File: rthwif_cornell_box.cpp

package info (click to toggle)
level-zero-gpu-raytracing 1.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,428 kB
  • sloc: cpp: 20,903; makefile: 9
file content (641 lines) | stat: -rw-r--r-- 22,737 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0

#include <sycl/sycl.hpp>
#include "tbb/tbb.h"

#include "../rttrace/rttrace.h"

#include <level_zero/ze_wrapper.h>

#include <vector>
#include <iostream>
#include <fstream>

void* dispatchGlobalsPtr = nullptr;

static uint32_t global_width = 512;
static uint32_t global_height = 512;

void exception_handler(sycl::exception_list exceptions)
{
  for (std::exception_ptr const& e : exceptions) {
    try {
      std::rethrow_exception(e);
    } catch(sycl::exception const& e) {
      std::cout << "Caught asynchronous SYCL exception: " << e.what() << std::endl;
    }
  }
};

inline void fwrite_uchar (unsigned char  v, std::fstream& file) { file.write((const char*)&v,sizeof(v)); }
inline void fwrite_ushort(unsigned short v, std::fstream& file) { file.write((const char*)&v,sizeof(v)); }

void storeTga(uint32_t* pixels, uint32_t width, uint32_t height, const std::string& fileName) try
{
  std::fstream file;
  file.exceptions (std::fstream::failbit | std::fstream::badbit);
  file.open (fileName.c_str(), std::fstream::out | std::fstream::binary);

  fwrite_uchar(0x00, file);
  fwrite_uchar(0x00, file);
  fwrite_uchar(0x02, file);
  fwrite_ushort(0x0000, file);
  fwrite_ushort(0x0000, file);
  fwrite_uchar(0x00, file);
  fwrite_ushort(0x0000, file);
  fwrite_ushort(0x0000, file);
  fwrite_ushort((unsigned short)width , file);
  fwrite_ushort((unsigned short)height, file);
  fwrite_uchar(0x18, file);
  fwrite_uchar(0x20, file);

  for (size_t y=0; y<height; y++) {
    for (size_t x=0; x<width; x++) {
      const uint32_t c = pixels[y*width+x];
      fwrite_uchar((unsigned char)((c>>0)&0xFF), file);
      fwrite_uchar((unsigned char)((c>>8)&0xFF), file);
      fwrite_uchar((unsigned char)((c>>16)&0xFF), file);
    }
  }
}
catch (std::exception const& e) {
  std::cout << "Error: Cannot write file " << fileName << std::endl;
  throw;
}

std::vector<unsigned char> readFile(const std::string& fileName) try
{
  std::fstream file;
  file.exceptions (std::fstream::failbit | std::fstream::badbit);
  file.open (fileName.c_str(), std::fstream::in | std::fstream::binary);

  file.seekg (0, std::ios::end);
  std::streampos size = file.tellg();
  std::vector<unsigned char> data(size);
  file.seekg (0, std::ios::beg);
  file.read ((char*)data.data(), size);
  file.close();

  return data;
}
catch (std::exception const& e) {
  std::cout << "Error: Cannot read file " << fileName << std::endl;
  throw;
}

size_t compareTga(const std::string& fileNameA, const std::string& fileNameB)
{
  const std::vector<unsigned char> dataA = readFile(fileNameA);
  const std::vector<unsigned char> dataB = readFile(fileNameB);
  if (dataA.size() != dataB.size())
    return false;

  size_t diff = 0;
  for (int i=0; i<dataA.size(); i++)
  {
    if (std::abs((int)dataA[i] - (int)dataB[i]) == 1) diff++;
    if (std::abs((int)dataA[i] - (int)dataB[i]) == 2) diff+=4;
    if (std::abs((int)dataA[i] - (int)dataB[i]) >= 3) diff+=100;
  }
  return diff;
}

