File: plot_resource_tracker.py

package info (click to toggle)
level-zero 1.26.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,468 kB
  • sloc: cpp: 130,327; ansic: 16,197; python: 9,824; makefile: 4
file content (362 lines) | stat: -rwxr-xr-x 15,683 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""
 Copyright (C) 2025 Intel Corporation

 SPDX-License-Identifier: MIT

"""
#!/usr/bin/env python3
"""
Plot system resource tracking data from Level Zero resource tracker CSV output.

Usage:
    python3 plot_resource_tracker.py <csv_file>

Example:
    export ZEL_ENABLE_SYSTEM_RESOURCE_TRACKER_CHECKER=1
    export ZEL_SYSTEM_RESOURCE_TRACKER_CSV=tracker_output.csv
    export ZEL_ENABLE_LOADER_LOGGING=1
    export ZEL_LOADER_LOGGING_LEVEL=debug
    ./my_level_zero_app
    python3 plot_resource_tracker.py tracker_output.csv
"""

import sys
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path

def plot_resource_tracker(csv_file):
    """Plot resource tracking data from CSV file."""
    
    # Read CSV file
    df = pd.read_csv(csv_file)
    
    # Check if CSV has any data rows
    if len(df) == 0:
        print(f"Error: CSV file '{csv_file}' contains no data rows (only header).")
        print("Make sure the application runs with ZEL_ENABLE_SYSTEM_RESOURCE_TRACKER_CHECKER=1")
        return
    
    # Convert time from milliseconds to seconds
    df['TimeSec'] = df['TimeMs'] / 1000.0
    
    # Detect potential memory leaks - track memory increases that don't get freed
    # For create/destroy operations, memory should return to baseline
    # Look for APIs that destroy resources but memory doesn't decrease
    df['PotentialLeak_KB'] = 0
    
    # Create/Destroy pairs to monitor for leaks
    create_destroy_pairs = {
        'zeContextCreate': 'zeContextDestroy',
        'zeCommandQueueCreate': 'zeCommandQueueDestroy',
        'zeModuleCreate': 'zeModuleDestroy',
        'zeKernelCreate': 'zeKernelDestroy',
        'zeEventPoolCreate': 'zeEventPoolDestroy',
        'zeCommandListCreate': 'zeCommandListDestroy',
        'zeCommandListCreateImmediate': 'zeCommandListDestroy',
        'zeEventCreate': 'zeEventDestroy',
        'zeFenceCreate': 'zeFenceDestroy',
        'zeImageCreate': 'zeImageDestroy',
        'zeSamplerCreate': 'zeSamplerDestroy',
        'zeMemAllocDevice': 'zeMemFree',
        'zeMemAllocHost': 'zeMemFree',
        'zeMemAllocShared': 'zeMemFree',
    }
    
    # Track memory at create and check if it decreased at destroy
    for idx, row in df.iterrows():
        api = row['APICall']
        # If this is a destroy operation, check if memory decreased
        if api in create_destroy_pairs.values():
            # Memory should decrease on destroy - if it increased, it's a leak
            if row['Delta_VmRSS_KB'] > 100:  # Threshold: 100KB increase on destroy = leak
                df.at[idx, 'PotentialLeak_KB'] = row['Delta_VmRSS_KB']
    
    # Calculate cumulative leaks over time
    df['CumulativeLeak_KB'] = df['PotentialLeak_KB'].cumsum()
    
    # Create figure with multiple subplots
    fig, axes = plt.subplots(4, 3, figsize=(18, 16))
    fig.suptitle(f'Level Zero System Resource Tracking\n{Path(csv_file).name}', fontsize=16)
    
    # Plot 1: Memory Leak Detection Over Time
    ax1 = axes[0, 0]
    # Plot cumulative leaks
    ax1.plot(df['TimeSec'], df['CumulativeLeak_KB'] / 1024, label='Cumulative Leaks', 
             linewidth=3, color='red')
    # Mark individual leak events
    leak_events = df[df['PotentialLeak_KB'] > 0]
    if not leak_events.empty:
        ax1.scatter(leak_events['TimeSec'], leak_events['CumulativeLeak_KB'] / 1024, 
                   color='darkred', s=100, marker='x', linewidths=3, 
                   label=f'Leak Events ({len(leak_events)})', zorder=5)
    ax1.set_xlabel('Time (s)')
    ax1.set_ylabel('Memory Leaked (MB)')
    ax1.set_title('Memory Leak Detection Over Time', fontweight='bold', color='darkred')
    ax1.legend()
    ax1.grid(True, alpha=0.3)
    if df['CumulativeLeak_KB'].max() > 0:
        ax1.set_facecolor('#fff5f5')  # Light red background if leaks detected
    
