1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
|
/*
* Copyright (c) 2003-2012, John Wiegley. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of New Artisans LLC nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @defgroup math Mathematical objects
*/
/**
* @file amount.h
* @author John Wiegley
*
* @ingroup math
*
* @brief Basic type for handling commoditized math: amount_t
*
* An amount is the most basic numerical type in Ledger, and relies on
* commodity.h to represent commoditized amounts, which allows Ledger to
* handle mathematical expressions involving disparate commodities.
*
* Amounts can be of virtually infinite size and precision. When
* division or multiplication is performed, the precision is
* automatically expanded to include as many extra digits as necessary
* to avoid losing information.
*/
#ifndef _AMOUNT_H
#define _AMOUNT_H
#include "utils.h"
#include "times.h"
#include "flags.h"
namespace ledger {
class commodity_t;
struct annotation_t;
struct keep_details_t;
DECLARE_EXCEPTION(amount_error, std::runtime_error);
enum parse_flags_enum_t {
PARSE_DEFAULT = 0x00,
PARSE_PARTIAL = 0x01,
PARSE_SINGLE = 0x02,
PARSE_NO_MIGRATE = 0x04,
PARSE_NO_REDUCE = 0x08,
PARSE_NO_ASSIGN = 0x10,
PARSE_NO_ANNOT = 0x20,
PARSE_OP_CONTEXT = 0x40,
PARSE_SOFT_FAIL = 0x80
};
typedef basic_flags_t<parse_flags_enum_t, uint_least8_t> parse_flags_t;
/**
* @brief Encapsulate infinite-precision commoditized amounts
*
* Used to represent commoditized infinite-precision numbers, and
* uncommoditized, plain numbers. In the commoditized case, commodities
* keep track of how they are used, and are always displayed back to the
* user after the same fashion. For uncommoditized numbers, no display
* truncation is ever done. In both cases, internal precision is always
* kept to an excessive degree.
*/
class amount_t
: public ordered_field_operators<amount_t,
ordered_field_operators<amount_t, double,
ordered_field_operators<amount_t, unsigned long,
ordered_field_operators<amount_t, long> > > >
{
public:
/** Ready the amount subsystem for use.
@note Normally called by session_t::initialize(). */
static void initialize();
/** Shutdown the amount subsystem and free all resources.
@note Normally called by session_t::shutdown(). */
static void shutdown();
static bool is_initialized;
/** The amount's decimal precision. */
typedef uint_least16_t precision_t;
/** Number of places of precision by which values are extended to
avoid losing precision during division and multiplication. */
static const std::size_t extend_by_digits = 6U;
/** If amounts should be streamed using to_fullstring() rather than
to_string(), so that complete precision is always displayed no matter
what the precision of an individual commodity may be. */
static bool stream_fullstrings;
protected:
void _copy(const amount_t& amt);
void _dup();
void _clear();
void _release();
struct bigint_t;
bigint_t * quantity;
commodity_t * commodity_;
public:
/** @name Constructors
@{ */
/** Creates a value for which is_null() is true, and which has no
value or commodity. If used in a value expression it evaluates to
zero, and its commodity equals \c commodity_t::null_commodity. */
amount_t() : quantity(NULL), commodity_(NULL) {
TRACE_CTOR(amount_t, "");
}
/** Convert a double to an amount. As much precision as possible is
decoded from the binary floating point number. */
amount_t(const double val);
/** Convert an unsigned long to an amount. It's precision is zero. */
amount_t(const unsigned long val);
/** Convert a long to an amount. It's precision is zero, and the sign
is preserved. */
amount_t(const long val);
/** Parse a string as an (optionally commoditized) amount. If no
commodity is present, the resulting commodity is \c
commodity_t::null_commodity. The number may be of infinite
precision. */
explicit amount_t(const string& val) : quantity(NULL) {
parse(val);
TRACE_CTOR(amount_t, "const string&");
}
/** Parse a pointer to a C string as an (optionally commoditized)
amount. If no commodity is present, the resulting commodity is \c
commodity_t::null_commodity. The number may be of infinite
precision. */
explicit amount_t(const char * val) : quantity(NULL) {
assert(val);
parse(val);
TRACE_CTOR(amount_t, "const char *");
}
/*@}*/
/** Create an amount whose display precision is never truncated, even
if the amount uses a commodity (which normally causes "round on
streaming" to occur). This function is mostly used by debugging
code and unit tests. This is the proper way to specify \c
$100.005, where display of the extra digit precision is required.