/* Properly allocates an acceleration structure buffer using ze_raytracing_mem_alloc_ext_desc_t property. */
void* alloc_accel_buffer(size_t bytes, sycl::device device, sycl::context context)
{
  ze_context_handle_t hContext = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(context);
  ze_device_handle_t  hDevice  = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(device);
  
  ze_rtas_device_exp_properties_t rtasProp = { ZE_STRUCTURE_TYPE_RTAS_DEVICE_EXP_PROPERTIES };
  ze_device_properties_t devProp = { ZE_STRUCTURE_TYPE_DEVICE_PROPERTIES, &rtasProp };
  ze_result_t err = ZeWrapper::zeDeviceGetProperties(hDevice, &devProp );
  if (err != ZE_RESULT_SUCCESS)
    throw std::runtime_error("zeDeviceGetProperties failed");
  
  ze_raytracing_mem_alloc_ext_desc_t rt_desc;
  rt_desc.stype = ZE_STRUCTURE_TYPE_RAYTRACING_MEM_ALLOC_EXT_DESC;
  rt_desc.pNext = nullptr;
  rt_desc.flags = 0;
    
  ze_device_mem_alloc_desc_t device_desc;
  device_desc.stype = ZE_STRUCTURE_TYPE_DEVICE_MEM_ALLOC_DESC;
  device_desc.pNext = &rt_desc;
  device_desc.flags = ZE_DEVICE_MEM_ALLOC_FLAG_BIAS_CACHED;
  device_desc.ordinal = 0;

  ze_host_mem_alloc_desc_t host_desc;
  host_desc.stype = ZE_STRUCTURE_TYPE_HOST_MEM_ALLOC_DESC;
  host_desc.pNext = nullptr;
  host_desc.flags = ZE_HOST_MEM_ALLOC_FLAG_BIAS_CACHED;
  
  void* ptr = nullptr;
  ze_result_t result = ZeWrapper::zeMemAllocShared(hContext,&device_desc,&host_desc,bytes,rtasProp.rtasBufferAlignment,hDevice,&ptr);
  if (result != ZE_RESULT_SUCCESS)
    throw std::runtime_error("acceleration buffer allocation failed");

  return ptr;
}

void free_accel_buffer(void* ptr, sycl::context context)
{
  ze_context_handle_t hContext = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(context);
  ze_result_t result = ZeWrapper::zeMemFree(hContext,ptr);
  if (result != ZE_RESULT_SUCCESS)
    throw std::runtime_error("acceleration buffer free failed");
}


/* dispatch globals allocation is for debugging only */

enum Flags : uint32_t {
  FLAGS_NONE,
  DEPTH_TEST_LESS_EQUAL = 1 << 0  // when set we use <= for depth test, otherwise <
};

struct DispatchGlobals
{
  uint64_t rtMemBasePtr;               // base address of the allocated stack memory
  uint64_t callStackHandlerKSP;             // this is the KSP of the continuation handler that is invoked by BTD when the read KSP is 0
  uint32_t asyncStackSize;             // async-RT stack size in 64 byte blocks
  uint32_t numDSSRTStacks : 16;        // number of stacks per DSS
  uint32_t syncRayQueryCount : 4;      // number of ray queries in the sync-RT stack: 0-15 mapped to: 1-16
  unsigned _reserved_mbz : 12;
  uint32_t maxBVHLevels;               // the maximal number of supported instancing levels (0->8, 1->1, 2->2, ...)
  Flags flags;                         // per context control flags
};

void* allocDispatchGlobals(sycl::device device, sycl::context context)
{
  size_t maxBVHLevels = 2; //RTC_MAX_INSTANCE_LEVEL_COUNT+1;
  
  size_t rtstack_bytes = (64+maxBVHLevels*(64+32)+63)&-64;
  size_t num_rtstacks = 1<<17; // this is sufficiently large also for PVC
  size_t dispatchGlobalSize = 128+num_rtstacks*rtstack_bytes;
  
  void* dispatchGlobalsPtr = alloc_accel_buffer(dispatchGlobalSize,device,context);
  memset(dispatchGlobalsPtr, 0, dispatchGlobalSize);

