File: pheap.c

package info (click to toggle)
leptonlib 1.57-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 9,724 kB
  • ctags: 3,900
  • sloc: ansic: 89,715; sh: 3,516; makefile: 718
file content (523 lines) | stat: -rw-r--r-- 15,513 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*====================================================================*
 -  Copyright (C) 2001 Leptonica.  All rights reserved.
 -  This software is distributed in the hope that it will be
 -  useful, but with NO WARRANTY OF ANY KIND.
 -  No author or distributor accepts responsibility to anyone for the
 -  consequences of using this software, or for whether it serves any
 -  particular purpose or works at all, unless he or she says so in
 -  writing.  Everyone is granted permission to copy, modify and
 -  redistribute this source code, for commercial or non-commercial
 -  purposes, with the following restrictions: (1) the origin of this
 -  source code must not be misrepresented; (2) modified versions must
 -  be plainly marked as such; and (3) this notice may not be removed
 -  or altered from any source or modified source distribution.
 *====================================================================*/

/*
 *   pheap.c
 *
 *      Create/Destroy PHeap
 *          PHEAP     *pheapCreate()
 *          void      *pheapDestroy()
 *
 *      Operations to add/remove to/from the heap
 *          l_int32    pheapAdd()
 *          l_int32    pheapExtendArray()
 *          void      *pheapRemove()
 *
 *      Heap operations
 *          l_int32    pheapSwapUp()
 *          l_int32    pheapSwapDown()
 *          l_int32    pheapSort()
 *          l_int32    pheapSortStrictOrder()
 *
 *      Accessors
 *          l_int32    pheapGetCount()
 *
 *      Debug output
 *          l_int32    pheapPrint()
 *
 *    The pheap is useful to implement a priority queue, that is sorted
 *    on a key in each element of the heap.  The heap is an array
 *    of nearly arbitrary structs, with a l_float32 the first field.
 *    This field is the key on which the heap is sorted.
 *
 *    Internally, we keep track of the heap size, n.  The item at the
 *    root of the heap is at the head of the array.  Items are removed
 *    from the head of the array and added to the end of the array.
 *    When an item is removed from the head, the item at the end
 *    of the array is moved to the head.  When items are either
 *    added or removed, it is usually necesary to swap array items
 *    to restore the heap order.  It is guaranteed that the number
 *    of swaps does not exceed log(n).
 *
 *    --------------------------  N.B.  ------------------------------
 *    The items on the heap (or, equivalently, in the array) are cast
 *    to void*.  Their key is a l_float32, and it is REQUIRED that the
 *    key be the first field in the struct.  That allows us to get the
 *    key by simply dereferencing the struct.  Alternatively, we could
 *    choose (but don't) to pass an application-specific comparison
 *    function into the heap operation functions.
 *    --------------------------  N.B.  ------------------------------
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "allheaders.h"

static const l_int32  MIN_BUFFER_SIZE = 20;             /* n'importe quoi */
static const l_int32  INITIAL_BUFFER_ARRAYSIZE = 128;   /* n'importe quoi */

#define SWAP_ITEMS(i, j)       { void *tempitem = ph->array[(i)]; \
                                 ph->array[(i)] = ph->array[(j)]; \
                                 ph->array[(j)] = tempitem; }


/*--------------------------------------------------------------------------*
 *                          PHeap create/destroy                           *
 *--------------------------------------------------------------------------*/
/*!
 *  pheapCreate()
 *
 *      Input:  size of ptr array to be alloc'd (0 for default)
 *              direction (L_SORT_INCREASING, L_SORT_DECREASING)
 *      Return: pheap, or null on error
 */
PHEAP *
pheapCreate(l_int32  nalloc,
            l_int32  direction)
{
PHEAP  *ph;

    PROCNAME("pheapCreate");

    if (nalloc < MIN_BUFFER_SIZE)
        nalloc = MIN_BUFFER_SIZE;

