File: binops.cpp

package info (click to toggle)
ldc 1%3A1.30.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 59,248 kB
  • sloc: cpp: 61,598; ansic: 14,545; sh: 1,014; makefile: 972; asm: 510; objc: 135; exp: 48; python: 12
file content (408 lines) | stat: -rw-r--r-- 13,163 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
//===-- binops.cpp --------------------------------------------------------===//
//
//                         LDC – the LLVM D compiler
//
// This file is distributed under the BSD-style LDC license. See the LICENSE
// file for details.
//
//===----------------------------------------------------------------------===//

#include "gen/binops.h"

#include "dmd/declaration.h"
#include "dmd/expression.h"
#include "gen/complex.h"
#include "gen/dvalue.h"
#include "gen/irstate.h"
#include "gen/llvm.h"
#include "gen/llvmhelpers.h"
#include "gen/logger.h"
#include "gen/tollvm.h"

//////////////////////////////////////////////////////////////////////////////

dinteger_t undoStrideMul(const Loc &loc, Type *t, dinteger_t offset) {
  assert(t->ty == TY::Tpointer);
  const auto elemSize = t->nextOf()->size(loc);
  assert((offset % elemSize) == 0 &&
         "Expected offset by an integer amount of elements");

  return offset / elemSize;
}

//////////////////////////////////////////////////////////////////////////////

namespace {
struct RVals {
  DRValue *lhs, *rhs;
};

RVals evalSides(DValue *lhs, Expression *rhs, bool loadLhsAfterRhs) {
  RVals rvals;

  if (!loadLhsAfterRhs) {
    rvals.lhs = lhs->getRVal();
    rvals.rhs = toElem(rhs)->getRVal();
  } else {
    rvals.rhs = toElem(rhs)->getRVal();
    rvals.lhs = lhs->getRVal();
  }

  return rvals;
}

/// Tries to remove a MulExp by a constant value of baseSize from e. Returns
/// NULL if not possible.
Expression *extractNoStrideInc(Expression *e, dinteger_t baseSize, bool &negate) {
  MulExp *mul;
  while (true) {
    if (auto ne = e->isNegExp()) {
      negate = !negate;
      e = ne->e1;
      continue;
    }

    if (auto me = e->isMulExp()) {
      mul = me;
      break;
    }

    return nullptr;
  }

  if (!mul->e2->isConst()) {
    return nullptr;
  }
  dinteger_t stride = mul->e2->toInteger();

  if (stride != baseSize) {
    return nullptr;
  }

  return mul->e1;
}

DValue *emitPointerOffset(Loc loc, DValue *base, Expression *offset,
                          bool negateOffset, Type *resultType,
                          bool loadLhsAfterRhs) {
  // The operand emitted by the frontend is in units of bytes, and not
  // pointer elements. We try to undo this before resorting to
  // temporarily bitcasting the pointer to i8.

  LLValue *llBase = nullptr;
  LLValue *llOffset = nullptr;
  LLValue *llResult = nullptr;

  if (offset->isConst()) {
    llBase = DtoRVal(base);
    dinteger_t byteOffset = offset->toInteger();
    if (byteOffset == 0) {
      llResult = llBase;
    } else {
      llOffset = DtoConstSize_t(undoStrideMul(loc, base->type, byteOffset));
    }
  } else {
    Expression *noStrideInc = extractNoStrideInc(
        offset, base->type->nextOf()->size(loc), negateOffset);
    auto rvals =
        evalSides(base, noStrideInc ? noStrideInc : offset, loadLhsAfterRhs);
    llBase = DtoRVal(rvals.lhs);
    llOffset = DtoRVal(rvals.rhs);
    if (!noStrideInc) // byte offset => cast base to i8*
      llBase = DtoBitCast(llBase, getVoidPtrType());
  }