  DispatchGlobals* dg = (DispatchGlobals*) dispatchGlobalsPtr;
  dg->rtMemBasePtr = (uint64_t) dispatchGlobalsPtr + dispatchGlobalSize;
  dg->callStackHandlerKSP = 0;
  dg->asyncStackSize = 0;
  dg->numDSSRTStacks = 0;
  dg->syncRayQueryCount = 0;
  dg->_reserved_mbz = 0;
  dg->maxBVHLevels = maxBVHLevels;
  dg->flags = DEPTH_TEST_LESS_EQUAL;
  
  return dispatchGlobalsPtr;
}

/* vertex indices for cornell_box model */
ze_rtas_triangle_indices_uint32_exp_t indices[] = {
  { 0, 1, 2 },
  { 0, 2, 3 },
  { 4, 5, 6 },
  { 4, 6, 7 },
  { 8, 9, 10 },
  { 8, 10, 11 },
  { 12, 13, 14 },
  { 12, 14, 15 },
  { 16, 17, 18 },
  { 16, 18, 19 },
  { 20, 21, 22 },
  { 20, 22, 23 },
  { 24, 25, 26 },
  { 24, 26, 27 },
  { 28, 29, 30 },
  { 28, 30, 31 },
  { 32, 33, 34 },
  { 32, 34, 35 },
  { 36, 37, 38 },
  { 36, 38, 39 },
  { 40, 41, 42 },
  { 40, 42, 43 },
  { 44, 45, 46 },
  { 44, 46, 47 },
  { 48, 49, 50 },
  { 48, 50, 51 },
  { 52, 53, 54 },
  { 52, 54, 55 },
  { 56, 57, 58 },
  { 56, 58, 59 },
  { 60, 61, 62 },
  { 60, 62, 63 },
  { 64, 65, 66 },
  { 64, 66, 67 }
};

/* vertex positions for cornell_box model */
ze_rtas_float3_exp_t vertices[] = {
  { 552.8, 0, 0 },
  { 0, 0, 0 },
  { 0, 0, 559.2 },
  { 549.6, 0, 559.2 },
  { 290, 0, 114 },
  { 240, 0, 272 },
  { 82, 0, 225 },
  { 130, 0, 65 },
  { 472, 0, 406 },
  { 314, 0, 456 },
  { 265, 0, 296 },
  { 423, 0, 247 },
  { 556, 548.8, 0 },
  { 556, 548.8, 559.2 },
  { 0, 548.8, 559.2 },
  { 0, 548.8, 0 },
  { 549.6, 0, 559.2 },
  { 0, 0, 559.2 },
  { 0, 548.8, 559.2 },
  { 556, 548.8, 559.2 },
  { 0, 0, 559.2 },
  { 0, 0, 0 },
  { 0, 548.8, 0 },
  { 0, 548.8, 559.2 },
  { 552.8, 0, 0 },
  { 549.6, 0, 559.2 },
  { 556, 548.8, 559.2 },
  { 556, 548.8, 0 },
  { 130, 165, 65 },
  { 82, 165, 225 },
  { 240, 165, 272 },
  { 290, 165, 114 },
  { 290, 0, 114 },
  { 290, 165, 114 },
  { 240, 165, 272 },
  { 240, 0, 272 },
  { 130, 0, 65 },
  { 130, 165, 65 },
  { 290, 165, 114 },
  { 290, 0, 114 },
  { 82, 0, 225 },
  { 82, 165, 225 },
  { 130, 165, 65 },
  { 130, 0, 65 },
  { 240, 0, 272 },
  { 240, 165, 272 },
  { 82, 165, 225 },
  { 82, 0, 225 },
  { 423, 330, 247 },
  { 265, 330, 296 },
  { 314, 330, 456 },
  { 472, 330, 406 },
  { 423, 0, 247 },
  { 423, 330, 247 },
  { 472, 330, 406 },
  { 472, 0, 406 },
  { 472, 0, 406 },
  { 472, 330, 406 },
  { 314, 330, 456 },
  { 314, 0, 456 },
  { 314, 0, 456 },
  { 314, 330, 456 },
  { 265, 330, 296 },
  { 265, 0, 296 },
  { 265, 0, 296 },
  { 265, 330, 296 },
  { 423, 330, 247 },
  { 423, 0, 247 },
};

/* builds acceleration structure */
void* build_rtas(sycl::device device, sycl::context context)
{
  /* get L0 handles */
  ze_driver_handle_t hDriver = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(device.get_platform());
  ze_device_handle_t hDevice = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(device);
    