        /* Allocate ptr array and initialize counters. */
    if ((ph = (PHEAP *)CALLOC(1, sizeof(PHEAP))) == NULL)
        return (PHEAP *)ERROR_PTR("ph not made", procName, NULL);
    if ((ph->array = (void **)CALLOC(nalloc, sizeof(l_intptr_t))) == NULL)
        return (PHEAP *)ERROR_PTR("ptr array not made", procName, NULL);
    ph->nalloc = nalloc;
    ph->n = 0;
    ph->direction = direction;
    return ph;
}


/*!
 *  pheapDestroy()
 *
 *      Input:  &pheap  (<to be nulled>)
 *              freeflag (TRUE to free each remaining struct in the array)
 *      Return: void
 *
 *  Notes:
 *      (1) Use freeflag == TRUE when the items in the array can be
 *          simply destroyed using free.  If those items require their
 *          own destroy function, they must be destroyed before
 *          calling this function, and then this function is called
 *          with freeflag == FALSE.
 *      (2) To destroy the pheap, we destroy the ptr array, then
 *          the pheap, and then null the contents of the input ptr.
 */
void
pheapDestroy(PHEAP   **pph,
             l_int32   freeflag)
{
l_int32  i;
PHEAP   *ph;

    PROCNAME("pheapDestroy");

    if (pph == NULL) {
        L_WARNING("ptr address is NULL", procName);
        return;
    }
    if ((ph = *pph) == NULL)
        return;

    if (freeflag) {  /* free each struct in the array */
        for (i = 0; i < ph->n; i++)
            FREE(ph->array[i]);
    }
    else if (ph->n > 0)  /* freeflag == FALSE but elements exist on array */
        L_WARNING_INT("memory leak of %d items in pheap!", procName, ph->n);

    if (ph->array)
        FREE(ph->array);
    FREE(ph);
    *pph = NULL;

    return;
}

/*--------------------------------------------------------------------------*
 *                                  Accessors                               *
 *--------------------------------------------------------------------------*/
/*!
 *  pheapAdd()
 *
 *      Input:  pheap
 *              item to be added to the tail of the heap
 *      Return: 0 if OK, 1 on error
 */
l_int32
pheapAdd(PHEAP  *ph,
         void   *item)
{
    PROCNAME("pheapAdd");

    if (!ph)
        return ERROR_INT("ph not defined", procName, 1);
    if (!item)
        return ERROR_INT("item not defined", procName, 1);
    
        /* If necessary, expand the allocated array by a factor of 2 */
    if (ph->n >= ph->nalloc)
        pheapExtendArray(ph);

        /* Add the item */
    ph->array[ph->n] = item;
    ph->n++;

        /* Restore the heap */
    pheapSwapUp(ph, ph->n - 1);
    return 0;
}


/*!
 *  pheapExtendArray()
 *
 *      Input:  pheap
 *      Return: 0 if OK, 1 on error
 */
l_int32
pheapExtendArray(PHEAP  *ph)
{
    PROCNAME("pheapExtendArray");

    if (!ph)
        return ERROR_INT("ph not defined", procName, 1);

    if ((ph->array = (void **)reallocNew((void **)&ph->array,
                                sizeof(l_intptr_t) * ph->nalloc,
                                2 * sizeof(l_intptr_t) * ph->nalloc)) == NULL)
        return ERROR_INT("new ptr array not returned", procName, 1);

    ph->nalloc = 2 * ph->nalloc;
    return 0;
}


/*!
 *  pheapRemove()
 *
 *      Input:  pheap
 *      Return: ptr to item popped from the root of the heap,
 *              or null if the heap is empty or on error
 */
void *
pheapRemove(PHEAP  *ph)
{
void   *item;