If a regular constructor were used, the amount would stream as \c
$100.01, even though its internal value equals \c $100.005. */
static amount_t exact(const string& value);
/** Release the reference count held for the underlying \c
amount_t::bigint_t object. */
~amount_t() {
TRACE_DTOR(amount_t);
if (quantity)
_release();
}
/** @name Assignment and copy
@{*/
/** Copy an amount object. Copies are very efficient, using a
copy-on-write model. Until the copy is changed, it refers to the
same memory used by the original via reference counting. The \c
amount_t::bigint_t class in amount.cc maintains the reference. */
amount_t(const amount_t& amt) : quantity(NULL) {
if (amt.quantity)
_copy(amt);
else
commodity_ = NULL;
TRACE_CTOR(amount_t, "copy");
}
/** Copy an amount object, applying the given commodity annotation
details afterward. This is equivalent to doing a normal copy
(@see amount_t(const amount_t&)) and then calling
amount_t::annotate(). */
amount_t(const amount_t& amt, const annotation_t& details) : quantity(NULL) {
assert(amt.quantity);
_copy(amt);
annotate(details);
TRACE_CTOR(amount_t, "const amount_t&, const annotation_t&");
}
/** Assign an amount object. This is like copying if the amount was
null beforehand, otherwise the previous value's reference is must
be freed. */
amount_t& operator=(const amount_t& amt);
amount_t& operator=(const double val) {
return *this = amount_t(val);
}
amount_t& operator=(const unsigned long val) {
return *this = amount_t(val);
}
amount_t& operator=(const long val) {
return *this = amount_t(val);
}
/* Assign a string to an amount. This causes the contents of the
string to be parsed, look for a commoditized or uncommoditized
amount specifier. */
amount_t& operator=(const string& str) {
return *this = amount_t(str);
}
amount_t& operator=(const char * str) {
assert(str);
return *this = amount_t(str);
}
/*@}*/
/** @name Comparison
@{ */
/** Compare two amounts, returning a number less than zero if \p amt
is greater, exactly zero if they are equal, and greater than zero
if \p amt is less. This method is used to implement all of the
other comparison methods.*/
int compare(const amount_t& amt) const;
/** Test two amounts for equality. First the commodity pointers are
quickly tested, then the multi-precision values themselves must be
compared. */
bool operator==(const amount_t& amt) const;
template <typename T>
bool operator==(const T& val) const {
return compare(val) == 0;
}
template <typename T>
bool operator<(const T& amt) const {
return compare(amt) < 0;
}
template <typename T>
bool operator>(const T& amt) const {
return compare(amt) > 0;
}
/*@}*/
/** @name Binary arithmetic
*/
/*@{*/
amount_t& operator+=(const amount_t& amt);
amount_t& operator-=(const amount_t& amt);
amount_t& operator*=(const amount_t& amt) {
return multiply(amt);
}
amount_t& multiply(const amount_t& amt, bool ignore_commodity = false);
/** Divide two amounts while extending the precision to preserve the
accuracy of the result. For example, if \c 10 is divided by \c 3,
the result ends up having a precision of \link
amount_t::extend_by_digits \endlink place to avoid losing internal
resolution. */
amount_t& operator/=(const amount_t& amt);
/*@}*/
/** @name Unary arithmetic
@{ */
/** Return an amount's internal precision. To find the precision it
should be displayed at -- assuming it was not created using
amount_t::exact() -- use the following expression instead:
@code
amount.commodity().precision()
@endcode */
precision_t precision() const;
bool keep_precision() const;
void set_keep_precision(const bool keep = true) const;
precision_t display_precision() const;
/** Returns the negated value of an amount.