  /* create rtas builder object */
  ze_rtas_builder_exp_desc_t builderDesc = { ZE_STRUCTURE_TYPE_RTAS_BUILDER_EXP_DESC };
  ze_rtas_builder_exp_handle_t hBuilder = nullptr;
  ze_result_t err = ZeWrapper::zeRTASBuilderCreateExp(hDriver, &builderDesc, &hBuilder);
  if (err != ZE_RESULT_SUCCESS)
    throw std::runtime_error("ze_rtas_builder creation failed");
    
  /* create geometry descriptor for single triangle mesh */
  ze_rtas_builder_triangles_geometry_info_exp_t mesh = {};
  mesh.geometryType = ZE_RTAS_BUILDER_GEOMETRY_TYPE_EXP_TRIANGLES;
  mesh.geometryFlags = 0;
  mesh.geometryMask = 0xFF;
  
  mesh.triangleFormat = ZE_RTAS_BUILDER_INPUT_DATA_FORMAT_EXP_TRIANGLE_INDICES_UINT32;
  mesh.triangleCount = sizeof(indices)/sizeof(ze_rtas_triangle_indices_uint32_exp_t);
  mesh.triangleStride = sizeof(ze_rtas_triangle_indices_uint32_exp_t);
  mesh.pTriangleBuffer = indices;

  mesh.vertexFormat = ZE_RTAS_BUILDER_INPUT_DATA_FORMAT_EXP_FLOAT3;
  mesh.vertexCount = sizeof(vertices)/sizeof(ze_rtas_float3_exp_t);
  mesh.vertexStride = sizeof(ze_rtas_float3_exp_t);
  mesh.pVertexBuffer = vertices;

  /* fill geometry descriptor array with pointer to single geometry descriptor */
  std::vector<ze_rtas_builder_geometry_info_exp_t*> descs;
  descs.push_back((ze_rtas_builder_geometry_info_exp_t*)&mesh);
  
  /* get acceleration structure format for this device */
  ze_rtas_device_exp_properties_t rtasProp = { ZE_STRUCTURE_TYPE_RTAS_DEVICE_EXP_PROPERTIES };
  ze_device_properties_t devProp = { ZE_STRUCTURE_TYPE_DEVICE_PROPERTIES, &rtasProp };
  err = ZeWrapper::zeDeviceGetProperties(hDevice, &devProp );
  if (err != ZE_RESULT_SUCCESS)
    throw std::runtime_error("zeDeviceGetProperties failed");

  /* create parallel operation for parallel build */
  ze_rtas_parallel_operation_exp_handle_t hParallelOperation = nullptr;
  err = ZeWrapper::zeRTASParallelOperationCreateExp(hDriver, &hParallelOperation);
  if (err != ZE_RESULT_SUCCESS)
    throw std::runtime_error("zeRTASParallelOperationCreateExp failed");

  /* create descriptor of build operation */
  size_t accelBufferBytesOut = 0;
  ze_rtas_aabb_exp_t bounds;
  ze_rtas_builder_build_op_exp_desc_t buildOp = {};
  buildOp.stype = ZE_STRUCTURE_TYPE_RTAS_BUILDER_BUILD_OP_EXP_DESC;
  buildOp.pNext = nullptr;
  buildOp.rtasFormat = rtasProp.rtasFormat;
  buildOp.buildQuality = ZE_RTAS_BUILDER_BUILD_QUALITY_HINT_EXP_MEDIUM;
  buildOp.buildFlags = 0;
  buildOp.ppGeometries = (const ze_rtas_builder_geometry_info_exp_t **) descs.data();
  buildOp.numGeometries = descs.size();

  /* just for debugging purposes */
#if defined(EMBREE_SYCL_ALLOC_DISPATCH_GLOBALS)
  ze_rtas_builder_build_op_debug_exp_desc_t buildOpDebug = { ZE_STRUCTURE_TYPE_RTAS_BUILDER_BUILD_OP_DEBUG_EXP_DESC };
  buildOpDebug.dispatchGlobalsPtr = dispatchGlobalsPtr;
  buildOp.pNext = &buildOpDebug;
#endif

  /* query required buffer sizes */
  ze_rtas_builder_exp_properties_t buildProps = { ZE_STRUCTURE_TYPE_RTAS_BUILDER_EXP_PROPERTIES };
  err = ZeWrapper::zeRTASBuilderGetBuildPropertiesExp(hBuilder,&buildOp,&buildProps);
  if (err != ZE_RESULT_SUCCESS)
    throw std::runtime_error("zeRTASBuilderGetBuildPropertiesExp failed");