    PROCNAME("pheapRemove");

    if (!ph)
        return (void *)ERROR_PTR("ph not defined", procName, NULL);

    if (ph->n == 0)
        return NULL;

    item = ph->array[0];
    ph->array[0] = ph->array[ph->n - 1];  /* move last to the head */
    ph->array[ph->n - 1] = NULL;  /* set ptr to null */
    ph->n--;

    pheapSwapDown(ph);  /* restore the heap */
    return item;
}
       

/*!
 *  pheapGetCount()
 *
 *      Input:  pheap
 *      Return: count, or 0 on error
 */
l_int32
pheapGetCount(PHEAP  *ph)
{
    PROCNAME("pheapGetCount");

    if (!ph)
        return ERROR_INT("ph not defined", procName, 0);

    return ph->n;
}
        


/*--------------------------------------------------------------------------*
 *                               Heap operations                            *
 *--------------------------------------------------------------------------*/
/*!
 *  pheapSwapUp()
 *
 *      Input:  ph (heap)
 *              index (of array corresponding to node to be swapped up)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This is called after a new item is put on the heap, at the
 *          bottom of a complete tree.
 *      (2) To regain the heap order, we let it bubble up,
 *          iteratively swapping with its parent, until it either
 *          reaches the root of the heap or it finds a parent that
 *          is in the correct position already vis-a-vis the child.
 */
l_int32
pheapSwapUp(PHEAP   *ph,
            l_int32  index)
{
l_int32    ip;  /* index to heap for parent; 1 larger than array index */
l_int32    ic;  /* index into heap for child */
l_float32  valp, valc;

  PROCNAME("pheapSwapUp");

  if (!ph)
      return ERROR_INT("ph not defined", procName, 1);
  if (index < 0 || index >= ph->n)
      return ERROR_INT("invalid index", procName, 1);

  ic = index + 1;  /* index into heap: add 1 to array index */
  if (ph->direction == L_SORT_INCREASING) {
      while (1) {
          if (ic == 1)  /* root of heap */
              break;
          ip = ic / 2;
          valc = *(l_float32 *)(ph->array[ic - 1]);
          valp = *(l_float32 *)(ph->array[ip - 1]);
          if (valp <= valc)
             break;
          SWAP_ITEMS(ip - 1, ic - 1);
          ic = ip;
      }
  }
  else {  /* ph->direction == L_SORT_DECREASING */
      while (1) {
          if (ic == 1)  /* root of heap */
              break;
          ip = ic / 2;
          valc = *(l_float32 *)(ph->array[ic - 1]);
          valp = *(l_float32 *)(ph->array[ip - 1]);
          if (valp >= valc)
             break;
          SWAP_ITEMS(ip - 1, ic - 1);
          ic = ip;
      }
  }
  return 0;
}


/*!
 *  pheapSwapDown()
 *
 *      Input:  ph (heap)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This is called after an item has been popped off the
 *          root of the heap, and the last item in the heap has
 *          been placed at the root.
 *      (2) To regain the heap order, we let it bubble down,
 *          iteratively swapping with one of its children.  For a
 *          decreasing sort, it swaps with the largest child; for
 *          an increasing sort, the smallest.  This continues until
 *          it either reaches the lowest level in the heap, or the
 *          parent finds that neither child should swap with it
 *          (e.g., for a decreasing heap, the parent is larger
 *          than or equal to both children).
 */
l_int32
pheapSwapDown(PHEAP  *ph)
{
l_int32    ip;  /* index to heap for parent; 1 larger than array index */
l_int32    icr, icl;  /* index into heap for left/right children */
l_float32  valp, valcl, valcr;

  PROCNAME("pheapSwapDown");

  if (!ph)
      return ERROR_INT("ph not defined", procName, 1);
  if (pheapGetCount(ph) < 1)
      return 0;

