1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
"""
Copyright (C) 2025 Intel Corporation
SPDX-License-Identifier: MIT
"""
#!/usr/bin/env python3
"""
Plot system resource tracking data from Level Zero resource tracker CSV output.
Usage:
python3 plot_resource_tracker.py <csv_file>
Example:
export ZEL_ENABLE_SYSTEM_RESOURCE_TRACKER_CHECKER=1
export ZEL_SYSTEM_RESOURCE_TRACKER_CSV=tracker_output.csv
export ZEL_ENABLE_LOADER_LOGGING=1
export ZEL_LOADER_LOGGING_LEVEL=debug
./my_level_zero_app
python3 plot_resource_tracker.py tracker_output.csv
"""
import sys
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
def plot_resource_tracker(csv_file):
"""Plot resource tracking data from CSV file."""
# Read CSV file
df = pd.read_csv(csv_file)
# Check if CSV has any data rows
if len(df) == 0:
print(f"Error: CSV file '{csv_file}' contains no data rows (only header).")
print("Make sure the application runs with ZEL_ENABLE_SYSTEM_RESOURCE_TRACKER_CHECKER=1")
return
# Convert time from milliseconds to seconds
df['TimeSec'] = df['TimeMs'] / 1000.0
# Detect potential memory leaks - track memory increases that don't get freed
# For create/destroy operations, memory should return to baseline
# Look for APIs that destroy resources but memory doesn't decrease
df['PotentialLeak_KB'] = 0
# Create/Destroy pairs to monitor for leaks
create_destroy_pairs = {
'zeContextCreate': 'zeContextDestroy',
'zeCommandQueueCreate': 'zeCommandQueueDestroy',
'zeModuleCreate': 'zeModuleDestroy',
'zeKernelCreate': 'zeKernelDestroy',
'zeEventPoolCreate': 'zeEventPoolDestroy',
'zeCommandListCreate': 'zeCommandListDestroy',
'zeCommandListCreateImmediate': 'zeCommandListDestroy',
'zeEventCreate': 'zeEventDestroy',
'zeFenceCreate': 'zeFenceDestroy',
'zeImageCreate': 'zeImageDestroy',
'zeSamplerCreate': 'zeSamplerDestroy',
'zeMemAllocDevice': 'zeMemFree',
'zeMemAllocHost': 'zeMemFree',
'zeMemAllocShared': 'zeMemFree',
}
# Track memory at create and check if it decreased at destroy
for idx, row in df.iterrows():
api = row['APICall']
# If this is a destroy operation, check if memory decreased
if api in create_destroy_pairs.values():
# Memory should decrease on destroy - if it increased, it's a leak
if row['Delta_VmRSS_KB'] > 100: # Threshold: 100KB increase on destroy = leak
df.at[idx, 'PotentialLeak_KB'] = row['Delta_VmRSS_KB']
# Calculate cumulative leaks over time
df['CumulativeLeak_KB'] = df['PotentialLeak_KB'].cumsum()
# Create figure with multiple subplots
fig, axes = plt.subplots(4, 3, figsize=(18, 16))
fig.suptitle(f'Level Zero System Resource Tracking\n{Path(csv_file).name}', fontsize=16)
# Plot 1: Memory Leak Detection Over Time
ax1 = axes[0, 0]
# Plot cumulative leaks
ax1.plot(df['TimeSec'], df['CumulativeLeak_KB'] / 1024, label='Cumulative Leaks',
linewidth=3, color='red')
# Mark individual leak events
leak_events = df[df['PotentialLeak_KB'] > 0]
if not leak_events.empty:
ax1.scatter(leak_events['TimeSec'], leak_events['CumulativeLeak_KB'] / 1024,
color='darkred', s=100, marker='x', linewidths=3,
label=f'Leak Events ({len(leak_events)})', zorder=5)
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Memory Leaked (MB)')
ax1.set_title('Memory Leak Detection Over Time', fontweight='bold', color='darkred')
ax1.legend()
ax1.grid(True, alpha=0.3)
if df['CumulativeLeak_KB'].max() > 0:
ax1.set_facecolor('#fff5f5') # Light red background if leaks detected