  /* allocate scratch buffer */
  std::vector<char> scratchBuffer(buildProps.scratchBufferSizeBytes);
  memset(scratchBuffer.data(),0,scratchBuffer.size());

  /* allocate acceleration structure buffer */
  size_t accelBytes = buildProps.rtasBufferSizeBytesMaxRequired;
  void* accel = alloc_accel_buffer(accelBytes,device,context);
  memset(accel,0,accelBytes); // optional
  
  /* build acceleration strucuture multi threaded */
  err = ZeWrapper::zeRTASBuilderBuildExp(hBuilder,&buildOp,
                                  scratchBuffer.data(),scratchBuffer.size(),
                                  accel, accelBytes,
                                  hParallelOperation,
                                  nullptr, &bounds, &accelBufferBytesOut);
  
  if (err != ZE_RESULT_EXP_RTAS_BUILD_DEFERRED)
    throw std::runtime_error("zeRTASBuilderBuildExp failed");

  /* after the build is started one can query number of threads to use for the build */
  ze_rtas_parallel_operation_exp_properties_t prop = { ZE_STRUCTURE_TYPE_RTAS_PARALLEL_OPERATION_EXP_PROPERTIES };
  err = ZeWrapper::zeRTASParallelOperationGetPropertiesExp(hParallelOperation,&prop);

  if (err != ZE_RESULT_SUCCESS)
    throw std::runtime_error("zeRTASParallelOperationGetPropertiesExp failed");

  /* build in parallel using maximal number of build threads */
  tbb::parallel_for(0u, prop.maxConcurrency, 1u, [&](uint32_t) {
    err = ZeWrapper::zeRTASParallelOperationJoinExp(hParallelOperation);
  });
  
  if (err != ZE_RESULT_SUCCESS)
    throw std::runtime_error("zeRTASParallelOperationJoinExp failed");

  /* destroy parallel operation again */
  err = ZeWrapper::zeRTASParallelOperationDestroyExp(hParallelOperation);
  if (err != ZE_RESULT_SUCCESS)
    throw std::runtime_error("zeRTASParallelOperationDestroyExp failed");

  /* destroy rtas builder again */
  err = ZeWrapper::zeRTASBuilderDestroyExp(hBuilder);
  if (err != ZE_RESULT_SUCCESS)
    throw std::runtime_error("zeRTASBuilderDestroyExp failed");
  
  return accel;
}

/* render using simple UV shading */
void render(unsigned int x, unsigned int y, void* bvh, unsigned int* pixels, unsigned int width, unsigned int height)
{
  /* write zero image if ray tracing extension is not supported */
  intel_raytracing_ext_flag_t flags = intel_get_raytracing_ext_flag();
  if (!(flags & intel_raytracing_ext_flag_ray_query)) {
    pixels[y*width+x] = 0;
    return;
  }

  /* fixed camera */
  sycl::float3 vx(-1.f, -0.f, -0.f);
  sycl::float3 vy(-0.f, -1.f, -0.f);
  sycl::float3 vz(32.f, 32.f, 95.6379f);
  sycl::float3 p(278.f, 273.f, -800.f);

  /* compute primary ray */
  intel_ray_desc_t ray;
  ray.origin = p;
  ray.direction = float(x)*vx*64.0f/float(width) + float(y)*vy*64/float(height) + vz;
  ray.tmin = 0.0f;
  ray.tmax = INFINITY;
  ray.mask = 0xFF;
  ray.flags = intel_ray_flags_none;

  /* trace ray */
  intel_ray_query_t query = intel_ray_query_init(ray,(intel_raytracing_acceleration_structure_t)bvh);
  intel_ray_query_start_traversal(query);
  intel_ray_query_sync(query);

  /* get UVs of hit point */
  float u = 0, v = 0;
  if (intel_has_committed_hit(query))
  {
    sycl::float2 uv = intel_get_hit_barycentrics( query, intel_hit_type_committed_hit );
    u = uv.x();
    v = uv.y();
  }

