File: qnode.h

package info (click to toggle)
level-zero-gpu-raytracing 1.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,428 kB
  • sloc: cpp: 20,903; makefile: 9
file content (508 lines) | stat: -rw-r--r-- 19,556 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#pragma once

#include <cstdint>
#include <iostream>

#include "leaf.h"

#if defined(__INTEL_LLVM_COMPILER) && defined(WIN32)
inline float embree_frexp(float value, int* exp)
{
   // using the Intel(R) oneAPI DPC++/C++ Compiler with -no-intel-libs results
   // in an unresolved external symbol "__imp_frexp" error and therefore we
   // provide a the manual implemetation referenced here
   // https://en.cppreference.com/w/c/numeric/math/frexp in this case
   static_assert(FLT_RADIX == 2, "custom implementation of frexp only works for base 2 floating point representations");
   *exp = (value == 0) ? 0 : (int)(1 + logb(value));
   return scalbn(value, -(*exp));
}
#endif

namespace embree
{
  /* The NodeRef structure references a node of the BVH. It stores the
     * pointer to that node as well as the node's type. If a leaf node
     * is referenced the current primitive to intersect is also
     * stored. */

  struct NodeRef
  {
    NodeRef ()
    : node(nullptr), type(NODE_TYPE_INVALID), cur_prim(0) {}
    
    NodeRef (void* node, NodeType type, uint8_t cur_prim)
    : node((char*)node), type(type), cur_prim(cur_prim)
    {
      assert(cur_prim < 16);
    }
    
    /* decode from 64 bit encoding used in MemRay and Instances */
    NodeRef (uint64_t nodePtr, uint64_t offset = 0)
    {
      node = (char*) (nodePtr & ~(uint64_t)0xF) + offset;
      //type = NODE_TYPE_INTERNAL; // we can only reference internal nodes inside ray and instances
      type = (NodeType) (nodePtr & 0xF);
      cur_prim = 0;
    }
    
    /* 64 bit encoding used in MemRay and Instances */
    operator uint64_t() const
    {
      //assert(type == NODE_TYPE_INTERNAL);
      assert(((uint64_t)node & 0xF) == 0);
      assert(cur_prim == 0);
      return (uint64_t)node + (uint64_t) type;
    }
    
    /* returns the internal node that is referenced */
    template<typename InternalNode>
    InternalNode* innerNode() const {
      assert(type == NODE_TYPE_INTERNAL);
      return (InternalNode*)node;
    }

    /* returns the instance leaf node that is referenced */
    InstanceLeaf* leafNodeInstance() const {
      assert(type == NODE_TYPE_INSTANCE);
      return (InstanceLeaf*)node;
    }
    
    /* returns the quad leaf node that is referenced */
    QuadLeaf* leafNodeQuad() const {
      assert(type == NODE_TYPE_QUAD);
      return (QuadLeaf*)node;
    }

    /* returns the procedural leaf node that is referenced */
    ProceduralLeaf* leafNodeProcedural() const {
      assert(type == NODE_TYPE_PROCEDURAL);
      return (ProceduralLeaf*)node;
    }
    
    friend bool operator ==(const NodeRef& a, const NodeRef& b) {
      return (a.node == b.node) && (a.type == b.type) && (a.cur_prim == b.cur_prim);
    }
    
    friend bool operator !=(const NodeRef& a, const NodeRef& b) {
      return !(a == b);
    }
    
#if !defined(__RTRT_GSIM)
    friend inline std::ostream& operator<<(std::ostream& _cout, const NodeRef& node) {
      return _cout << "NodeRef { " << (void*)node.node << ", " << node.type << ", " << (int)node.cur_prim << " }";
    }
#endif
    
  public:
    char* node;           // pointer to the referenced node
    NodeType type;        // type of the node referenced
    uint8_t cur_prim : 4; // current primitive referenced in the leaf
  };

   /*

      The internal nodes of the BVH store references to 6 children and
      quantized bounds for each of these children.

      All children are stored consecutively in memory at a location
      refered to by the childOffset. To calculate the relative
      location of the i'th child the size (as encoded in blockIncr) of
      all the children with index smaller than i has to get added to
      that childOffset. The calculated offset specifies the signed
      number of 64 bytes blocks relative to the node address to reach
      the child.