# Plot 2: Memory Usage Over Time (VmRSS, VmSize, VmData)
ax2 = axes[0, 1]
ax2.plot(df['TimeSec'], df['VmRSS_KB'] / 1024, label='VmRSS', linewidth=2)
ax2.plot(df['TimeSec'], df['VmSize_KB'] / 1024, label='VmSize', linewidth=2, alpha=0.7)
ax2.plot(df['TimeSec'], df['VmData_KB'] / 1024, label='VmData', linewidth=2, alpha=0.7)
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Memory (MB)')
ax2.set_title('System Memory Usage Over Time')
ax2.legend()
ax2.grid(True, alpha=0.3)
# Plot 3: Leak Events by API Type
ax3 = axes[0, 2]
if not leak_events.empty:
leak_by_api = leak_events.groupby('APICall')['PotentialLeak_KB'].sum().sort_values(ascending=True) / 1024
if not leak_by_api.empty:
leak_by_api.plot(kind='barh', ax=ax3, color='orangered')
ax3.set_xlabel('Total Leaked Memory (MB)')
ax3.set_title('Memory Leaks by API Call', fontweight='bold')
ax3.grid(True, alpha=0.3, axis='x')
ax3.set_facecolor('#fff5f5')
else:
ax3.text(0.5, 0.5, 'No Leaks Detected!', ha='center', va='center',
fontsize=14, color='green', fontweight='bold', transform=ax3.transAxes)
ax3.set_title('Memory Leaks by API Call')
ax3.axis('off')
else:
ax3.text(0.5, 0.5, 'No Leaks Detected!', ha='center', va='center',
fontsize=14, color='green', fontweight='bold', transform=ax3.transAxes)
ax3.set_title('Memory Leaks by API Call')
ax3.axis('off')
# Plot 4: Memory Deltas (showing per-call changes)
ax4 = axes[1, 0]
ax4.plot(df['TimeSec'], df['Delta_VmRSS_KB'] / 1024, label='Delta VmRSS', linewidth=1.5)
ax4.plot(df['TimeSec'], df['Delta_VmSize_KB'] / 1024, label='Delta VmSize', linewidth=1.5, alpha=0.7)
ax4.axhline(y=0, color='black', linestyle='--', linewidth=0.5)
ax4.set_xlabel('Time (s)')
ax4.set_ylabel('Memory Change (MB)')
ax4.set_title('Memory Deltas Per API Call')
ax4.legend()
ax4.grid(True, alpha=0.3)
# Plot 5: Level Zero Resource Counts
ax5 = axes[1, 1]
has_resources = False
if df['Contexts'].max() > 0:
ax5.plot(df['TimeSec'], df['Contexts'], label='Contexts', linewidth=2)
has_resources = True
if df['CommandQueues'].max() > 0:
ax5.plot(df['TimeSec'], df['CommandQueues'], label='CommandQueues', linewidth=2)
has_resources = True
if df['Modules'].max() > 0:
ax5.plot(df['TimeSec'], df['Modules'], label='Modules', linewidth=2)
has_resources = True
if df['Kernels'].max() > 0:
ax5.plot(df['TimeSec'], df['Kernels'], label='Kernels', linewidth=2)
has_resources = True
ax5.set_xlabel('Time (s)')
ax5.set_ylabel('Resource Count')
ax5.set_title('L0 Resource Counts (Contexts, Queues, Modules, Kernels)')
if has_resources:
ax5.legend()
ax5.grid(True, alpha=0.3)
# Plot 6: Command Lists and Event Resources
ax6 = axes[1, 2]
has_cmd_resources = False
if df['CommandLists'].max() > 0:
ax6.plot(df['TimeSec'], df['CommandLists'], label='CommandLists', linewidth=2)
has_cmd_resources = True
if df['EventPools'].max() > 0:
ax6.plot(df['TimeSec'], df['EventPools'], label='EventPools', linewidth=2)
has_cmd_resources = True
if df['Events'].max() > 0:
ax6.plot(df['TimeSec'], df['Events'], label='Events', linewidth=2)
has_cmd_resources = True
if df['Fences'].max() > 0:
ax6.plot(df['TimeSec'], df['Fences'], label='Fences', linewidth=2)
has_cmd_resources = True
ax6.set_xlabel('Time (s)')
ax6.set_ylabel('Resource Count')
ax6.set_title('L0 Command Lists and Events')
if has_cmd_resources:
ax6.legend()
ax6.grid(True, alpha=0.3)
# Plot 7: Total Memory Allocations
ax7 = axes[2, 0]
