->CreateMul(length, DtoConstSize_t(elementSize));
};
static void copySlice(const Loc &loc, LLValue *dstarr, LLValue *dstlen,
LLValue *srcarr, LLValue *srclen, size_t elementSize,
bool knownInBounds) {
const bool checksEnabled =
global.params.useAssert == CHECKENABLEon || gIR->emitArrayBoundsChecks();
if (checksEnabled && !knownInBounds) {
LLFunction *fn = getRuntimeFunction(loc, gIR->module, "_d_array_slice_copy");
gIR->CreateCallOrInvoke(
fn, {dstarr, dstlen, srcarr, srclen, DtoConstSize_t(elementSize)}, "",
/*isNothrow=*/true);
} else {
// We might have dstarr == srcarr at compile time, but as long as
// sz1 == 0 at runtime, this would probably still be legal (the C spec
// is unclear here).
LLValue *size = computeSize(dstlen, elementSize);
DtoMemCpy(dstarr, srcarr, size);
}
}
////////////////////////////////////////////////////////////////////////////////
// Determine whether t is an array of structs that need a postblit.
static bool arrayNeedsPostblit(Type *t) {
t = DtoArrayElementType(t);
if (t->ty == TY::Tstruct) {
return static_cast<TypeStruct *>(t)->sym->postblit != nullptr;
}
return false;
}
// Does array assignment (or initialization) from another array of the same
// element type or from an appropriate single element.
void DtoArrayAssign(const Loc &loc, DValue *lhs, DValue *rhs, EXP op,
bool canSkipPostblit) {
IF_LOG Logger::println("DtoArrayAssign");
LOG_SCOPE;
Type *t = lhs->type->toBasetype();
Type *t2 = rhs->type->toBasetype();
assert(t->nextOf());
// reference assignment for dynamic array?
if (t->ty == TY::Tarray && !lhs->isSlice()) {
assert(t2->ty == TY::Tarray || t2->ty == TY::Tsarray);
if (rhs->isNull()) {
DtoSetArrayToNull(DtoLVal(lhs));
} else {
DtoSetArray(lhs, DtoArrayLen(rhs), DtoArrayPtr(rhs));
}
return;
}
// EXP::blit is generated by the frontend for (default) initialization of
// static arrays of structs with a single element.
const bool isConstructing = (op == EXP::construct || op == EXP::blit);
Type *const elemType = t->nextOf()->toBasetype();
const bool needsDestruction =
(!isConstructing && elemType->needsDestruction());
LLValue *realLhsPtr = DtoArrayPtr(lhs);
LLValue *lhsPtr = DtoBitCast(realLhsPtr, getVoidPtrType());
LLValue *lhsLength = DtoArrayLen(lhs);
// Be careful to handle void arrays correctly when modifying this (see tests
// for DMD issue 7493).
// TODO: This should use AssignExp::memset.
LLValue *realRhsArrayPtr = (t2->ty == TY::Tarray || t2->ty == TY::Tsarray)
? DtoArrayPtr(rhs)
: nullptr;
if (realRhsArrayPtr && realRhsArrayPtr->getType() == realLhsPtr->getType()) {
// T[] = T[] T[] = T[n]
// T[n] = T[n] T[n] = T[]
LLValue *rhsPtr = DtoBitCast(realRhsArrayPtr, getVoidPtrType());
LLValue *rhsLength = DtoArrayLen(rhs);
const bool needsPostblit = (op != EXP::blit && arrayNeedsPostblit(t) &&
(!canSkipPostblit || t2->ty == TY::Tarray));
if (!needsDestruction && !needsPostblit) {
// fast version
const size_t elementSize = getTypeAllocSize(DtoMemType(elemType));
if (rhs->isNull()) {
LLValue *lhsSize = computeSize(lhsLength, elementSize);
DtoMemSetZero(lhsPtr, lhsSize);
} else {
bool knownInBounds =
isConstructing || (t->ty == TY::Tsarray && t2->ty == TY::Tsarray);
if (!knownInBounds) {
if (auto constLhsLength = llvm::dyn_cast<LLConstantInt>(lhsLength)) {
if (auto constRhsLength =
llvm::dyn_cast<LLConstantInt>(rhsLength)) {
if (constLhsLength->getValue() == constRhsLength->getValue()) {
knownInBounds = true;
}
}
}
}
copySlice(loc, lhsPtr, lhsLength, rhsPtr, rhsLength, elementSize,
knownInBounds);
}
} else if (isConstructing) {
LLFunction *fn = getRuntimeFunction(loc, gIR->module, "_d_arrayctor");
gIR->CreateCallOrInvoke(fn, DtoTypeInfoOf(loc, elemType),
DtoSlice(rhsPtr, rhsLength),
DtoSlice(lhsPtr, lhsLength));
} else { // assigning
LLValue *tmpSwap = DtoAlloca(elemType, "arrayAssign.tmpSwap");
LLFunction *fn = getRuntimeFunction(
loc, gIR->module,
!canSkipPostblit ? "_d_arrayassign_l" : "_d_arrayassign_r");
gIR->CreateCallOrInvoke(
fn, DtoTypeInfoOf(loc, elemType), DtoSlice(rhsPtr, rhsLength),
DtoSlice(lhsPtr, lhsLength), DtoBitCast(tmpSwap, getVoidPtrType()));
}
} else {
// scalar rhs:
// T[] = T T[n][] = T
// T[n] = T T[n][m] = T
const bool needsPostblit =
(op != EXP::blit && !canSkipPostblit && arrayNeedsPostblit(t));
if (!needsDestruction && !needsPostblit) {
// fast version
const size_t lhsElementSize =
getTypeAllocSize(realLhsPtr->getType()->getContainedType(0));
LLType *rhsType = DtoMemType(t2);
const size_t rhsSize = getTypeAllocSize(rhsType);
LLValue *actualPtr = DtoBitCast(realLhsPtr, rhsType->getPointerTo());
LLValue *actualLength = lhsLength;
if (rhsSize != lhsElementSize) {
LLValue *lhsSize = computeSize(lhsLength, lhsElementSize);
actualLength =
rhsSize == 1
? lhsSize
: gIR->ir->CreateExactUDiv(lhsSize, DtoConstSize_t(rhsSize));
}
DtoArrayInit(loc, actualPtr, actualLength, rhs);
} else {
LLFunction *fn = getRuntimeFunction(loc, gIR->module,
isConstructing ? "_d_arraysetctor"
: "_d_arraysetassign");