      If the nodeType is INTERNAL we are in mixed mode and the type of
      each child is encoded inside the startPrim member. Otherwise we
      are in fat leaf mode and each child has the same type 'nodeType'
      and startPrim identifies the primitive where the leaf
      starts. The leaf spans all primitives from this start primitive
      to the end primitive which is marked as 'last'.

      The bounding boxes of the children are quantized into a regular
      3D grid. The world space position of the origin of that grid is
      stored at full precision in the lower member, while the step
      size is encoded in the exp_x, exp_y, and exp_z members as power
      of 2. Thus grid coordinates together with their exponent
      (xi,exp_x), (yi,exp_y), (zi,exp_z) correspond to the mantissa
      and exponent of a floating point number representation without
      leading zero. Thus the world space position of the bounding
      planes can get calculated as follows:

        x = lower.x + pow(2,exp_x) * 0.xi
        y = lower.y + pow(2,exp_y) * 0.yi
        z = lower.z + pow(2,exp_z) * 0.zi

      As the stored grid coordinates for child bounds are only
      unsigned 8-bit values, ray/box intersections can get performed
      with reduced precision.

      The node also stores a mask used for ray filtering. Only rays
      with (node.nodeMask & ray.rayMask) != 0 are traversed, all
      others are culled.

    */
  
  struct InternalNode6Data
  {
    static constexpr uint32_t NUM_CHILDREN = 6;

    Vec3f lower;          // world space origin of quantization grid
    int32_t childOffset; // offset to all children in 64B multiples 

    NodeType nodeType;    // the type of the node    
    uint8_t pad;          // unused byte

    int8_t exp_x;          // 2^exp_x is the size of the grid in x dimension
    int8_t exp_y;          // 2^exp_y is the size of the grid in y dimension
    int8_t exp_z;          // 2^exp_z is the size of the grid in z dimension
    uint8_t nodeMask;      // mask used for ray filtering

    struct ChildData
    {
      uint8_t blockIncr : 2; // size of child in 64 byte blocks
      uint8_t startPrim : 4; // start primitive in fat leaf mode or child type in mixed mode
      uint8_t pad : 2; // unused bits
    } childData[NUM_CHILDREN];

    uint8_t lower_x[NUM_CHILDREN];  // the quantized lower bounds in x-dimension
    uint8_t upper_x[NUM_CHILDREN];  // the quantized upper bounds in x-dimension
    uint8_t lower_y[NUM_CHILDREN];  // the quantized lower bounds in y-dimension
    uint8_t upper_y[NUM_CHILDREN];  // the quantized upper bounds in y-dimension
    uint8_t lower_z[NUM_CHILDREN];  // the quantized lower bounds in z-dimension
    uint8_t upper_z[NUM_CHILDREN];  // the quantized upper bounds in z-dimension
  };

  static_assert(sizeof(InternalNode6Data) == 64, "InternalNode6Data must be 64 bytes large");

  template<typename InternalNodeData>
    struct InternalNodeCommon : public InternalNodeData
  {
    using InternalNodeData::NUM_CHILDREN;
    
    InternalNodeCommon() {
    }
    
    InternalNodeCommon(NodeType type)
    {
      this->nodeType = type;
      this->childOffset = 0;
      this->nodeMask = 0xFF;
      
      for (uint32_t i = 0; i < InternalNodeData::NUM_CHILDREN; i++)
        this->childData[i] = { 0, 0, 0 };
      
      this->lower = Vec3f(0.0f);
      this->exp_x = 0;
      this->exp_y = 0;
      this->exp_z = 0;
      
      /* set all child bounds to invalid */
      for (uint32_t i = 0; i < InternalNodeData::NUM_CHILDREN; i++) {
        this->lower_x[i] = this->lower_y[i] = this->lower_z[i] = 0x80;
        this->upper_x[i] = this->upper_y[i] = this->upper_z[i] = 0x00;
      }
    }
    
    /* this function slightly enlarges bounds in order to make traversal watertight */
    static const BBox3f conservativeBox(const BBox3f box, float ulps = 1.0f) {
      const float err = ulps*std::numeric_limits<float>::epsilon() * std::max(reduce_max(abs(box.lower)), reduce_max(abs(box.upper)));
      return enlarge(box, Vec3f(err));
    }