  /* write color to framebuffer */
  sycl::float3 color(u,v,1.0f-u-v);
  unsigned int r = (unsigned int) (255.0f * color.x());
  unsigned int g = (unsigned int) (255.0f * color.y());
  unsigned int b = (unsigned int) (255.0f * color.z());
  pixels[y*width+x] = (b << 16) + (g << 8) + r;
}

int main(int argc, char* argv[]) try
{
  /* use can specify reference image to compare against */
#if defined(EMBREE_SYCL_L0_RTAS_BUILDER)
  ZeWrapper::RTAS_BUILD_MODE rtas_build_mode = ZeWrapper::RTAS_BUILD_MODE::LEVEL_ZERO;
#else
  ZeWrapper::RTAS_BUILD_MODE rtas_build_mode = ZeWrapper::RTAS_BUILD_MODE::INTERNAL;
#endif
  
  char* reference_img = NULL;
  for (int i=1; i<argc; i++)
  {
    if (strcmp(argv[i], "--compare") == 0) {
      if (++i >= argc) throw std::runtime_error("--compare: filename expected");
      reference_img = argv[i];
    }
    else if (strcmp(argv[i], "--internal-rtas-builder") == 0) {
      rtas_build_mode = ZeWrapper::RTAS_BUILD_MODE::INTERNAL;
    }
    else if (strcmp(argv[i], "--level-zero-rtas-builder") == 0) {
      rtas_build_mode = ZeWrapper::RTAS_BUILD_MODE::LEVEL_ZERO;
    }
    else if (strcmp(argv[i], "--default-rtas-builder") == 0) {
      rtas_build_mode = ZeWrapper::RTAS_BUILD_MODE::AUTO;
    }
    else if (strcmp(argv[i], "--size") == 0) {
      if (++i >= argc) throw std::runtime_error("--size: width expected");
      global_width = atoi(argv[i]);
      if (++i >= argc) throw std::runtime_error("--size: height expected");
      global_height = atoi(argv[i]);
      if (global_width == 0) throw std::runtime_error("--size: width is zero");
      if (global_height == 0) throw std::runtime_error("--size: height is zero");
      if (global_width > 4096) throw std::runtime_error("--size: width too large");
      if (global_height > 4096) throw std::runtime_error("--size: height too large");
    }
    else {
      throw std::runtime_error("unknown command line argument");
    }
  }

  /* create SYCL objects */
  sycl::device device = sycl::device(sycl::gpu_selector_v);
  sycl::queue queue = sycl::queue(device,exception_handler);
  sycl::context context = queue.get_context();

  if (ZeWrapper::init() != ZE_RESULT_SUCCESS) {
    std::cerr << "ZeWrapper not successfully initialized" << std::endl;
    return 1;
  }

  ze_result_t result = ZE_RESULT_SUCCESS;
  sycl::platform platform = device.get_platform();
  ze_driver_handle_t hDriver = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(platform);

  /* enable RTAS extension only when enabled */
  if (rtas_build_mode == ZeWrapper::RTAS_BUILD_MODE::AUTO)
  {
    uint32_t count = 0;
    std::vector<ze_driver_extension_properties_t> extensions;
    result = ZeWrapper::zeDriverGetExtensionProperties(hDriver,&count,extensions.data());
    if (result != ZE_RESULT_SUCCESS)
      throw std::runtime_error("zeDriverGetExtensionProperties failed");
    
    extensions.resize(count);
    result = ZeWrapper::zeDriverGetExtensionProperties(hDriver,&count,extensions.data());
    if (result != ZE_RESULT_SUCCESS)
      throw std::runtime_error("zeDriverGetExtensionProperties failed");
    
    bool ze_rtas_builder = false;
    for (uint32_t i=0; i<extensions.size(); i++)
    {
      if (strncmp("ZE_experimental_rtas_builder",extensions[i].name,sizeof(extensions[i].name)) == 0)
        ze_rtas_builder = true;
    }

    if (ze_rtas_builder)
      result = ZeWrapper::initRTASBuilder(hDriver,ZeWrapper::RTAS_BUILD_MODE::AUTO);
    else
      result = ZeWrapper::initRTASBuilder(hDriver,ZeWrapper::RTAS_BUILD_MODE::INTERNAL);
  }
  else
    result = ZeWrapper::initRTASBuilder(hDriver,rtas_build_mode);