gIR->CreateCallOrInvoke(
fn, lhsPtr, DtoBitCast(makeLValue(loc, rhs), getVoidPtrType()),
gIR->ir->CreateTruncOrBitCast(lhsLength,
LLType::getInt32Ty(gIR->context())),
DtoTypeInfoOf(loc, stripModifiers(t2)));
}
}
}
////////////////////////////////////////////////////////////////////////////////
static void DtoSetArray(DValue *array, LLValue *dim, LLValue *ptr) {
IF_LOG Logger::println("SetArray");
LLValue *arr = DtoLVal(array);
assert(isaStruct(arr->getType()->getContainedType(0)));
DtoStore(dim, DtoGEP(arr, 0u, 0));
DtoStore(ptr, DtoGEP(arr, 0, 1));
}
////////////////////////////////////////////////////////////////////////////////
LLConstant *DtoConstArrayInitializer(ArrayInitializer *arrinit,
Type *targetType, const bool isCfile) {
IF_LOG Logger::println("DtoConstArrayInitializer: %s | %s",
arrinit->toChars(), targetType->toChars());
LOG_SCOPE;
assert(arrinit->value.length == arrinit->index.length);
// get base array type
Type *arrty = targetType->toBasetype();
size_t arrlen = arrinit->dim;
// for statis arrays, dmd does not include any trailing default
// initialized elements in the value/index lists
if (arrty->ty == TY::Tsarray) {
TypeSArray *tsa = static_cast<TypeSArray *>(arrty);
arrlen = static_cast<size_t>(tsa->dim->toInteger());
}
// make sure the number of initializers is sane
if (arrinit->index.length > arrlen || arrinit->dim > arrlen) {
error(arrinit->loc, "too many initializers, %llu, for array[%llu]",
static_cast<unsigned long long>(arrinit->index.length),
static_cast<unsigned long long>(arrlen));
fatal();
}
// get elem type
Type *elemty;
if (arrty->ty == TY::Tvector) {
elemty = static_cast<TypeVector *>(arrty)->elementType();
} else {
elemty = arrty->nextOf();
}
LLType *llelemty = DtoMemType(elemty);
// true if array elements differ in type, can happen with array of unions
bool mismatch = false;
// allocate room for initializers
std::vector<LLConstant *> initvals(arrlen, nullptr);
// go through each initializer, they're not sorted by index by the frontend
size_t j = 0;
for (size_t i = 0; i < arrinit->index.length; i++) {
// get index
Expression *idx = arrinit->index[i];
// idx can be null, then it's just the next element
if (idx) {
j = idx->toInteger();
}
assert(j < arrlen);
// get value
Initializer *val = arrinit->value[i];
assert(val);
// error check from dmd
if (initvals[j] != nullptr) {
error(arrinit->loc, "duplicate initialization for index %llu",
static_cast<unsigned long long>(j));
}
LLConstant *c = DtoConstInitializer(val->loc, elemty, val, isCfile);
assert(c);
if (c->getType() != llelemty) {
mismatch = true;
}
initvals[j] = c;
j++;
}
// die now if there was errors
if (global.errors) {
fatal();
}
// Fill out any null entries still left with default values.
// Element default initializer. Compute lazily to be able to avoid infinite
// recursion for types with members that are default initialized to empty
// arrays of themselves.
LLConstant *elemDefaultInit = nullptr;
for (size_t i = 0; i < arrlen; i++) {
if (initvals[i] != nullptr) {
continue;
}
if (!elemDefaultInit) {
elemDefaultInit =
DtoConstInitializer(arrinit->loc, elemty, nullptr, isCfile);
if (elemDefaultInit->getType() != llelemty) {
mismatch = true;
}
}
initvals[i] = elemDefaultInit;
}
LLConstant *constarr;
if (mismatch) {
constarr = LLConstantStruct::getAnon(gIR->context(),
initvals); // FIXME should this pack?
} else {
if (arrty->ty == TY::Tvector) {
constarr = llvm::ConstantVector::get(initvals);
} else {
constarr =
LLConstantArray::get(LLArrayType::get(llelemty, arrlen), initvals);
}
}
// std::cout << "constarr: " << *constarr << std::endl;
// if the type is a static array, we're done
if (arrty->ty == TY::Tsarray || arrty->ty == TY::Tvector) {
return constarr;
}
// we need to make a global with the data, so we have a pointer to the array
// Important: don't make the gvar constant, since this const initializer might
// be used as an initializer for a static T[] - where modifying contents is
// allowed.
auto gvar = new LLGlobalVariable(gIR->module, constarr->getType(), false,
LLGlobalValue::InternalLinkage, constarr,
".constarray");
if (arrty->ty == TY::Tpointer) {
// we need to return pointer to the static array.
return DtoBitCast(gvar, DtoType(arrty));
}
LLConstant *gep = DtoGEP(gvar, 0u, 0u);
gep = llvm::ConstantExpr::getBitCast(gvar, getPtrToType(llelemty));
return DtoConstSlice(DtoConstSize_t(arrlen), gep, arrty);
}
////////////////////////////////////////////////////////////////////////////////
Expression *indexArrayLiteral(ArrayLiteralExp *ale, unsigned idx) {
assert(idx < ale->elements->length);
auto e = (*ale->elements)[idx];
if (!e) {
return ale->basis;
}
return e;
}
////////////////////////////////////////////////////////////////////////////////
bool isConstLiteral(Expression *e, bool immutableType) {
// We have to check the return value of isConst specifically for '1',
// as SymOffExp is classified as '2' and the address of a local variable is
// not an LLVM constant.
