1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "alloc.h"
#include <algorithm>
namespace embree
{
class Device;
template<typename T, typename allocator>
class vector_t
{
public:
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
__forceinline vector_t ()
: size_active(0), size_alloced(0), items(nullptr) {}
__forceinline explicit vector_t (size_t sz)
: size_active(0), size_alloced(0), items(nullptr) { internal_resize_init(sz); }
template<typename M>
__forceinline explicit vector_t (M alloc, size_t sz)
: alloc(alloc), size_active(0), size_alloced(0), items(nullptr) { internal_resize_init(sz); }
__forceinline vector_t (Device* alloc)
: vector_t(alloc,0) {}
__forceinline vector_t(void* data, size_t bytes)
: size_active(0), size_alloced(bytes/sizeof(T)), items((T*)data) {}
__forceinline ~vector_t() {
clear();
}
__forceinline vector_t (const vector_t& other)
{
size_active = other.size_active;
size_alloced = other.size_alloced;
items = alloc.allocate(size_alloced);
for (size_t i=0; i<size_active; i++)
::new (&items[i]) value_type(other.items[i]);
}
__forceinline vector_t (vector_t&& other)
: alloc(std::move(other.alloc))
{
size_active = other.size_active; other.size_active = 0;
size_alloced = other.size_alloced; other.size_alloced = 0;
items = other.items; other.items = nullptr;
}
__forceinline vector_t& operator=(const vector_t& other)
{
resize(other.size_active);
for (size_t i=0; i<size_active; i++)
items[i] = value_type(other.items[i]);
return *this;
}
__forceinline vector_t& operator=(vector_t&& other)
{
clear();
alloc = std::move(other.alloc);
size_active = other.size_active; other.size_active = 0;
size_alloced = other.size_alloced; other.size_alloced = 0;
items = other.items; other.items = nullptr;
return *this;
}
__forceinline allocator& getAlloc() {
return alloc;
}
/********************** Iterators ****************************/
__forceinline iterator begin() { return items; };
__forceinline const_iterator begin() const { return items; };
__forceinline iterator end () { return items+size_active; };
__forceinline const_iterator end () const { return items+size_active; };
/********************** Capacity ****************************/
__forceinline bool empty () const { return size_active == 0; }
__forceinline size_t size () const { return size_active; }
__forceinline size_t capacity () const { return size_alloced; }
__forceinline void resize(size_t new_size) {
internal_resize(new_size,internal_grow_size(new_size));
}
__forceinline void reserve(size_t new_alloced)
{
/* do nothing if container already large enough */
if (new_alloced <= size_alloced)
return;
/* resize exact otherwise */
internal_resize(size_active,new_alloced);
}
__forceinline void shrink_to_fit() {
internal_resize(size_active,size_active);
}
/******************** Element access **************************/
__forceinline T& operator[](size_t i) { assert(i < size_active); return items[i]; }
__forceinline const T& operator[](size_t i) const { assert(i < size_active); return items[i]; }
__forceinline T& at(size_t i) { assert(i < size_active); return items[i]; }
__forceinline const T& at(size_t i) const { assert(i < size_active); return items[i]; }
__forceinline T& front() const { assert(size_active > 0); return items[0]; };
__forceinline T& back () const { assert(size_active > 0); return items[size_active-1]; };
__forceinline T* data() { return items; };
__forceinline const T* data() const { return items; };
/******************** Modifiers **************************/
__forceinline void push_back(const T& nt)
{
const T v = nt; // need local copy as input reference could point to this vector
internal_resize(size_active,internal_grow_size(size_active+1));
::new (&items[size_active++]) T(v);
}
__forceinline void pop_back()
{
assert(!empty());
size_active--;
items[size_active].~T();
}
__forceinline void clear()
{
/* destroy elements */
for (size_t i=0; i<size_active; i++){
items[i].~T();
}
/* free memory */
alloc.deallocate(items,size_alloced);
items = nullptr;
size_active = size_alloced = 0;
}
/******************** Comparisons **************************/
friend bool operator== (const vector_t& a, const vector_t& b)
{
if (a.size() != b.size()) return false;
for (size_t i=0; i<a.size(); i++)
if (a[i] != b[i])
return false;
return true;
}
friend bool operator!= (const vector_t& a, const vector_t& b) {
return !(a==b);
}
private:
__forceinline void internal_resize_init(size_t new_active)
{
assert(size_active == 0);
assert(size_alloced == 0);
assert(items == nullptr);
if (new_active == 0) return;
items = alloc.allocate(new_active);
for (size_t i=0; i<new_active; i++) ::new (&items[i]) T();
size_active = new_active;
size_alloced = new_active;
}
__forceinline void internal_resize(size_t new_active, size_t new_alloced)
{
assert(new_active <= new_alloced);
/* destroy elements */
if (new_active < size_active)
{
for (size_t i=new_active; i<size_active; i++){
items[i].~T();
}
size_active = new_active;
}
/* only reallocate if necessary */
if (new_alloced == size_alloced) {
for (size_t i=size_active; i<new_active; i++) ::new (&items[i]) T;
size_active = new_active;
return;
}
/* reallocate and copy items */
T* old_items = items;
items = alloc.allocate(new_alloced);
for (size_t i=0; i<size_active; i++) {
::new (&items[i]) T(std::move(old_items[i]));
old_items[i].~T();
}
for (size_t i=size_active; i<new_active; i++) {
::new (&items[i]) T;
}
alloc.deallocate(old_items,size_alloced);
size_active = new_active;
size_alloced = new_alloced;
}
__forceinline size_t internal_grow_size(size_t new_alloced)
{
/* do nothing if container already large enough */
if (new_alloced <= size_alloced)
return size_alloced;
/* if current size is 0 allocate exact requested size */
if (size_alloced == 0)
return new_alloced;
/* resize to next power of 2 otherwise */
size_t new_size_alloced = size_alloced;
while (new_size_alloced < new_alloced) {
new_size_alloced = std::max(size_t(1),2*new_size_alloced);
}
return new_size_alloced;
}
private:
allocator alloc;
size_t size_active; // number of valid items
size_t size_alloced; // number of items allocated
T* items; // data array
};
/*! vector class that performs standard allocations */
template<typename T>
using vector = vector_t<T,std::allocator<T>>;
/*! vector class that performs aligned allocations */
template<typename T>
using avector = vector_t<T,aligned_allocator<T,std::alignment_of<T>::value> >;
/*! vector class that performs OS allocations */
template<typename T>
using ovector = vector_t<T,os_allocator<T> >;
/*! vector class with externally managed data buffer */
template<typename T>
using evector = vector_t<T,no_allocator<T>>;
}
|