    # Plot 2: Memory Usage Over Time (VmRSS, VmSize, VmData)
    ax2 = axes[0, 1]
    ax2.plot(df['TimeSec'], df['VmRSS_KB'] / 1024, label='VmRSS', linewidth=2)
    ax2.plot(df['TimeSec'], df['VmSize_KB'] / 1024, label='VmSize', linewidth=2, alpha=0.7)
    ax2.plot(df['TimeSec'], df['VmData_KB'] / 1024, label='VmData', linewidth=2, alpha=0.7)
    ax2.set_xlabel('Time (s)')
    ax2.set_ylabel('Memory (MB)')
    ax2.set_title('System Memory Usage Over Time')
    ax2.legend()
    ax2.grid(True, alpha=0.3)
    
    # Plot 3: Leak Events by API Type
    ax3 = axes[0, 2]
    if not leak_events.empty:
        leak_by_api = leak_events.groupby('APICall')['PotentialLeak_KB'].sum().sort_values(ascending=True) / 1024
        if not leak_by_api.empty:
            leak_by_api.plot(kind='barh', ax=ax3, color='orangered')
            ax3.set_xlabel('Total Leaked Memory (MB)')
            ax3.set_title('Memory Leaks by API Call', fontweight='bold')
            ax3.grid(True, alpha=0.3, axis='x')
            ax3.set_facecolor('#fff5f5')
        else:
            ax3.text(0.5, 0.5, 'No Leaks Detected!', ha='center', va='center', 
                    fontsize=14, color='green', fontweight='bold', transform=ax3.transAxes)
            ax3.set_title('Memory Leaks by API Call')
            ax3.axis('off')
    else:
        ax3.text(0.5, 0.5, 'No Leaks Detected!', ha='center', va='center', 
                fontsize=14, color='green', fontweight='bold', transform=ax3.transAxes)
        ax3.set_title('Memory Leaks by API Call')
        ax3.axis('off')
    
    # Plot 4: Memory Deltas (showing per-call changes)
    ax4 = axes[1, 0]
    ax4.plot(df['TimeSec'], df['Delta_VmRSS_KB'] / 1024, label='Delta VmRSS', linewidth=1.5)
    ax4.plot(df['TimeSec'], df['Delta_VmSize_KB'] / 1024, label='Delta VmSize', linewidth=1.5, alpha=0.7)
    ax4.axhline(y=0, color='black', linestyle='--', linewidth=0.5)
    ax4.set_xlabel('Time (s)')
    ax4.set_ylabel('Memory Change (MB)')
    ax4.set_title('Memory Deltas Per API Call')
    ax4.legend()
    ax4.grid(True, alpha=0.3)
    
    # Plot 5: Level Zero Resource Counts
    ax5 = axes[1, 1]
    has_resources = False
    if df['Contexts'].max() > 0:
        ax5.plot(df['TimeSec'], df['Contexts'], label='Contexts', linewidth=2)
        has_resources = True
    if df['CommandQueues'].max() > 0:
        ax5.plot(df['TimeSec'], df['CommandQueues'], label='CommandQueues', linewidth=2)
        has_resources = True
    if df['Modules'].max() > 0:
        ax5.plot(df['TimeSec'], df['Modules'], label='Modules', linewidth=2)
        has_resources = True
    if df['Kernels'].max() > 0:
        ax5.plot(df['TimeSec'], df['Kernels'], label='Kernels', linewidth=2)
        has_resources = True
    ax5.set_xlabel('Time (s)')
    ax5.set_ylabel('Resource Count')
    ax5.set_title('L0 Resource Counts (Contexts, Queues, Modules, Kernels)')
    if has_resources:
        ax5.legend()
    ax5.grid(True, alpha=0.3)
    
    # Plot 6: Command Lists and Event Resources
    ax6 = axes[1, 2]
    has_cmd_resources = False
    if df['CommandLists'].max() > 0:
        ax6.plot(df['TimeSec'], df['CommandLists'], label='CommandLists', linewidth=2)
        has_cmd_resources = True
    if df['EventPools'].max() > 0:
        ax6.plot(df['TimeSec'], df['EventPools'], label='EventPools', linewidth=2)
        has_cmd_resources = True
    if df['Events'].max() > 0:
        ax6.plot(df['TimeSec'], df['Events'], label='Events', linewidth=2)
        has_cmd_resources = True
    if df['Fences'].max() > 0:
        ax6.plot(df['TimeSec'], df['Fences'], label='Fences', linewidth=2)
        has_cmd_resources = True
    ax6.set_xlabel('Time (s)')
    ax6.set_ylabel('Resource Count')
    ax6.set_title('L0 Command Lists and Events')
    if has_cmd_resources:
        ax6.legend()
    ax6.grid(True, alpha=0.3)
    