//
// Examine the ArrayLiteralExps and the StructLiteralExps element by element
// as isConst always returns 0 on those.
switch (e->op) {
case EXP::arrayLiteral: {
auto ale = static_cast<ArrayLiteralExp *>(e);
if (!immutableType) {
// If dynamic array: assume not constant because the array is expected to
// be newly allocated. See GH 1924.
Type *arrayType = ale->type->toBasetype();
if (arrayType->ty == TY::Tarray)
return false;
}
for (auto el : *ale->elements) {
if (!isConstLiteral(el ? el : ale->basis, immutableType))
return false;
}
} break;
case EXP::structLiteral: {
auto sle = static_cast<StructLiteralExp *>(e);
if (sle->sd->isNested())
return false;
for (auto el : *sle->elements) {
if (el && !isConstLiteral(el, immutableType))
return false;
}
} break;
// isConst also returns 0 for string literals that are obviously constant.
case EXP::string_:
return true;
case EXP::symbolOffset: {
// Note: dllimported symbols are not link-time constant.
auto soe = static_cast<SymOffExp *>(e);
if (VarDeclaration *vd = soe->var->isVarDeclaration()) {
return vd->isDataseg() && !vd->isImportedSymbol();
}
if (FuncDeclaration *fd = soe->var->isFuncDeclaration()) {
return !fd->isImportedSymbol();
}
// Assume the symbol is non-const if we can't prove it is const.
return false;
} break;
default:
if (e->isConst() != 1)
return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
llvm::Constant *arrayLiteralToConst(IRState *p, ArrayLiteralExp *ale) {
// Build the initializer. We have to take care as due to unions in the
// element types (with different fields being initialized), we can end up
// with different types for the initializer values. In this case, we
// generate a packed struct constant instead of an array constant.
LLType *elementType = nullptr;
bool differentTypes = false;
std::vector<LLConstant *> vals;
vals.reserve(ale->elements->length);
for (unsigned i = 0; i < ale->elements->length; ++i) {
llvm::Constant *val = toConstElem(indexArrayLiteral(ale, i), p);
// extend i1 to i8
if (val->getType()->isIntegerTy(1))
val = llvm::ConstantExpr::getZExt(val, LLType::getInt8Ty(p->context()));
if (!elementType) {
elementType = val->getType();
} else {
differentTypes |= (elementType != val->getType());
}
vals.push_back(val);
}
if (differentTypes) {
return llvm::ConstantStruct::getAnon(vals, true);
}
if (!elementType) {
assert(ale->elements->length == 0);
elementType = DtoMemType(ale->type->toBasetype()->nextOf());
return llvm::ConstantArray::get(LLArrayType::get(elementType, 0), vals);
}
llvm::ArrayType *t = llvm::ArrayType::get(elementType, ale->elements->length);
return llvm::ConstantArray::get(t, vals);
}
////////////////////////////////////////////////////////////////////////////////
void initializeArrayLiteral(IRState *p, ArrayLiteralExp *ale, LLValue *dstMem) {
size_t elemCount = ale->elements->length;
// Don't try to write nothing to a zero-element array, we might represent it
// as a null pointer.
if (elemCount == 0)
return;
if (isConstLiteral(ale)) {
llvm::Constant *constarr = arrayLiteralToConst(p, ale);
// Emit a global for longer arrays, as an inline constant is always
// lowered to a series of movs or similar at the asm level. The
// optimizer can still decide to promote the memcpy intrinsic, so
// the cutoff merely affects compilation speed.
if (elemCount <= 4) {
DtoStore(constarr, DtoBitCast(dstMem, getPtrToType(constarr->getType())));
} else {
auto gvar = new llvm::GlobalVariable(gIR->module, constarr->getType(),
true, LLGlobalValue::InternalLinkage,
constarr, ".arrayliteral");
gvar->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
DtoMemCpy(dstMem, gvar,
DtoConstSize_t(getTypeAllocSize(constarr->getType())));
}
} else {
// Store the elements one by one.