@see operator-()
*/
amount_t negated() const {
amount_t temp(*this);
temp.in_place_negate();
return temp;
}
void in_place_negate();
amount_t operator-() const {
return negated();
}
/** Returns the absolute value of an amount. Equivalent to:
@code
(x < * 0) ? - x : x
@endcode
*/
amount_t abs() const {
if (sign() < 0)
return negated();
return *this;
}
amount_t inverted() const {
amount_t temp(*this);
temp.in_place_invert();
return temp;
}
void in_place_invert();
/** Yields an amount whose display precision when output is truncated
to the display precision of its commodity. This is normally the
default state of an amount, but if one has become unrounded, this
sets the "keep precision" state back to false.
@see set_keep_precision */
amount_t rounded() const {
amount_t temp(*this);
temp.in_place_round();
return temp;
}
void in_place_round();
/** Yields an amount which has lost all of its extra precision, beyond what
the display precision of the commodity would have printed. */
amount_t truncated() const {
amount_t temp(*this);
temp.in_place_truncate();
return temp;
}
void in_place_truncate();
/** Yields an amount which has lost all of its extra precision, beyond what
the display precision of the commodity would have printed. */
amount_t floored() const {
amount_t temp(*this);
temp.in_place_floor();
return temp;
}
void in_place_floor();
/** Yields an amount which has lost all of its extra precision, beyond what
the display precision of the commodity would have printed. */
amount_t ceilinged() const {
amount_t temp(*this);
temp.in_place_ceiling();
return temp;
}
void in_place_ceiling();
/** Yields an amount whose display precision is never truncated, even
though its commodity normally displays only rounded values. */
amount_t unrounded() const {
amount_t temp(*this);
temp.in_place_unround();
return temp;
}
void in_place_unround();
/** reduces a value to its most basic commodity form, for amounts that
utilize "scaling commodities". For example, an amount of \c 1h
after reduction will be \c 3600s.
*/
amount_t reduced() const {
amount_t temp(*this);
temp.in_place_reduce();
return temp;
}
void in_place_reduce();
/** unreduce(), if used with a "scaling commodity", yields the most
compact form greater than one. That is, \c 3599s will unreduce to
\c 59.98m, while \c 3601 unreduces to \c 1h.
*/
amount_t unreduced() const {
amount_t temp(*this);
temp.in_place_unreduce();
return temp;
}
void in_place_unreduce();
/** Returns the historical value for an amount -- the default moment
returns the most recently known price -- based on the price history
for the given commodity (or determined automatically, if none is
provided). For example, if the amount were <tt>10 AAPL</tt>, and
on Apr 10, 2000 each share of \c AAPL was worth \c $10, then
calling value() for that moment in time would yield the amount \c
$100.00.
*/
optional<amount_t>
value(const datetime_t& moment = datetime_t(),
const commodity_t * in_terms_of = NULL) const;
optional<amount_t> price() const;
/*@}*/
/** @name Truth tests
*/
/*@{*/
/** Truth tests. An amount may be truth test in several ways:
sign() returns an integer less than, greater than, or equal to
zero depending on whether the amount is negative, zero, or
greater than zero. Note that this function tests the actual
value of the amount -- using its internal precision -- and not
the display value. To test its display value, use:
`round().sign()'.
is_nonzero(), or operator bool, returns true if an amount's
display value is not zero.
is_zero() returns true if an amount's display value is zero.
Thus, $0.0001 is considered zero if the current display precision
for dollars is two decimal places.
is_realzero() returns true if an amount's actual value is zero.
Thus, $0.0001 is never considered realzero.
is_null() returns true if an amount has no value and no
commodity. This only occurs if an uninitialized amount has never
been assigned a value.
*/
int sign() const;
operator bool() const {
return is_nonzero();
}
bool is_nonzero() const {
return ! is_zero();
}
bool is_zero() const;
bool is_realzero() const {
return sign() == 0;
}
bool is_null() const {
if (! quantity) {
assert(! commodity_);
return true;
}
return false;
}
/*@}*/
/** @name Conversion
*/
/*@{*/
/** Conversion methods. An amount may be converted to the same types
it can be constructed from -- with the exception of unsigned
long. Implicit conversions are not allowed in C++ (though they
are in Python), rather the following conversion methods must be
called explicitly:
to_double([bool]) returns an amount as a double. If the optional
boolean argument is true (the default), an exception is thrown if
the conversion would lose information.
to_long([bool]) returns an amount as a long integer. If the
optional boolean argument is true (the default), an exception is
thrown if the conversion would lose information.
fits_in_long() returns true if to_long() would not lose
precision.
to_string() returns an amount'ss "display value" as a string --
after rounding the value according to the commodity's default
precision. It is equivalent to: `round().to_fullstring()'.
to_fullstring() returns an amount's "internal value" as a string,
without any rounding.
quantity_string() returns an amount's "display value", but
without any commodity. Note that this is different from
`number().to_string()', because in that case the commodity has
been stripped and the full, internal precision of the amount
would be displayed.