  ip = 1;  /* index into top of heap: corresponds to array[0] */
  if (ph->direction == L_SORT_INCREASING) {
      while (1) {
          icl = 2 * ip;
          if (icl > ph->n)
             break;
          valp = *(l_float32 *)(ph->array[ip - 1]);
          valcl = *(l_float32 *)(ph->array[icl - 1]);
          icr = icl + 1;
          if (icr > ph->n) {  /* only a left child; no iters below */
              if (valp > valcl)
                  SWAP_ITEMS(ip - 1, icl - 1);
              break;
          }
          else {  /* both children present; swap with the smallest if bigger */
              valcr = *(l_float32 *)(ph->array[icr - 1]);
              if (valp <= valcl && valp <= valcr)  /* smaller than both */
                  break;
              if (valcl <= valcr) {  /* left smaller; swap */
                  SWAP_ITEMS(ip - 1, icl - 1);
                  ip = icl;
              }
              else { /* right smaller; swap */
                  SWAP_ITEMS(ip - 1, icr - 1);
                  ip = icr;
              }
          }
      }
  }
  else {  /* ph->direction == L_SORT_DECREASING */
      while (1) {
          icl = 2 * ip;
          if (icl > ph->n)
             break;
          valp = *(l_float32 *)(ph->array[ip - 1]);
          valcl = *(l_float32 *)(ph->array[icl - 1]);
          icr = icl + 1;
          if (icr > ph->n) {  /* only a left child; no iters below */
              if (valp < valcl)
                  SWAP_ITEMS(ip - 1, icl - 1);
              break;
          }
          else {  /* both children present; swap with the biggest if smaller */
              valcr = *(l_float32 *)(ph->array[icr - 1]);
              if (valp >= valcl && valp >= valcr)  /* bigger than both */
                  break;
              if (valcl >= valcr) {  /* left bigger; swap */
                  SWAP_ITEMS(ip - 1, icl - 1);
                  ip = icl;
              }
              else { /* right bigger; swap */
                  SWAP_ITEMS(ip - 1, icr - 1);
                  ip = icr;
              }
          }
      }
  }

  return 0;
}


/*!
 *  pheapSort()
 *
 *      Input:  ph (heap, with internal array)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This sorts an array into heap order.  If the heap is already
 *          in heap order for the direction given, this has no effect.
 */
l_int32
pheapSort(PHEAP  *ph)
{
l_int32  i;

  PROCNAME("pheapSort");

  if (!ph)
      return ERROR_INT("ph not defined", procName, 1);

  for (i = 0; i < ph->n; i++)
      pheapSwapUp(ph, i);

  return 0;
}


/*!
 *  pheapSortStrictOrder()
 *
 *      Input:  ph (heap, with internal array)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This sorts a heap into strict order.
 *      (2) For each element, starting at the end of the array and
 *          working forward, the element is swapped with the head
 *          element and then allowed to swap down onto a heap of
 *          size reduced by one.  The result is that the heap is
 *          reversed but in strict order.  The array elements are
 *          then reversed to put it in the original order.
 */
l_int32
pheapSortStrictOrder(PHEAP  *ph)
{
l_int32  i, index, size;

  PROCNAME("pheapSortStrictOrder");

  if (!ph)
      return ERROR_INT("ph not defined", procName, 1);

  size = ph->n;  /* save the actual size */
  for (i = 0; i < size; i++) {
      index = size - i;
      SWAP_ITEMS(0, index - 1);
      ph->n--;  /* reduce the apparent heap size by 1 */
      pheapSwapDown(ph);
  }
  ph->n = size;  /* restore the size */

  for (i = 0; i < size / 2; i++)  /* reverse */
      SWAP_ITEMS(i, size - i - 1);

  return 0;
}



/*---------------------------------------------------------------------*
 *                            Debug output                             *
 *---------------------------------------------------------------------*/
/*!
 *  pheapPrint()
 *  
 *      Input:  stream
 *              pheap
 *      Return: 0 if OK; 1 on error
 */
l_int32
pheapPrint(FILE   *fp,
           PHEAP  *ph)
{
l_int32  i;

    PROCNAME("pheapPrint");

    if (!fp)
        return ERROR_INT("stream not defined", procName, 1);
    if (!ph)
        return ERROR_INT("ph not defined", procName, 1);

    fprintf(fp, "\n PHeap: nalloc = %d, n = %d, array = %p\n",
            ph->nalloc, ph->n, ph->array);
    for (i = 0; i < ph->n; i++)
        fprintf(fp,   "keyval[%d] = %f\n", i, *(l_float32 *)ph->array[i]);

    return 0;
}