for (size_t i = 0; i < elemCount; ++i) {
Expression *rhsExp = indexArrayLiteral(ale, i);
LLValue *lhsPtr = DtoGEP(dstMem, 0, i, "", p->scopebb());
DLValue lhs(rhsExp->type, DtoBitCast(lhsPtr, DtoPtrToType(rhsExp->type)));
// try to construct it in-place
if (!toInPlaceConstruction(&lhs, rhsExp))
DtoAssign(ale->loc, &lhs, toElem(rhsExp), EXP::blit);
}
}
}
////////////////////////////////////////////////////////////////////////////////
LLConstant *DtoConstSlice(LLConstant *dim, LLConstant *ptr, Type *type) {
LLConstant *values[2] = {dim, ptr};
llvm::ArrayRef<LLConstant *> valuesRef = llvm::makeArrayRef(values, 2);
LLStructType *lltype =
type ? isaStruct(DtoType(type))
: LLConstantStruct::getTypeForElements(gIR->context(), valuesRef);
return LLConstantStruct::get(lltype, valuesRef);
}
////////////////////////////////////////////////////////////////////////////////
static DSliceValue *getSlice(Type *arrayType, LLValue *array) {
LLType *llArrayType = DtoType(arrayType);
if (array->getType() == llArrayType)
return new DSliceValue(arrayType, array);
LLValue *len = DtoExtractValue(array, 0, ".len");
LLValue *ptr = DtoExtractValue(array, 1, ".ptr");
ptr = DtoBitCast(ptr, llArrayType->getContainedType(1));
return new DSliceValue(arrayType, len, ptr);
}
////////////////////////////////////////////////////////////////////////////////
DSliceValue *DtoNewDynArray(const Loc &loc, Type *arrayType, DValue *dim,
bool defaultInit) {
IF_LOG Logger::println("DtoNewDynArray : %s", arrayType->toChars());
LOG_SCOPE;
Type *eltType = arrayType->toBasetype()->nextOf();
if (eltType->size() == 0)
return DtoNullValue(arrayType, loc)->isSlice();
// get runtime function
bool zeroInit = eltType->isZeroInit();
const char *fnname = defaultInit
? (zeroInit ? "_d_newarrayT" : "_d_newarrayiT")
: "_d_newarrayU";
LLFunction *fn = getRuntimeFunction(loc, gIR->module, fnname);
// typeinfo arg
LLValue *arrayTypeInfo = DtoTypeInfoOf(loc, arrayType);
// dim arg
assert(DtoType(dim->type) == DtoSize_t());
LLValue *arrayLen = DtoRVal(dim);
// call allocator
LLValue *newArray =
gIR->CreateCallOrInvoke(fn, arrayTypeInfo, arrayLen, ".gc_mem");
// return a DSliceValue with the well-known length for better optimizability
auto ptr =
DtoBitCast(DtoExtractValue(newArray, 1, ".ptr"), DtoPtrToType(eltType));
return new DSliceValue(arrayType, arrayLen, ptr);
}
////////////////////////////////////////////////////////////////////////////////
DSliceValue *DtoNewMulDimDynArray(const Loc &loc, Type *arrayType,
DValue **dims, size_t ndims) {
IF_LOG Logger::println("DtoNewMulDimDynArray : %s", arrayType->toChars());
LOG_SCOPE;
// get value type
Type *vtype = arrayType->toBasetype();
for (size_t i = 0; i < ndims; ++i) {
vtype = vtype->nextOf();
}
// get runtime function
const char *fnname =
vtype->isZeroInit() ? "_d_newarraymTX" : "_d_newarraymiTX";
LLFunction *fn = getRuntimeFunction(loc, gIR->module, fnname);
// typeinfo arg
LLValue *arrayTypeInfo = DtoTypeInfoOf(loc, arrayType);
// Check if constant
bool allDimsConst = true;
for (size_t i = 0; i < ndims; ++i) {
if (!isaConstant(DtoRVal(dims[i]))) {
allDimsConst = false;
}
}
// build dims
LLValue *array;
if (allDimsConst) {
// Build constant array for dimensions
std::vector<LLConstant *> argsdims;
argsdims.reserve(ndims);
for (size_t i = 0; i < ndims; ++i) {
argsdims.push_back(isaConstant(DtoRVal(dims[i])));
}
llvm::Constant *dims = llvm::ConstantArray::get(
llvm::ArrayType::get(DtoSize_t(), ndims), argsdims);
auto gvar = new llvm::GlobalVariable(gIR->module, dims->getType(), true,
LLGlobalValue::InternalLinkage, dims,
".dimsarray");
array = llvm::ConstantExpr::getBitCast(gvar, getPtrToType(dims->getType()));
} else {
// Build static array for dimensions
LLArrayType *type = LLArrayType::get(DtoSize_t(), ndims);
array = DtoRawAlloca(type, 0, ".dimarray");
for (size_t i = 0; i < ndims; ++i) {
DtoStore(DtoRVal(dims[i]), DtoGEP(array, 0, i, ".ndim"));
}
}
LLStructType *dtype = DtoArrayType(DtoSize_t());
LLValue *darray = DtoRawAlloca(dtype, 0, ".array");
DtoStore(DtoConstSize_t(ndims), DtoGEP(darray, 0u, 0, ".len"));
DtoStore(DtoBitCast(array, getPtrToType(DtoSize_t())),
DtoGEP(darray, 0, 1, ".ptr"));
// call allocator
LLValue *newptr =
gIR->CreateCallOrInvoke(fn, arrayTypeInfo, DtoLoad(darray), ".gc_mem");
IF_LOG Logger::cout() << "final ptr = " << *newptr << '\n';
return getSlice(arrayType, newptr);
}
////////////////////////////////////////////////////////////////////////////////
DSliceValue *DtoResizeDynArray(const Loc &loc, Type *arrayType, DValue *array,
LLValue *newdim) {
IF_LOG Logger::println("DtoResizeDynArray : %s", arrayType->toChars());
LOG_SCOPE;
assert(array);
assert(newdim);
assert(arrayType);
assert(arrayType->toBasetype()->ty == TY::Tarray);
// decide on what runtime function to call based on whether the type is zero
// initialized
bool zeroInit = arrayType->toBasetype()->nextOf()->isZeroInit();
// call runtime
LLFunction *fn =
getRuntimeFunction(loc, gIR->module, zeroInit ? "_d_arraysetlengthT"
: "_d_arraysetlengthiT");
LLValue *newArray = gIR->CreateCallOrInvoke(
fn, DtoTypeInfoOf(loc, arrayType), newdim,
DtoBitCast(DtoLVal(array), fn->getFunctionType()->getParamType(2)),
".gc_mem");
return getSlice(arrayType, newArray);
}
////////////////////////////////////////////////////////////////////////////////
void DtoCatAssignElement(const Loc &loc, DValue *array, Expression *exp) {
IF_LOG Logger::println("DtoCatAssignElement");
LOG_SCOPE;
assert(array);
Type *arrayType = array->type->toBasetype();
// Evaluate the expression to be appended first; it may affect the array.