*/
double to_double() const;
long to_long() const;
bool fits_in_long() const;
operator string() const {
return to_string();
}
string to_string() const;
string to_fullstring() const;
string quantity_string() const;
/*@}*/
/** @name Commodity methods
*/
/*@{*/
/** The following methods relate to an
amount's commodity:
commodity() returns an amount's commodity. If the amount has no
commodity, the value returned is the `null_commodity'.
has_commodity() returns true if the amount has a commodity.
set_commodity(commodity_t) sets an amount's commodity to the
given value. Note that this merely sets the current amount to
that commodity, it does not "observe" the amount for possible
changes in the maximum display precision of the commodity, the
way that `parse' does.
clear_commodity() sets an amount's commodity to null, such that
has_commodity() afterwards returns false.
number() returns a commodity-less version of an amount. This is
useful for accessing just the numeric portion of an amount.
*/
commodity_t * commodity_ptr() const;
commodity_t& commodity() const {
return *commodity_ptr();
}
bool has_commodity() const;
void set_commodity(commodity_t& comm) {
if (! quantity)
*this = 0L;
commodity_ = &comm;
}
amount_t with_commodity(const commodity_t& comm) const {
if (commodity_ == &comm) {
return *this;
} else {
amount_t tmp(*this);
tmp.set_commodity(const_cast<commodity_t&>(comm));
return tmp;
}
}
void clear_commodity() {
commodity_ = NULL;
}
amount_t number() const {
if (! has_commodity())
return *this;
amount_t temp(*this);
temp.clear_commodity();
return temp;
}
/*@}*/
/** @name Commodity annotations
*/
/*@{*/
/** An amount's commodity may be annotated with special details, such as the
price it was purchased for, when it was acquired, or an arbitrary note,
identifying perhaps the lot number of an item.
annotate_commodity(amount_t price, [datetime_t date, string tag])
sets the annotations for the current amount's commodity. Only
the price argument is required, although it can be passed as
`none' if no price is desired.
commodity_annotated() returns true if an amount's commodity has
any annotation details associated with it.
annotation_details() returns all of the details of an annotated
commodity's annotations. The structure returns will evaluate as
boolean false if there are no details.
strip_annotations() returns an amount whose commodity's annotations have
been stripped.
*/
void annotate(const annotation_t& details);
bool has_annotation() const;
annotation_t& annotation();
const annotation_t& annotation() const {
return const_cast<amount_t&>(*this).annotation();
}
/** If the lot price is considered whenever working with commoditized
values.
Let's say a user adds two values of the following form:
@code
10 AAPL + 10 AAPL {$20}
@endcode
This expression adds ten shares of Apple stock with another ten
shares that were purchased for \c $20 a share. If \c keep_price
is false, the result of this expression is an amount equal to
<tt>20 AAPL</tt>. If \c keep_price is \c true the expression
yields an exception for adding amounts with different commodities.
In that case, a \link balance_t \endlink object must be used to
store the combined sum. */
amount_t strip_annotations(const keep_details_t& what_to_keep) const;
/*@}*/
/** @name Parsing
*/
/*@{*/
/** The `flags' argument of both parsing may be one or more of the
following:
PARSE_NO_MIGRATE means to not pay attention to the way an
amount is used. Ordinarily, if an amount were $100.001, for
example, it would cause the default display precision for $ to be
"widened" to three decimal places. If PARSE_NO_MIGRATE is
used, the commodity's default display precision is not changed.
PARSE_NO_REDUCE means not to call in_place_reduce() on the
resulting amount after it is parsed.