ax7.plot(df['TimeSec'], df['TotalMemory_Bytes'] / (1024*1024), label='Total Memory',
linewidth=2, color='red')
ax7.set_xlabel('Time (s)')
ax7.set_ylabel('Memory (MB)')
ax7.set_title('Total L0 Memory Allocations')
ax7.legend()
ax7.grid(True, alpha=0.3)
# Plot 8: API Call Distribution (top 10 most frequent)
ax8 = axes[2, 1]
api_counts = df['APICall'].value_counts().head(10).sort_values(ascending=True)
if len(api_counts) > 0:
api_counts.plot(kind='barh', ax=ax8, color='steelblue')
ax8.set_xlabel('Call Count')
ax8.set_title('Top 10 Most Frequent API Calls')
ax8.grid(True, alpha=0.3, axis='x')
else:
ax8.text(0.5, 0.5, 'No API calls recorded', ha='center', va='center',
fontsize=12, transform=ax8.transAxes)
ax8.set_title('Top 10 Most Frequent API Calls')
ax8.axis('off')
# Plot 9: Top 10 API Calls by Memory Usage
ax9 = axes[2, 2]
# Calculate total memory delta per API call type
memory_by_api = (df.groupby('APICall')['Delta_VmRSS_KB'].sum() / 1024).sort_values(ascending=True).tail(10)
if len(memory_by_api) > 0:
memory_by_api.plot(kind='barh', ax=ax9, color='coral')
ax9.set_xlabel('Total Memory Delta (MB)')
ax9.set_title('Top 10 API Calls by Memory Impact')
ax9.grid(True, alpha=0.3, axis='x')
else:
ax9.text(0.5, 0.5, 'No API calls recorded', ha='center', va='center',
fontsize=12, transform=ax9.transAxes)
ax9.set_title('Top 10 API Calls by Memory Impact')
ax9.axis('off')
# Plot 10: Memory Usage by API Call (average per call)
ax10 = axes[3, 0]
# Calculate average memory delta per API call type
avg_memory_by_api = (df.groupby('APICall')['Delta_VmRSS_KB'].mean() / 1024).sort_values(ascending=True).tail(10)
if len(avg_memory_by_api) > 0:
avg_memory_by_api.plot(kind='barh', ax=ax10, color='mediumseagreen')
ax10.set_xlabel('Avg Memory Delta per Call (MB)')
ax10.set_title('Top 10 API Calls by Avg Memory per Call')
ax10.grid(True, alpha=0.3, axis='x')
else:
ax10.text(0.5, 0.5, 'No API calls recorded', ha='center', va='center',
fontsize=12, transform=ax10.transAxes)
ax10.set_title('Top 10 API Calls by Avg Memory per Call')
ax10.axis('off')
# Plot 11: Cumulative memory by API over time
ax11 = axes[3, 1]
# Get top 5 API calls by total memory impact
top5_apis = df.groupby('APICall')['Delta_VmRSS_KB'].sum().nlargest(5).index
if len(top5_apis) > 0:
for api in top5_apis:
api_data = df[df['APICall'] == api]
ax11.plot(api_data['TimeSec'], (api_data['Delta_VmRSS_KB'].cumsum() / 1024), label=api, linewidth=2)
ax11.set_xlabel('Time (s)')
ax11.set_ylabel('Cumulative Memory Delta (MB)')
ax11.set_title('Cumulative Memory Impact by Top 5 APIs')
ax11.legend(fontsize=8)
ax11.grid(True, alpha=0.3)
else:
ax11.text(0.5, 0.5, 'No API calls recorded', ha='center', va='center',
fontsize=12, transform=ax11.transAxes)
ax11.set_title('Cumulative Memory Impact by Top 5 APIs')
ax11.axis('off')
# Plot 12: Leak detection timeline with annotations
ax12 = axes[3, 2]
if not leak_events.empty:
# Show individual leak magnitudes over time
ax12.bar(leak_events['TimeSec'], leak_events['PotentialLeak_KB'] / 1024,
width=0.01, color='red', alpha=0.7, label='Leak Magnitude')
ax12.set_xlabel('Time (s)')
ax12.set_ylabel('Leaked Memory (MB)')
ax12.set_title('Individual Leak Events Timeline', fontweight='bold')
ax12.legend()
ax12.grid(True, alpha=0.3, axis='y')
ax12.set_facecolor('#fff5f5')
# Add text annotation for total
total_leaked = leak_events['PotentialLeak_KB'].sum() / 1024