    /* this function quantizes the provided bounds */
    const BBox3f quantize_bounds(BBox3f fbounds, Vec3f base) const
    {
      const Vec3f lower = fbounds.lower-base;
      const Vec3f upper = fbounds.upper-base;
      float qlower_x = ldexpf(lower.x, -this->exp_x + 8); 
      float qlower_y = ldexpf(lower.y, -this->exp_y + 8); 
      float qlower_z = ldexpf(lower.z, -this->exp_z + 8); 
      float qupper_x = ldexpf(upper.x, -this->exp_x + 8); 
      float qupper_y = ldexpf(upper.y, -this->exp_y + 8); 
      float qupper_z = ldexpf(upper.z, -this->exp_z + 8); 
      assert(qlower_x >= 0.0f && qlower_x <= 255.0f);
      assert(qlower_y >= 0.0f && qlower_y <= 255.0f);
      assert(qlower_z >= 0.0f && qlower_z <= 255.0f);
      assert(qupper_x >= 0.0f && qupper_x <= 255.0f);
      assert(qupper_y >= 0.0f && qupper_y <= 255.0f);
      assert(qupper_z >= 0.0f && qupper_z <= 255.0f); 
      qlower_x = min(max(floorf(qlower_x),0.0f),255.0f);
      qlower_y = min(max(floorf(qlower_y),0.0f),255.0f);
      qlower_z = min(max(floorf(qlower_z),0.0f),255.0f);
      qupper_x = min(max(ceilf(qupper_x),0.0f),255.0f);
      qupper_y = min(max(ceilf(qupper_y),0.0f),255.0f);
      qupper_z = min(max(ceilf(qupper_z),0.0f),255.0f);
      BBox3f qbounds(Vec3f(qlower_x, qlower_y, qlower_z), Vec3f(qupper_x, qupper_y, qupper_z));

      /* verify that quantized bounds are conservative */
      BBox3f dbounds = dequantize_bounds(qbounds, base);
      dbounds.lower.x -= 2.0f*float(ulp) * (fabs(base.x) + ldexpf(255.0f,this->exp_x-8));
      dbounds.lower.y -= 2.0f*float(ulp) * (fabs(base.y) + ldexpf(255.0f,this->exp_y-8));
      dbounds.lower.z -= 2.0f*float(ulp) * (fabs(base.z) + ldexpf(255.0f,this->exp_z-8));
      dbounds.upper.x += 2.0f*float(ulp) * (fabs(base.x) + ldexpf(255.0f,this->exp_x-8));
      dbounds.upper.y += 2.0f*float(ulp) * (fabs(base.y) + ldexpf(255.0f,this->exp_y-8));
      dbounds.upper.z += 2.0f*float(ulp) * (fabs(base.z) + ldexpf(255.0f,this->exp_z-8));
      assert(subset(fbounds, dbounds));

      return qbounds;
    }
    
    /* this function de-quantizes the provided bounds */
    const BBox3f dequantize_bounds(const BBox3f& qbounds, Vec3f base) const
    {
      const float dlower_x = base.x + ldexpf(qbounds.lower.x, this->exp_x - 8);
      const float dlower_y = base.y + ldexpf(qbounds.lower.y, this->exp_y - 8);
      const float dlower_z = base.z + ldexpf(qbounds.lower.z, this->exp_z - 8);
      const float dupper_x = base.x + ldexpf(qbounds.upper.x, this->exp_x - 8);
      const float dupper_y = base.y + ldexpf(qbounds.upper.y, this->exp_y - 8);
      const float dupper_z = base.z + ldexpf(qbounds.upper.z, this->exp_z - 8);
      return BBox3f(Vec3f(dlower_x, dlower_y, dlower_z), Vec3f(dupper_x, dupper_y, dupper_z));
    }
    
    /* Determines if a child is valid. We have only to look at the
     * topmost bit of lower_x and upper_x to determine if child is
     * valid */
    bool valid(int i) const {
      return !(this->lower_x[i] & 0x80) || (this->upper_x[i] & 0x80);
    }
    
    /* Determines if the node is in fat leaf mode. */
    bool isFatLeaf() const {
      return this->nodeType != NODE_TYPE_MIXED;
    }
    
    /* Sets the offset to the child memory. */
    void setChildOffset(void* childDataPtr)
    {
      int64_t childDataOffset = childDataPtr ? (char*)childDataPtr - (char*)this : 0;
      assert(childDataOffset % 64 == 0);
      assert((int64_t)(int32_t)(childDataOffset / 64) == (childDataOffset / 64));
      this->childOffset = (int32_t)(childDataOffset / 64);
    }
    