DValue *expVal = toElem(exp);
// The druntime function extends the slice in-place (length += 1, ptr
// potentially moved to a new block).
LLFunction *fn = getRuntimeFunction(loc, gIR->module, "_d_arrayappendcTX");
gIR->CreateCallOrInvoke(
fn, DtoTypeInfoOf(loc, arrayType),
DtoBitCast(DtoLVal(array), fn->getFunctionType()->getParamType(1)),
DtoConstSize_t(1), ".appendedArray");
// Assign to the new last element.
LLValue *newLength = DtoArrayLen(array);
LLValue *ptr = DtoArrayPtr(array);
LLValue *lastIndex =
gIR->ir->CreateSub(newLength, DtoConstSize_t(1), ".lastIndex");
LLValue *lastElemPtr = DtoGEP1(ptr, lastIndex, ".lastElem");
DLValue lastElem(arrayType->nextOf(), lastElemPtr);
DtoAssign(loc, &lastElem, expVal, EXP::blit);
callPostblit(loc, exp, lastElemPtr);
}
////////////////////////////////////////////////////////////////////////////////
DSliceValue *DtoCatAssignArray(const Loc &loc, DValue *arr, Expression *exp) {
IF_LOG Logger::println("DtoCatAssignArray");
LOG_SCOPE;
Type *arrayType = arr->type;
LLFunction *fn = getRuntimeFunction(loc, gIR->module, "_d_arrayappendT");
// Call _d_arrayappendT(TypeInfo ti, byte[] *px, byte[] y)
LLValue *newArray = gIR->CreateCallOrInvoke(
fn, DtoTypeInfoOf(loc, arrayType),
DtoBitCast(DtoLVal(arr), fn->getFunctionType()->getParamType(1)),
DtoAggrPaint(DtoSlice(exp), fn->getFunctionType()->getParamType(2)),
".appendedArray");
return getSlice(arrayType, newArray);
}
////////////////////////////////////////////////////////////////////////////////
DSliceValue *DtoCatArrays(const Loc &loc, Type *arrayType, Expression *exp1,
Expression *exp2) {
IF_LOG Logger::println("DtoCatAssignArray");
LOG_SCOPE;
llvm::SmallVector<llvm::Value *, 3> args;
LLFunction *fn = nullptr;
if (auto ce = exp1->isCatExp()) { // handle multiple concat
fn = getRuntimeFunction(loc, gIR->module, "_d_arraycatnTX");
// Create array of slices
typedef llvm::SmallVector<llvm::Value *, 16> ArgVector;
ArgVector arrs;
arrs.push_back(DtoSlicePtr(exp2));
do {
arrs.push_back(DtoSlicePtr(ce->e2));
ce = static_cast<CatExp *>(ce->e1);
} while (ce->op == EXP::concatenate);
arrs.push_back(DtoSlicePtr(ce));
// Create static array from slices
LLPointerType *ptrarraytype = isaPointer(arrs[0]);
assert(ptrarraytype && "Expected pointer type");
LLStructType *arraytype = isaStruct(ptrarraytype->getPointerElementType());
assert(arraytype && "Expected struct type");
LLArrayType *type = LLArrayType::get(arraytype, arrs.size());
LLValue *array = DtoRawAlloca(type, 0, ".slicearray");
unsigned int i = 0;
for (ArgVector::reverse_iterator I = arrs.rbegin(), E = arrs.rend(); I != E;
++I) {
LLValue *v = DtoLoad(DtoBitCast(*I, ptrarraytype));
DtoStore(v, DtoGEP(array, 0, i++, ".slice"));
}
LLStructType *type2 = DtoArrayType(arraytype);
LLValue *array2 = DtoRawAlloca(type2, 0, ".array");
DtoStore(DtoConstSize_t(arrs.size()), DtoGEP(array2, 0u, 0, ".len"));
DtoStore(DtoBitCast(array, ptrarraytype), DtoGEP(array2, 0, 1, ".ptr"));
LLValue *val =
DtoLoad(DtoBitCast(array2, getPtrToType(DtoArrayType(DtoArrayType(
LLType::getInt8Ty(gIR->context()))))));
// TypeInfo ti
args.push_back(DtoTypeInfoOf(loc, arrayType));
// byte[][] arrs
args.push_back(val);
} else {
fn = getRuntimeFunction(loc, gIR->module, "_d_arraycatT");
// TypeInfo ti
args.push_back(DtoTypeInfoOf(loc, arrayType));
// byte[] x
LLValue *val = DtoLoad(DtoSlicePtr(exp1));
val = DtoAggrPaint(val, fn->getFunctionType()->getParamType(1));
args.push_back(val);
// byte[] y
val = DtoLoad(DtoSlicePtr(exp2));
val = DtoAggrPaint(val, fn->getFunctionType()->getParamType(2));
args.push_back(val);
}
auto newArray = gIR->CreateCallOrInvoke(fn, args, ".appendedArray");
return getSlice(arrayType, newArray);
}
////////////////////////////////////////////////////////////////////////////////
DSliceValue *DtoAppendDChar(const Loc &loc, DValue *arr, Expression *exp,
const char *func) {
LLValue *valueToAppend = DtoRVal(exp);
// Prepare arguments
LLFunction *fn = getRuntimeFunction(loc, gIR->module, func);
// Call function (ref string x, dchar c)
LLValue *newArray = gIR->CreateCallOrInvoke(
fn, DtoBitCast(DtoLVal(arr), fn->getFunctionType()->getParamType(0)),
DtoBitCast(valueToAppend, fn->getFunctionType()->getParamType(1)),
".appendedArray");
return getSlice(arr->type, newArray);
}
////////////////////////////////////////////////////////////////////////////////
DSliceValue *DtoAppendDCharToString(const Loc &loc, DValue *arr,
Expression *exp) {
IF_LOG Logger::println("DtoAppendDCharToString");
LOG_SCOPE;
return DtoAppendDChar(loc, arr, exp, "_d_arrayappendcd");
}
////////////////////////////////////////////////////////////////////////////////
DSliceValue *DtoAppendDCharToUnicodeString(const Loc &loc, DValue *arr,
Expression *exp) {
IF_LOG Logger::println("DtoAppendDCharToUnicodeString");
LOG_SCOPE;
return DtoAppendDChar(loc, arr, exp, "_d_arrayappendwd");
}
////////////////////////////////////////////////////////////////////////////////
namespace {
// helper for eq and cmp
LLValue *DtoArrayEqCmp_impl(const Loc &loc, const char *func, DValue *l,
DValue *r, bool useti) {
IF_LOG Logger::println("comparing arrays");
LLFunction *fn = getRuntimeFunction(loc, gIR->module, func);
assert(fn);
// find common dynamic array type
Type *commonType = l->type->toBasetype()->nextOf()->arrayOf();
// cast static arrays to dynamic ones, this turns them into DSliceValues
Logger::println("casting to dynamic arrays");
l = DtoCastArray(loc, l, commonType);
r = DtoCastArray(loc, r, commonType);
LLSmallVector<LLValue *, 3> args;
// get values, reinterpret cast to void[]
args.push_back(DtoAggrPaint(DtoRVal(l),
DtoArrayType(LLType::getInt8Ty(gIR->context()))));
args.push_back(DtoAggrPaint(DtoRVal(r),
DtoArrayType(LLType::getInt8Ty(gIR->context()))));
// pass array typeinfo ?