ax12.text(0.95, 0.95, f'Total: {total_leaked:.2f} MB\n{len(leak_events)} events',
transform=ax12.transAxes, ha='right', va='top',
bbox=dict(boxstyle='round', facecolor='white', alpha=0.8),
fontsize=10, fontweight='bold', color='darkred')
else:
ax12.text(0.5, 0.5, 'No Memory Leaks Detected!\nâ All resources properly cleaned up',
ha='center', va='center', fontsize=14, color='green',
fontweight='bold', transform=ax12.transAxes)
ax12.set_title('Individual Leak Events Timeline')
ax12.axis('off')
plt.tight_layout()
# Save plot
output_file = Path(csv_file).stem + '_plot.png'
plt.savefig(output_file, dpi=150, bbox_inches='tight')
print(f"Plot saved to: {output_file}")
# Show plot
plt.show()
# Print summary statistics
print("\n=== Summary Statistics ===")
print(f"Total API calls tracked: {len(df)}")
print(f"Time span: {df['TimeSec'].max():.2f} seconds ({df['TimeMs'].max():.2f} ms)")
print(f"Peak VmRSS: {df['VmRSS_KB'].max():.2f} KB ({df['VmRSS_KB'].max()/1024:.2f} MB)")
print(f"Peak VmSize: {df['VmSize_KB'].max():.2f} KB ({df['VmSize_KB'].max()/1024:.2f} MB)")
print(f"Total memory allocated: {df['TotalMemory_Bytes'].max():.2f} bytes "
f"({df['TotalMemory_Bytes'].max()/(1024*1024):.2f} MB)")
print(f"Number of threads: {df['Threads'].max()}")
# Print leak detection summary
print(f"\n=== MEMORY LEAK DETECTION ===")
if df['CumulativeLeak_KB'].max() > 0:
print(f"â ď¸ LEAKS DETECTED!")
print(f"Total leaked memory: {df['CumulativeLeak_KB'].max() / 1024:.2f} MB ({df['CumulativeLeak_KB'].max():.2f} KB)")
print(f"Number of leak events: {len(leak_events)}")
if not leak_events.empty:
print(f"\nLeak events by API:")
leak_summary = leak_events.groupby('APICall')['PotentialLeak_KB'].agg(['count', 'sum', 'mean'])
leak_summary.columns = ['Count', 'Total_KB', 'Avg_KB']
leak_summary = leak_summary.sort_values('Total_KB', ascending=False)
for api, row in leak_summary.iterrows():
print(f" {api}: {row['Count']} events, {row['Total_KB']/1024:.2f} MB total, {row['Avg_KB']/1024:.2f} MB avg")
else:
print(f"â No memory leaks detected!")
print(f" All resources were properly cleaned up.")
print(f"\nPeak resource counts:")
print(f" Contexts: {df['Contexts'].max()}")
print(f" CommandQueues: {df['CommandQueues'].max()}")
print(f" Modules: {df['Modules'].max()}")
print(f" Kernels: {df['Kernels'].max()}")
print(f" CommandLists: {df['CommandLists'].max()}")
print(f" Events: {df['Events'].max()}")
# Print top API calls by memory usage
print(f"\n=== Top 10 API Calls by Total Memory Impact ===")
memory_by_api = df.groupby('APICall')['Delta_VmRSS_KB'].sum().sort_values(ascending=False).head(10)
for api, mem in memory_by_api.items():
print(f" {api}: {mem:.2f} KB ({mem/1024:.2f} MB)")
print(f"\n=== Top 10 API Calls by Average Memory per Call ===")
avg_memory_by_api = df.groupby('APICall')['Delta_VmRSS_KB'].mean().sort_values(ascending=False).head(10)
for api, mem in avg_memory_by_api.items():
count = len(df[df['APICall'] == api])
print(f" {api}: {mem:.2f} KB/call ({count} calls)")
if __name__ == '__main__':
if len(sys.argv) != 2:
print(__doc__)
sys.exit(1)
csv_file = sys.argv[1]
if not Path(csv_file).exists():
print(f"Error: File '{csv_file}' not found")
sys.exit(1)
try:
import pandas
import matplotlib
except ImportError as e:
print(f"Error: Required Python packages not installed")
print(f"Install with: pip install pandas matplotlib")
sys.exit(1)
plot_resource_tracker(csv_file)
|