    /* Sets the type, size, and current primitive of a child */
    void setChildType(uint32_t child, NodeType childType, uint32_t block_delta, uint32_t cur_prim)
    {
      // there is no need to store block_delta for last child
      if (child == NUM_CHILDREN-1) block_delta = 0;
      
      assert(block_delta < 4);
      assert(cur_prim < 16);
      
      if (isFatLeaf())
      {
        assert(this->nodeType == childType);
        this->childData[child].startPrim = cur_prim;
        this->childData[child].blockIncr = block_delta;
      }
      else
      {
        assert(cur_prim == 0);
        this->childData[child].startPrim = childType;
        this->childData[child].blockIncr = block_delta;
      }
    }
    
    void invalidateChild(uint32_t childID)
    {
      /* set child bounds to invalid */
      this->lower_x[childID] = this->lower_y[childID] = this->lower_z[childID] = 0x80;
      this->upper_x[childID] = this->upper_y[childID] = this->upper_z[childID] = 0x00;
    }

    /* Sets child bounds */
    void setChildBounds(uint32_t childID, const BBox3f& fbounds)
    {
      assert(fbounds.lower.x <= fbounds.upper.x);
      assert(fbounds.lower.y <= fbounds.upper.y);
      assert(fbounds.lower.z <= fbounds.upper.z);
      const BBox3f qbounds = quantize_bounds(conservativeBox(fbounds), this->lower);
      this->lower_x[childID] = (uint8_t)qbounds.lower.x;
      this->lower_y[childID] = (uint8_t)qbounds.lower.y;
      this->lower_z[childID] = (uint8_t)qbounds.lower.z;
      this->upper_x[childID] = (uint8_t)qbounds.upper.x;
      this->upper_y[childID] = (uint8_t)qbounds.upper.y;
      this->upper_z[childID] = (uint8_t)qbounds.upper.z;
      assert(valid(childID));
    }
    
    /* Sets an entire child, including bounds, type, size, and referenced primitive. */
    void setChild(uint32_t childID, const BBox3f& fbounds, NodeType type, uint32_t block_delta, uint32_t cur_prim = 0)
    {
      setChildType(childID, type, block_delta, cur_prim);
      setChildBounds(childID, fbounds);
    }
    
    /* Calculates the byte offset to the child. The offset is
     * relative to the address this node. */
    int64_t getChildOffset(uint32_t childID) const
    {
      int64_t ofs = this->childOffset;
      for (uint32_t j = 0; j < childID; j++)
        ofs += this->childData[j].blockIncr;
      return 64 * ofs;
    }
    
    /* Returns the type of the child. In fat leaf mode the type is
     * shared between all children, otherwise a per-child type is
     * encoded inside the startPrim member for each child. */
    NodeType getChildType(uint32_t childID) const
    {
      if (isFatLeaf())
        return this->nodeType;
      
      else
        return (NodeType)(this->childData[childID].startPrim);
    }
    
    /* Returns the start primitive of a child. In case of children
     * in fat-leaf mode, all children are leaves, and the start
     * primitive specifies the primitive in a leaf block where the
     * leaf start. */
    uint32_t getChildStartPrim(uint32_t childID) const
    {
      if (isFatLeaf())
        return  this->childData[childID].startPrim;
      
      else
        return 0;
    }
    
    /* Returns a node reference for the given child. This reference
     * includes the node pointer, type, and start primitive. */
    NodeRef child(void* This, int childID) const {
      return NodeRef((char*)This + getChildOffset(childID), getChildType(childID), getChildStartPrim(childID));
    }
    
    NodeRef child(int i) const {
      return child((void*)this, i);
    }
  };

  template<typename QInternalNode>
    struct InternalNode : public InternalNodeCommon<QInternalNode>
  {
    using InternalNodeCommon<QInternalNode>::valid;
    using InternalNodeCommon<QInternalNode>::getChildType;
    using InternalNodeCommon<QInternalNode>::getChildOffset;
    using InternalNodeCommon<QInternalNode>::getChildStartPrim;
    using InternalNodeCommon<QInternalNode>::conservativeBox;
    using InternalNodeCommon<QInternalNode>::dequantize_bounds;
    using InternalNodeCommon<QInternalNode>::NUM_CHILDREN;
    