if (useti) {
LLValue *tival = DtoTypeInfoOf(loc, l->type);
args.push_back(DtoBitCast(tival, fn->getFunctionType()->getParamType(2)));
}
return gIR->CreateCallOrInvoke(fn, args);
}
/// When `true` is returned, the type can be compared using `memcmp`.
/// See `validCompareWithMemcmp`.
bool validCompareWithMemcmpType(Type *t) {
switch (t->ty) {
case TY::Tsarray: {
auto *elemType = t->baseElemOf();
return validCompareWithMemcmpType(elemType);
}
case TY::Tstruct:
// TODO: Implement when structs can be compared with memcmp. Remember that
// structs can have a user-defined opEquals, alignment padding bytes (in
// arrays), and padding bytes.
return false;
case TY::Tvoid:
case TY::Tint8:
case TY::Tuns8:
case TY::Tint16:
case TY::Tuns16:
case TY::Tint32:
case TY::Tuns32:
case TY::Tint64:
case TY::Tuns64:
case TY::Tint128:
case TY::Tuns128:
case TY::Tbool:
case TY::Tchar:
case TY::Twchar:
case TY::Tdchar:
case TY::Tpointer:
return true;
// TODO: Determine whether this can be "return true" too:
// case TY::Tvector:
default:
return false;
}
}
/// When `true` is returned, `l` and `r` can be compared using `memcmp`.
///
/// This function may return `false` even though `memcmp` would be valid.
/// It may only return `true` if it is 100% certain.
///
/// Comparing with memcmp is often not valid, for example due to
/// - Floating point types
/// - Padding bytes
/// - User-defined opEquals
bool validCompareWithMemcmp(DValue *l, DValue *r) {
auto *lElemType = l->type->toBasetype()->nextOf()->toBasetype();
auto *rElemType = r->type->toBasetype()->nextOf()->toBasetype();
// Only memcmp equivalent element types (memcmp should be used for
// `const int[3] == int[]`, but not for `int[3] == short[3]`).
if (!lElemType->equivalent(rElemType))
return false;
return validCompareWithMemcmpType(lElemType);
}
// Create a call instruction to memcmp.
llvm::CallInst *callMemcmp(const Loc &loc, IRState &irs, LLValue *l_ptr,
LLValue *r_ptr, LLValue *numElements) {
assert(l_ptr && r_ptr && numElements);
LLFunction *fn = getRuntimeFunction(loc, gIR->module, "memcmp");
assert(fn);
auto sizeInBytes = numElements;
size_t elementSize = getTypeAllocSize(l_ptr->getType()->getContainedType(0));
if (elementSize != 1) {
sizeInBytes = irs.ir->CreateMul(sizeInBytes, DtoConstSize_t(elementSize));
}
// Call memcmp.
LLValue *args[] = {DtoBitCast(l_ptr, getVoidPtrType()),
DtoBitCast(r_ptr, getVoidPtrType()), sizeInBytes};
return irs.ir->CreateCall(fn, args);
}
/// Compare `l` and `r` using memcmp. No checks are done for validity.
///
/// This function can deal with comparisons of static and dynamic arrays
/// with memcmp.
///
/// Note: the dynamic array length check is not covered by (LDC's) PGO.
LLValue *DtoArrayEqCmp_memcmp(const Loc &loc, DValue *l, DValue *r,
IRState &irs) {
IF_LOG Logger::println("Comparing arrays using memcmp");
auto *l_ptr = DtoArrayPtr(l);
auto *r_ptr = DtoArrayPtr(r);
auto *l_length = DtoArrayLen(l);
// Early return for the simple case of comparing two static arrays.
const bool staticArrayComparison =
(l->type->toBasetype()->ty == TY::Tsarray) &&
(r->type->toBasetype()->ty == TY::Tsarray);
if (staticArrayComparison) {
// TODO: simply codegen when comparing static arrays with different length (int[3] == int[2])
return callMemcmp(loc, irs, l_ptr, r_ptr, l_length);
}
// First compare the array lengths
auto lengthsCompareEqual =
irs.ir->CreateICmp(llvm::ICmpInst::ICMP_EQ, l_length, DtoArrayLen(r));
llvm::BasicBlock *incomingBB = irs.scopebb();
llvm::BasicBlock *memcmpBB = irs.insertBB("domemcmp");
llvm::BasicBlock *memcmpEndBB = irs.insertBBAfter(memcmpBB, "memcmpend");
irs.ir->CreateCondBr(lengthsCompareEqual, memcmpBB, memcmpEndBB);
// If lengths are equal: call memcmp.