These parsing methods observe the amounts they parse (unless
PARSE_NO_MIGRATE is true), and set the display details of
the corresponding commodity accordingly. This way, amounts do
not require commodities to be pre-defined in any way, but merely
displays them back to the user in the same fashion as it saw them
used.
There is also a static convenience method called
`parse_conversion' which can be used to define a relationship
between scaling commodity values. For example, Ledger uses it to
define the relationships among various time values:
@code
amount_t::parse_conversion("1.0m", "60s"); // a minute is 60 seconds
amount_t::parse_conversion("1.0h", "60m"); // an hour is 60 minutes
@endcode
The method parse() is used to parse an amount from an input stream
or a string. A global operator>>() is also defined which simply
calls parse on the input stream. The parse() method has two forms:
parse(istream, flags_t) parses an amount from the given input
stream.
parse(string, flags_t) parses an amount from the given string.
parse(string, flags_t) also parses an amount from a string.
*/
bool parse(std::istream& in,
const parse_flags_t& flags = PARSE_DEFAULT);
bool parse(const string& str,
const parse_flags_t& flags = PARSE_DEFAULT) {
std::istringstream stream(str);
bool result = parse(stream, flags);
return result;
}
static void parse_conversion(const string& larger_str,
const string& smaller_str);
/*@}*/
/** @name Printing
*/
/*@{*/
/** An amount may be output to a stream using the `print' method. There is
also a global operator<< defined which simply calls print for an amount
on the given stream. There is one form of the print method, which takes
one required argument and two arguments with default values:
print(ostream, bool omit_commodity = false, bool full_precision = false)
prints an amounts to the given output stream, using its commodity's
default display characteristics. If `omit_commodity' is true, the
commodity will not be displayed, only the amount (although the
commodity's display precision is still used). If `full_precision' is
true, the full internal precision of the amount is displayed, regardless
of its commodity's display precision.
*/
#define AMOUNT_PRINT_NO_FLAGS 0x00
#define AMOUNT_PRINT_RIGHT_JUSTIFY 0x01
#define AMOUNT_PRINT_COLORIZE 0x02
#define AMOUNT_PRINT_NO_COMPUTED_ANNOTATIONS 0x04
#define AMOUNT_PRINT_ELIDE_COMMODITY_QUOTES 0x08
void print(std::ostream& out,
const uint_least8_t flags = AMOUNT_PRINT_NO_FLAGS) const;
/*@}*/
/** @name Debugging
*/
/*@{*/
/** There are two methods defined to help with debugging:
dump(ostream) dumps an amount to an output stream. There is
little different from print(), it simply surrounds the display
value with a marker, for example "AMOUNT($1.00)". This code is
used by other dumping code elsewhere in Ledger.
valid() returns true if an amount is valid. This ensures that if
an amount has a commodity, it has a valid value pointer, for
example, even if that pointer simply points to a zero value.
*/
void dump(std::ostream& out) const {
out << "AMOUNT(";
print(out);
out << ")";
}
bool valid() const;
#if HAVE_BOOST_SERIALIZATION
private:
/** Serialization. */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive& ar, const unsigned int /* version */);
#endif // HAVE_BOOST_SERIALIZATION
/*@}*/
};
inline amount_t amount_t::exact(const string& value) {
amount_t temp;
temp.parse(value, PARSE_NO_MIGRATE);
return temp;
}
inline string amount_t::to_string() const {
std::ostringstream bufstream;
print(bufstream);
return bufstream.str();
}
inline string amount_t::to_fullstring() const {
std::ostringstream bufstream;
unrounded().print(bufstream);
return bufstream.str();
}
inline string amount_t::quantity_string() const {
std::ostringstream bufstream;
number().print(bufstream);
return bufstream.str();
}
inline std::ostream& operator<<(std::ostream& out, const amount_t& amt) {
if (amount_t::stream_fullstrings)
amt.unrounded().print(out);
else
amt.print(out);
return out;
}
inline std::istream& operator>>(std::istream& in, amount_t& amt) {
amt.parse(in);
return in;
}
void put_amount(property_tree::ptree& pt, const amount_t& amt,
bool wrap = true, bool commodity_details = false);
} // namespace ledger
#endif // _AMOUNT_H
|