  if (!llResult) {
    if (negateOffset)
      llOffset = gIR->ir->CreateNeg(llOffset);
    llResult = DtoGEP1(llBase, llOffset);
  }

  return new DImValue(resultType, DtoBitCast(llResult, DtoType(resultType)));
}

// LDC issue #2537 / DMD issue #18317: associative arrays can be
// added/subtracted via `typeof(null)` (implicitly cast to the AA type).
// If the specified type is an AA type, this function makes sure one operand is
// a null constant and returns the other operand (AA) as new DImValue.
// Returns null if type is not an AA.
DValue *isAssociativeArrayAndNull(Type *type, LLValue *lhs, LLValue *rhs) {
  if (type->ty != TY::Taarray)
    return nullptr;

  if (auto constantL = isaConstant(lhs)) {
    if (constantL->isNullValue())
      return new DImValue(type, rhs);
  };
  if (auto constantR = isaConstant(rhs)) {
    if (constantR->isNullValue())
      return new DImValue(type, lhs);
  }

  llvm_unreachable(
      "associative array addition/subtraction without null operand");
}
}

//////////////////////////////////////////////////////////////////////////////

DValue *binAdd(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
               bool loadLhsAfterRhs) {
  Type *lhsType = lhs->type->toBasetype();
  Type *rhsType = rhs->type->toBasetype();

  if (lhsType != rhsType && lhsType->ty == TY::Tpointer &&
      rhsType->isintegral()) {
    Logger::println("Adding integer to pointer");
    return emitPointerOffset(loc, lhs, rhs, false, type, loadLhsAfterRhs);
  }

  auto rvals = evalSides(lhs, rhs, loadLhsAfterRhs);

  if (type->ty == TY::Tnull)
    return DtoNullValue(type, loc);
  if (type->iscomplex())
    return DtoComplexAdd(loc, type, rvals.lhs, rvals.rhs);

  LLValue *l = DtoRVal(DtoCast(loc, rvals.lhs, type));
  LLValue *r = DtoRVal(DtoCast(loc, rvals.rhs, type));

  if (auto aa = isAssociativeArrayAndNull(type, l, r))
    return aa;

  LLValue *res = (type->isfloating() ? gIR->ir->CreateFAdd(l, r)
                                     : gIR->ir->CreateAdd(l, r));

  return new DImValue(type, res);
}

//////////////////////////////////////////////////////////////////////////////

DValue *binMin(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
               bool loadLhsAfterRhs) {
  Type *lhsType = lhs->type->toBasetype();
  Type *rhsType = rhs->type->toBasetype();

  if (lhsType != rhsType && lhsType->ty == TY::Tpointer &&
      rhsType->isintegral()) {
    Logger::println("Subtracting integer from pointer");
    return emitPointerOffset(loc, lhs, rhs, true, type, loadLhsAfterRhs);
  }

  auto rvals = evalSides(lhs, rhs, loadLhsAfterRhs);

  if (lhsType->ty == TY::Tpointer && rhsType->ty == TY::Tpointer) {
    LLValue *l = DtoRVal(rvals.lhs);
    LLValue *r = DtoRVal(rvals.rhs);
    LLType *llSizeT = DtoSize_t();
    l = gIR->ir->CreatePtrToInt(l, llSizeT);
    r = gIR->ir->CreatePtrToInt(r, llSizeT);
    LLValue *diff = gIR->ir->CreateSub(l, r);
    LLType *llType = DtoType(type);
    if (diff->getType() != llType)
      diff = gIR->ir->CreateIntToPtr(diff, llType);
    return new DImValue(type, diff);
  }

  if (type->ty == TY::Tnull)
    return DtoNullValue(type, loc);
  if (type->iscomplex())
    return DtoComplexMin(loc, type, rvals.lhs, rvals.rhs);

  LLValue *l = DtoRVal(DtoCast(loc, rvals.lhs, type));
  LLValue *r = DtoRVal(DtoCast(loc, rvals.rhs, type));

  if (auto aa = isAssociativeArrayAndNull(type, l, r))
    return aa;