    # Plot 7: Total Memory Allocations
    ax7 = axes[2, 0]
    ax7.plot(df['TimeSec'], df['TotalMemory_Bytes'] / (1024*1024), label='Total Memory', 
             linewidth=2, color='red')
    ax7.set_xlabel('Time (s)')
    ax7.set_ylabel('Memory (MB)')
    ax7.set_title('Total L0 Memory Allocations')
    ax7.legend()
    ax7.grid(True, alpha=0.3)
    
    # Plot 8: API Call Distribution (top 10 most frequent)
    ax8 = axes[2, 1]
    api_counts = df['APICall'].value_counts().head(10).sort_values(ascending=True)
    if len(api_counts) > 0:
        api_counts.plot(kind='barh', ax=ax8, color='steelblue')
        ax8.set_xlabel('Call Count')
        ax8.set_title('Top 10 Most Frequent API Calls')
        ax8.grid(True, alpha=0.3, axis='x')
    else:
        ax8.text(0.5, 0.5, 'No API calls recorded', ha='center', va='center',
                fontsize=12, transform=ax8.transAxes)
        ax8.set_title('Top 10 Most Frequent API Calls')
        ax8.axis('off')
    
    # Plot 9: Top 10 API Calls by Memory Usage
    ax9 = axes[2, 2]
    # Calculate total memory delta per API call type
    memory_by_api = (df.groupby('APICall')['Delta_VmRSS_KB'].sum() / 1024).sort_values(ascending=True).tail(10)
    if len(memory_by_api) > 0:
        memory_by_api.plot(kind='barh', ax=ax9, color='coral')
        ax9.set_xlabel('Total Memory Delta (MB)')
        ax9.set_title('Top 10 API Calls by Memory Impact')
        ax9.grid(True, alpha=0.3, axis='x')
    else:
        ax9.text(0.5, 0.5, 'No API calls recorded', ha='center', va='center',
                fontsize=12, transform=ax9.transAxes)
        ax9.set_title('Top 10 API Calls by Memory Impact')
        ax9.axis('off')
    
    # Plot 10: Memory Usage by API Call (average per call)
    ax10 = axes[3, 0]
    # Calculate average memory delta per API call type
    avg_memory_by_api = (df.groupby('APICall')['Delta_VmRSS_KB'].mean() / 1024).sort_values(ascending=True).tail(10)
    if len(avg_memory_by_api) > 0:
        avg_memory_by_api.plot(kind='barh', ax=ax10, color='mediumseagreen')
        ax10.set_xlabel('Avg Memory Delta per Call (MB)')
        ax10.set_title('Top 10 API Calls by Avg Memory per Call')
        ax10.grid(True, alpha=0.3, axis='x')
    else:
        ax10.text(0.5, 0.5, 'No API calls recorded', ha='center', va='center',
                fontsize=12, transform=ax10.transAxes)
        ax10.set_title('Top 10 API Calls by Avg Memory per Call')
        ax10.axis('off')
    
    # Plot 11: Cumulative memory by API over time
    ax11 = axes[3, 1]
    # Get top 5 API calls by total memory impact
    top5_apis = df.groupby('APICall')['Delta_VmRSS_KB'].sum().nlargest(5).index
    if len(top5_apis) > 0:
        for api in top5_apis:
            api_data = df[df['APICall'] == api]
            ax11.plot(api_data['TimeSec'], (api_data['Delta_VmRSS_KB'].cumsum() / 1024), label=api, linewidth=2)
        ax11.set_xlabel('Time (s)')
        ax11.set_ylabel('Cumulative Memory Delta (MB)')
        ax11.set_title('Cumulative Memory Impact by Top 5 APIs')
        ax11.legend(fontsize=8)
        ax11.grid(True, alpha=0.3)
    else:
        ax11.text(0.5, 0.5, 'No API calls recorded', ha='center', va='center',
                fontsize=12, transform=ax11.transAxes)
        ax11.set_title('Cumulative Memory Impact by Top 5 APIs')
        ax11.axis('off')
    
    # Plot 12: Leak detection timeline with annotations
    ax12 = axes[3, 2]
    if not leak_events.empty:
        # Show individual leak magnitudes over time
        ax12.bar(leak_events['TimeSec'], leak_events['PotentialLeak_KB'] / 1024, 
                width=0.01, color='red', alpha=0.7, label='Leak Magnitude')
        ax12.set_xlabel('Time (s)')
        ax12.set_ylabel('Leaked Memory (MB)')
        ax12.set_title('Individual Leak Events Timeline', fontweight='bold')
        ax12.legend()
        ax12.grid(True, alpha=0.3, axis='y')
        ax12.set_facecolor('#fff5f5')
        