// Note: no extra null checks are needed before passing the pointers to memcmp.
// The array comparison is UB for non-zero length, and memcmp will correctly
// return 0 (equality) when the length is zero.
irs.ir->SetInsertPoint(memcmpBB);
auto memcmpAnswer = callMemcmp(loc, irs, l_ptr, r_ptr, l_length);
irs.ir->CreateBr(memcmpEndBB);
// Merge the result of length check and memcmp call into a phi node.
irs.ir->SetInsertPoint(memcmpEndBB);
llvm::PHINode *phi =
irs.ir->CreatePHI(LLType::getInt32Ty(gIR->context()), 2, "cmp_result");
phi->addIncoming(DtoConstInt(1), incomingBB);
phi->addIncoming(memcmpAnswer, memcmpBB);
return phi;
}
} // end anonymous namespace
////////////////////////////////////////////////////////////////////////////////
LLValue *DtoArrayEquals(const Loc &loc, EXP op, DValue *l, DValue *r) {
LLValue *res = nullptr;
if (r->isNull()) {
// optimize comparisons against null by rewriting to `l.length op 0`
const auto predicate = eqTokToICmpPred(op);
res = gIR->ir->CreateICmp(predicate, DtoArrayLen(l), DtoConstSize_t(0));
} else if (validCompareWithMemcmp(l, r)) {
// Use memcmp directly if possible. This avoids typeinfo lookup, and enables
// further optimization because LLVM understands the semantics of C's
// `memcmp`.
const auto predicate = eqTokToICmpPred(op);
const auto memcmp_result = DtoArrayEqCmp_memcmp(loc, l, r, *gIR);
res = gIR->ir->CreateICmp(predicate, memcmp_result, DtoConstInt(0));
} else {
res = DtoArrayEqCmp_impl(loc, "_adEq2", l, r, true);
const auto predicate = eqTokToICmpPred(op, /* invert = */ true);
res = gIR->ir->CreateICmp(predicate, res, DtoConstInt(0));
}
return res;
}
////////////////////////////////////////////////////////////////////////////////
LLValue *DtoDynArrayIs(EXP op, DValue *l, DValue *r) {
assert(l);
assert(r);
LLValue *len1 = DtoArrayLen(l);
LLValue *ptr1 = DtoArrayPtr(l);
LLValue *len2 = DtoArrayLen(r);
LLValue *ptr2 = DtoArrayPtr(r);
return createIPairCmp(op, len1, ptr1, len2, ptr2);
}
////////////////////////////////////////////////////////////////////////////////
LLValue *DtoArrayLen(DValue *v) {
IF_LOG Logger::println("DtoArrayLen");
LOG_SCOPE;
Type *t = v->type->toBasetype();
if (t->ty == TY::Tarray) {
if (v->isNull()) {
return DtoConstSize_t(0);
}
if (v->isLVal()) {
return DtoLoad(DtoGEP(DtoLVal(v), 0u, 0), ".len");
}
auto slice = v->isSlice();
assert(slice);
return slice->getLength();
}
if (t->ty == TY::Tsarray) {
assert(!v->isSlice());
assert(!v->isNull());
TypeSArray *sarray = static_cast<TypeSArray *>(t);
return DtoConstSize_t(sarray->dim->toUInteger());
}
llvm_unreachable("unsupported array for len");
}
////////////////////////////////////////////////////////////////////////////////
LLValue *DtoArrayPtr(DValue *v) {
IF_LOG Logger::println("DtoArrayPtr");
LOG_SCOPE;
Type *t = v->type->toBasetype();
// v's LL array element type may not be the real one
// due to implicit casts (e.g., to base class)
LLType *wantedLLPtrType = DtoPtrToType(t->nextOf());
LLValue *ptr = nullptr;
if (t->ty == TY::Tarray) {
if (v->isNull()) {
ptr = getNullPtr(wantedLLPtrType);
} else if (v->isLVal()) {
ptr = DtoLoad(DtoGEP(DtoLVal(v), 0, 1), ".ptr");
} else {
auto slice = v->isSlice();
assert(slice);
ptr = slice->getPtr();
}
} else if (t->ty == TY::Tsarray) {
assert(!v->isSlice());
assert(!v->isNull());
ptr = DtoLVal(v);
} else {
llvm_unreachable("Unexpected array type.");
}
return DtoBitCast(ptr, wantedLLPtrType);
}
////////////////////////////////////////////////////////////////////////////////
DValue *DtoCastArray(const Loc &loc, DValue *u, Type *to) {
IF_LOG Logger::println("DtoCastArray");
LOG_SCOPE;
LLType *tolltype = DtoType(to);
Type *totype = to->toBasetype();
Type *fromtype = u->type->toBasetype();
if (fromtype->ty != TY::Tarray && fromtype->ty != TY::Tsarray) {
error(loc, "can't cast `%s` to `%s`", u->type->toChars(), to->toChars());
fatal();
}
IF_LOG Logger::cout() << "from array or sarray" << '\n';
if (totype->ty == TY::Tpointer) {
IF_LOG Logger::cout() << "to pointer" << '\n';
LLValue *ptr = DtoArrayPtr(u);
if (ptr->getType() != tolltype) {
ptr = gIR->ir->CreateBitCast(ptr, tolltype);
}
return new DImValue(to, ptr);
}
if (totype->ty == TY::Tarray) {
IF_LOG Logger::cout() << "to array" << '\n';
LLValue *length = nullptr;
LLValue *ptr = nullptr;
if (fromtype->ty == TY::Tsarray) {