  LLValue *res = (type->isfloating() ? gIR->ir->CreateFSub(l, r)
                                     : gIR->ir->CreateSub(l, r));

  return new DImValue(type, res);
}

//////////////////////////////////////////////////////////////////////////////

DValue *binMul(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
               bool loadLhsAfterRhs) {
  auto rvals = evalSides(lhs, rhs, loadLhsAfterRhs);

  if (type->iscomplex())
    return DtoComplexMul(loc, type, rvals.lhs, rvals.rhs);

  LLValue *l = DtoRVal(DtoCast(loc, rvals.lhs, type));
  LLValue *r = DtoRVal(DtoCast(loc, rvals.rhs, type));
  LLValue *res = (type->isfloating() ? gIR->ir->CreateFMul(l, r)
                                     : gIR->ir->CreateMul(l, r));

  return new DImValue(type, res);
}

//////////////////////////////////////////////////////////////////////////////

DValue *binDiv(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
               bool loadLhsAfterRhs) {
  auto rvals = evalSides(lhs, rhs, loadLhsAfterRhs);

  if (type->iscomplex())
    return DtoComplexDiv(loc, type, rvals.lhs, rvals.rhs);

  LLValue *l = DtoRVal(DtoCast(loc, rvals.lhs, type));
  LLValue *r = DtoRVal(DtoCast(loc, rvals.rhs, type));
  LLValue *res;
  if (type->isfloating()) {
    res = gIR->ir->CreateFDiv(l, r);
  } else if (!isLLVMUnsigned(type)) {
    res = gIR->ir->CreateSDiv(l, r);
  } else {
    res = gIR->ir->CreateUDiv(l, r);
  }

  return new DImValue(type, res);
}

//////////////////////////////////////////////////////////////////////////////

DValue *binMod(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
               bool loadLhsAfterRhs) {
  auto rvals = evalSides(lhs, rhs, loadLhsAfterRhs);

  if (type->iscomplex())
    return DtoComplexMod(loc, type, rvals.lhs, rvals.rhs);

  LLValue *l = DtoRVal(DtoCast(loc, rvals.lhs, type));
  LLValue *r = DtoRVal(DtoCast(loc, rvals.rhs, type));
  LLValue *res;
  if (type->isfloating()) {
    res = gIR->ir->CreateFRem(l, r);
  } else if (!isLLVMUnsigned(type)) {
    res = gIR->ir->CreateSRem(l, r);
  } else {
    res = gIR->ir->CreateURem(l, r);
  }

  return new DImValue(type, res);
}

//////////////////////////////////////////////////////////////////////////////

namespace {
DValue *binBitwise(llvm::Instruction::BinaryOps binOp, const Loc &loc,
                   Type *type, DValue *lhs, Expression *rhs,
                   bool loadLhsAfterRhs) {
  auto rvals = evalSides(lhs, rhs, loadLhsAfterRhs);

  LLValue *l = DtoRVal(DtoCast(loc, rvals.lhs, type));
  LLValue *r = DtoRVal(DtoCast(loc, rvals.rhs, type));
  LLValue *res = llvm::BinaryOperator::Create(binOp, l, r, "", gIR->scopebb());

  return new DImValue(type, res);
}
}

DValue *binAnd(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
               bool loadLhsAfterRhs) {
  return binBitwise(llvm::Instruction::And, loc, type, lhs, rhs,
                    loadLhsAfterRhs);
}

DValue *binOr(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
              bool loadLhsAfterRhs) {
  return binBitwise(llvm::Instruction::Or, loc, type, lhs, rhs,
                    loadLhsAfterRhs);
}

DValue *binXor(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
               bool loadLhsAfterRhs) {
  return binBitwise(llvm::Instruction::Xor, loc, type, lhs, rhs,
                    loadLhsAfterRhs);
}