    InternalNode() {
    }
    
    InternalNode (NodeType type)
      : InternalNodeCommon<QInternalNode>(type) {}

    /* Constructs an internal node. The quantization grid gets
     * initialized from the provided parent bounds. */
    InternalNode (BBox3f box, NodeType type = NODE_TYPE_MIXED)
      : InternalNode(type)
    {
      setNodeBounds(box);
    }

    void setNodeBounds(BBox3f box)
    {
      /* initialize quantization grid */
      box = conservativeBox(box);
      const float _ulp = std::numeric_limits<float>::epsilon();
      const float up = 1.0f + float(_ulp);
      Vec3f len = box.size() * up;
      this->lower = box.lower;
#if defined(__INTEL_LLVM_COMPILER) && defined(WIN32)
      int _exp_x; float mant_x = embree_frexp(len.x, &_exp_x); _exp_x += (mant_x > 255.0f / 256.0f);
      int _exp_y; float mant_y = embree_frexp(len.y, &_exp_y); _exp_y += (mant_y > 255.0f / 256.0f);
      int _exp_z; float mant_z = embree_frexp(len.z, &_exp_z); _exp_z += (mant_z > 255.0f / 256.0f);
#else
      int _exp_x; float mant_x = frexp(len.x, &_exp_x); _exp_x += (mant_x > 255.0f / 256.0f);
      int _exp_y; float mant_y = frexp(len.y, &_exp_y); _exp_y += (mant_y > 255.0f / 256.0f);
      int _exp_z; float mant_z = frexp(len.z, &_exp_z); _exp_z += (mant_z > 255.0f / 256.0f);
#endif
      _exp_x = max(-128,_exp_x); // enlarge too tight bounds
      _exp_y = max(-128,_exp_y);
      _exp_z = max(-128,_exp_z);
      this->exp_x = _exp_x; assert(_exp_x >= -128 && _exp_x <= 127);
      this->exp_y = _exp_y; assert(_exp_y >= -128 && _exp_y <= 127);
      this->exp_z = _exp_z; assert(_exp_z >= -128 && _exp_z <= 127);
    }
    
    /* dequantizes the bounds of the specified child */
    const BBox3f bounds(uint32_t childID) const
    {
      return dequantize_bounds(BBox3f(Vec3f(this->lower_x[childID], this->lower_y[childID], this->lower_z[childID]),
                                      Vec3f(this->upper_x[childID], this->upper_y[childID], this->upper_z[childID])),
                               this->lower);
    }

    const BBox3f bounds() const
    {
      BBox3f b = empty;
      for (size_t i=0; i<NUM_CHILDREN; i++) {
        if (!valid(i)) continue;
        b.extend(bounds(i));
      }
      return b;
    }

    void copy_to( InternalNode* dst ) const
    {
      *dst = *this;
      dst->setChildOffset((char*)this + getChildOffset(0));
    }
    
#if !defined(__RTRT_GSIM)
    
    /* output of internal node */
    void print(std::ostream& cout, uint32_t depth, bool close) const
    {
      cout << tab(depth) << "InternalNode" << NUM_CHILDREN << " {" << std::endl;
      cout << tab(depth) << "  addr = " << this << std::endl;
      cout << tab(depth) << "  childOffset = " << 64 * int64_t(this->childOffset) << std::endl;
      cout << tab(depth) << "  nodeType = " << NodeType(this->nodeType) << std::endl;
      cout << tab(depth) << "  nodeMask = " << std::bitset<8>(this->nodeMask) << std::endl;
      
      for (uint32_t i = 0; i < NUM_CHILDREN; i++)
      {
        cout << tab(depth) << "  child" << i << " = { ";
        if (valid(i))
        {
          cout << "type = " << getChildType(i);
          cout << ", offset = " << getChildOffset(i);
          cout << ", prim = " << getChildStartPrim(i);
          cout << ", bounds = " << bounds(i);
        }
        else {
          cout << "INVALID";
        }
        cout << "  }" << std::endl;
      }
      
      if (close)
        cout << tab(depth) << "}";
    }
    
    /* output operator for internal node */
    friend inline std::ostream& operator<<(std::ostream& cout, const InternalNode& node) {
      node.print(cout, 0, true); return cout;
    }
#endif
  };

  inline size_t GetInternalNodeSize(uint32_t numChildren)
  {
    if (numChildren <= 6)
      return sizeof(InternalNode6Data);
    else
      assert(false);
    return 0;
  }
    
  typedef InternalNode<InternalNode6Data> InternalNode6;
}