length = DtoConstSize_t(
static_cast<TypeSArray *>(fromtype)->dim->toUInteger());
ptr = DtoLVal(u);
} else {
length = DtoArrayLen(u);
ptr = DtoArrayPtr(u);
}
const auto fsize = fromtype->nextOf()->size();
const auto tsize = totype->nextOf()->size();
if (fsize != tsize) {
if (auto constLength = isaConstantInt(length)) {
// compute new constant length: (constLength * fsize) / tsize
const auto totalSize = constLength->getZExtValue() * fsize;
if (totalSize % tsize != 0) {
error(loc,
"invalid cast from `%s` to `%s`, the element sizes don't "
"line up",
fromtype->toChars(), totype->toChars());
fatal();
}
length = DtoConstSize_t(totalSize / tsize);
} else if (fsize % tsize == 0) {
// compute new dynamic length: length * (fsize / tsize)
length = gIR->ir->CreateMul(length, DtoConstSize_t(fsize / tsize));
} else {
llvm_unreachable("should have been lowered to `__ArrayCast`");
}
}
LLType *ptrty = tolltype->getStructElementType(1);
return new DSliceValue(to, length, DtoBitCast(ptr, ptrty));
}
if (totype->ty == TY::Tsarray) {
IF_LOG Logger::cout() << "to sarray" << '\n';
LLValue *ptr = nullptr;
if (fromtype->ty == TY::Tsarray) {
ptr = DtoLVal(u);
} else {
size_t tosize = static_cast<TypeSArray *>(totype)->dim->toInteger();
size_t i =
(tosize * totype->nextOf()->size() - 1) / fromtype->nextOf()->size();
DConstValue index(Type::tsize_t, DtoConstSize_t(i));
DtoIndexBoundsCheck(loc, u, &index);
ptr = DtoArrayPtr(u);
}
return new DLValue(to, DtoBitCast(ptr, getPtrToType(tolltype)));
}
if (totype->ty == TY::Tbool) {
// return (arr.ptr !is null)
LLValue *ptr = DtoArrayPtr(u);
LLConstant *nul = getNullPtr(ptr->getType());
return new DImValue(to, gIR->ir->CreateICmpNE(ptr, nul));
}
const auto castedPtr = DtoBitCast(DtoArrayPtr(u), getPtrToType(tolltype));
return new DLValue(to, castedPtr);
}
void DtoIndexBoundsCheck(const Loc &loc, DValue *arr, DValue *index) {
Type *arrty = arr->type->toBasetype();
assert((arrty->ty == TY::Tsarray || arrty->ty == TY::Tarray ||
arrty->ty == TY::Tpointer) &&
"Can only array bounds check for static or dynamic arrays");
if (!index) {
// Caller supplied no index, known in-bounds.
return;
}
if (arrty->ty == TY::Tpointer) {
// Length of pointers is unknown, ignore.
return;
}
if (auto ts = arrty->isTypeSArray()) {
if (ts->isIncomplete()) // importC
return;
}
LLValue *const llIndex = DtoRVal(index);
LLValue *const llLength = DtoArrayLen(arr);
LLValue *const cond = gIR->ir->CreateICmp(llvm::ICmpInst::ICMP_ULT, llIndex,
llLength, "bounds.cmp");
llvm::BasicBlock *okbb = gIR->insertBB("bounds.ok");
llvm::BasicBlock *failbb = gIR->insertBBAfter(okbb, "bounds.fail");
gIR->ir->CreateCondBr(cond, okbb, failbb);
// set up failbb to call the array bounds error runtime function
gIR->ir->SetInsertPoint(failbb);
emitArrayIndexError(gIR, loc, llIndex, llLength);
// if ok, proceed in okbb
gIR->ir->SetInsertPoint(okbb);
}
static void emitRangeErrorImpl(IRState *irs, const Loc &loc,
const char *cAssertMsg, const char *dFnName,
llvm::ArrayRef<LLValue *> extraArgs) {
Module *const module = irs->func()->decl->getModule();
switch (global.params.checkAction) {
case CHECKACTION_C:
DtoCAssert(module, loc, DtoConstCString(cAssertMsg));
break;
case CHECKACTION_halt:
irs->ir->CreateCall(GET_INTRINSIC_DECL(trap), {});
irs->ir->CreateUnreachable();
break;
case CHECKACTION_context:
case CHECKACTION_D: {
auto fn = getRuntimeFunction(loc, irs->module, dFnName);
LLSmallVector<LLValue *, 5> args;
args.reserve(2 + extraArgs.size());
args.push_back(DtoModuleFileName(module, loc));
args.push_back(DtoConstUint(loc.linnum));
args.insert(args.end(), extraArgs.begin(), extraArgs.end());
irs->CreateCallOrInvoke(fn, args);
irs->ir->CreateUnreachable();
break;
}
default:
llvm_unreachable("Unhandled checkAction");
}
}
void emitRangeError(IRState *irs, const Loc &loc) {
emitRangeErrorImpl(irs, loc, "array overflow", "_d_arraybounds", {});
}
void emitArraySliceError(IRState *irs, const Loc &loc, LLValue *lower,
LLValue *upper, LLValue *length) {
emitRangeErrorImpl(irs, loc, "array slice out of bounds",
"_d_arraybounds_slice", {lower, upper, length});
}
void emitArrayIndexError(IRState *irs, const Loc &loc, LLValue *index,
LLValue *length) {
emitRangeErrorImpl(irs, loc, "array index out of bounds",
"_d_arraybounds_index", {index, length});
}
|