  if (result == ZE_RESULT_ERROR_DEPENDENCY_UNAVAILABLE)
    throw std::runtime_error("cannot load ZE_experimental_rtas_builder extension");
  
  if (result != ZE_RESULT_SUCCESS)
    throw std::runtime_error("cannot initialize ZE_experimental_rtas_builder extension");
  
  if (ZeWrapper::rtas_builder == ZeWrapper::INTERNAL)
    std::cout << "using internal RTAS builder" << std::endl;
  else
    std::cout << "using Level Zero RTAS builder" << std::endl;

  /* get acceleration structure format for this device */
  ze_device_handle_t  hDevice  = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(device);
  ze_rtas_device_exp_properties_t rtasProp = { ZE_STRUCTURE_TYPE_RTAS_DEVICE_EXP_PROPERTIES };
  ze_device_properties_t devProp = { ZE_STRUCTURE_TYPE_DEVICE_PROPERTIES, &rtasProp };
  result = ZeWrapper::zeDeviceGetProperties(hDevice, &devProp );
  if (result != ZE_RESULT_SUCCESS)
    throw std::runtime_error("zeDeviceGetProperties failed");

  std::cout << "RTAS format = " << rtasProp.rtasFormat << std::endl;
  std::cout << "RTAS alignment = " << rtasProp.rtasBufferAlignment << std::endl;

#if defined(ZE_RAYTRACING_RT_SIMULATION)
  RTCore::Init();
  RTCore::SetXeVersion((RTCore::XeVersion)ZE_RAYTRACING_DEVICE);
#endif

#if defined(EMBREE_SYCL_ALLOC_DISPATCH_GLOBALS)
  dispatchGlobalsPtr = allocDispatchGlobals(device,context);
#endif

  /* build acceleration structure */
  void* bvh = build_rtas(device,context);

  /* creates framebuffer */
  const uint32_t width = global_width;
  const uint32_t height = global_height;
  unsigned int* pixels = (unsigned int*) sycl::aligned_alloc(64,width*height*sizeof(unsigned int),device,context,sycl::usm::alloc::shared);
  memset(pixels, 0, width*height*sizeof(uint32_t));

  /* renders image on device */
#if defined(ZE_RAYTRACING_RT_SIMULATION)
  tbb::parallel_for(tbb::blocked_range2d<uint32_t>(0,height,0,width),
     [&](const tbb::blocked_range2d<uint32_t>& r) {
        for (int y=r.rows().begin(); y<r.rows().end(); y++) {
          for (int x=r.cols().begin(); x<r.cols().end(); x++) {
            render(x,y,bvh,pixels,width,height);
          }
        }
     });
#else
  queue.submit([&](sycl::handler& cgh) {
                 const sycl::range<2> range(width,height);
                 cgh.parallel_for(range, [=](sycl::item<2> item) {
                                              const uint32_t x = item.get_id(0);
                                              const uint32_t y = item.get_id(1);
                                              render(x,y,bvh,pixels,width,height);
                                            });
               });
  queue.wait_and_throw();
#endif
  
  /* free acceleration structure again */
  free_accel_buffer(bvh,context);

#if defined(EMBREE_SYCL_ALLOC_DISPATCH_GLOBALS)
  free_accel_buffer(dispatchGlobalsPtr, context);
#endif
  
#if defined(ZE_RAYTRACING_RT_SIMULATION)
  RTCore::Cleanup();
#endif

  /* store image to disk */
  storeTga(pixels,width,height,"cornell_box.tga");
  if (!reference_img) return 0;

  /* compare to reference image */
  const size_t err = compareTga("cornell_box.tga", "cornell_box_reference.tga");
  std::cout << "difference to reference image is " << err << std::endl;
  const bool ok = err < 32;
  std::cout << "cornell_box ";
  if (ok) std::cout << "[PASSED]" << std::endl;
  else    std::cout << "[FAILED]" << std::endl;

  return ok ? 0 : 1;
}
catch (std::runtime_error e) {
  std::cerr << "std::runtime_error: " << e.what() << std::endl;
  return 1;
}