DValue *binShl(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
               bool loadLhsAfterRhs) {
  return binBitwise(llvm::Instruction::Shl, loc, type, lhs, rhs,
                    loadLhsAfterRhs);
}

DValue *binShr(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
               bool loadLhsAfterRhs) {
  auto op = (isLLVMUnsigned(type) ? llvm::Instruction::LShr
                                  : llvm::Instruction::AShr);
  return binBitwise(op, loc, type, lhs, rhs, loadLhsAfterRhs);
}

DValue *binUshr(const Loc &loc, Type *type, DValue *lhs, Expression *rhs,
                bool loadLhsAfterRhs) {
  return binBitwise(llvm::Instruction::LShr, loc, type, lhs, rhs,
                    loadLhsAfterRhs);
}

//////////////////////////////////////////////////////////////////////////////

LLValue *DtoBinNumericEquals(const Loc &loc, DValue *lhs, DValue *rhs, EXP op) {
  assert(op == EXP::equal || op == EXP::notEqual || op == EXP::identity ||
         op == EXP::notIdentity);
  Type *t = lhs->type->toBasetype();
  assert(t->isfloating());
  Logger::println("numeric equality");

  LLValue *res = nullptr;
  if (t->iscomplex()) {
    Logger::println("complex");
    res = DtoComplexEquals(loc, op, lhs, rhs);
  } else if (t->isfloating()) {
    Logger::println("floating");
    res = DtoBinFloatsEquals(loc, lhs, rhs, op);
  }

  assert(res);
  return res;
}

//////////////////////////////////////////////////////////////////////////////

LLValue *DtoBinFloatsEquals(const Loc &loc, DValue *lhs, DValue *rhs, EXP op) {
  LLValue *res = nullptr;
  if (op == EXP::equal || op == EXP::notEqual) {
    LLValue *l = DtoRVal(lhs);
    LLValue *r = DtoRVal(rhs);
    res = (op == EXP::equal ? gIR->ir->CreateFCmpOEQ(l, r)
                            : gIR->ir->CreateFCmpUNE(l, r));
    if (lhs->type->toBasetype()->ty == TY::Tvector) {
      res = mergeVectorEquals(res, op);
    }
  } else {
    const auto cmpop =
        op == EXP::identity ? llvm::ICmpInst::ICMP_EQ : llvm::ICmpInst::ICMP_NE;
    LLValue *sz = DtoConstSize_t(getTypeStoreSize(DtoType(lhs->type)));
    LLValue *val = DtoMemCmp(makeLValue(loc, lhs), makeLValue(loc, rhs), sz);
    res = gIR->ir->CreateICmp(cmpop, val,
                              LLConstantInt::get(val->getType(), 0, false));
  }
  assert(res);
  return res;
}

//////////////////////////////////////////////////////////////////////////////

LLValue *mergeVectorEquals(LLValue *resultsVector, EXP op) {
  // `resultsVector` is a vector of i1 values, the pair-wise results.
  // Bitcast to an integer and check the bits via additional integer
  // comparison.
  const auto sizeInBits = getTypeBitSize(resultsVector->getType());
  LLType *integerType = LLType::getIntNTy(gIR->context(), sizeInBits);
  LLValue *v = DtoBitCast(resultsVector, integerType);

  if (op == EXP::equal) {
    // all pairs must be equal for the vectors to be equal
    LLConstant *allEqual = LLConstant::getAllOnesValue(integerType);
    return gIR->ir->CreateICmpEQ(v, allEqual);
  } else if (op == EXP::notEqual) {
    // any not-equal pair suffices for the vectors to be not-equal
    LLConstant *noneNotEqual = LLConstantInt::get(integerType, 0);
    return gIR->ir->CreateICmpNE(v, noneNotEqual);
  }

  llvm_unreachable("Unsupported operator.");
  return nullptr;
}