        # Add text annotation for total
        total_leaked = leak_events['PotentialLeak_KB'].sum() / 1024
        ax12.text(0.95, 0.95, f'Total: {total_leaked:.2f} MB\n{len(leak_events)} events', 
                 transform=ax12.transAxes, ha='right', va='top',
                 bbox=dict(boxstyle='round', facecolor='white', alpha=0.8),
                 fontsize=10, fontweight='bold', color='darkred')
    else:
        ax12.text(0.5, 0.5, 'No Memory Leaks Detected!\n✓ All resources properly cleaned up', 
                 ha='center', va='center', fontsize=14, color='green', 
                 fontweight='bold', transform=ax12.transAxes)
        ax12.set_title('Individual Leak Events Timeline')
        ax12.axis('off')
    
    plt.tight_layout()
    
    # Save plot
    output_file = Path(csv_file).stem + '_plot.png'
    plt.savefig(output_file, dpi=150, bbox_inches='tight')
    print(f"Plot saved to: {output_file}")
    
    # Show plot
    plt.show()
    
    # Print summary statistics
    print("\n=== Summary Statistics ===")
    print(f"Total API calls tracked: {len(df)}")
    print(f"Time span: {df['TimeSec'].max():.2f} seconds ({df['TimeMs'].max():.2f} ms)")
    print(f"Peak VmRSS: {df['VmRSS_KB'].max():.2f} KB ({df['VmRSS_KB'].max()/1024:.2f} MB)")
    print(f"Peak VmSize: {df['VmSize_KB'].max():.2f} KB ({df['VmSize_KB'].max()/1024:.2f} MB)")
    print(f"Total memory allocated: {df['TotalMemory_Bytes'].max():.2f} bytes "
          f"({df['TotalMemory_Bytes'].max()/(1024*1024):.2f} MB)")
    print(f"Number of threads: {df['Threads'].max()}")
    
    # Print leak detection summary
    print(f"\n=== MEMORY LEAK DETECTION ===")
    if df['CumulativeLeak_KB'].max() > 0:
        print(f"⚠️  LEAKS DETECTED!")
        print(f"Total leaked memory: {df['CumulativeLeak_KB'].max() / 1024:.2f} MB ({df['CumulativeLeak_KB'].max():.2f} KB)")
        print(f"Number of leak events: {len(leak_events)}")
        if not leak_events.empty:
            print(f"\nLeak events by API:")
            leak_summary = leak_events.groupby('APICall')['PotentialLeak_KB'].agg(['count', 'sum', 'mean'])
            leak_summary.columns = ['Count', 'Total_KB', 'Avg_KB']
            leak_summary = leak_summary.sort_values('Total_KB', ascending=False)
            for api, row in leak_summary.iterrows():
                print(f"  {api}: {row['Count']} events, {row['Total_KB']/1024:.2f} MB total, {row['Avg_KB']/1024:.2f} MB avg")
    else:
        print(f"✓ No memory leaks detected!")
        print(f"  All resources were properly cleaned up.")
    
    print(f"\nPeak resource counts:")
    print(f"  Contexts: {df['Contexts'].max()}")
    print(f"  CommandQueues: {df['CommandQueues'].max()}")
    print(f"  Modules: {df['Modules'].max()}")
    print(f"  Kernels: {df['Kernels'].max()}")
    print(f"  CommandLists: {df['CommandLists'].max()}")
    print(f"  Events: {df['Events'].max()}")
    
    # Print top API calls by memory usage
    print(f"\n=== Top 10 API Calls by Total Memory Impact ===")
    memory_by_api = df.groupby('APICall')['Delta_VmRSS_KB'].sum().sort_values(ascending=False).head(10)
    for api, mem in memory_by_api.items():
        print(f"  {api}: {mem:.2f} KB ({mem/1024:.2f} MB)")
    
    print(f"\n=== Top 10 API Calls by Average Memory per Call ===")
    avg_memory_by_api = df.groupby('APICall')['Delta_VmRSS_KB'].mean().sort_values(ascending=False).head(10)
    for api, mem in avg_memory_by_api.items():
        count = len(df[df['APICall'] == api])
        print(f"  {api}: {mem:.2f} KB/call ({count} calls)")

if __name__ == '__main__':
    if len(sys.argv) != 2:
        print(__doc__)
        sys.exit(1)
    
    csv_file = sys.argv[1]
    if not Path(csv_file).exists():
        print(f"Error: File '{csv_file}' not found")
        sys.exit(1)
    
    try:
        import pandas
        import matplotlib
    except ImportError as e:
        print(f"Error: Required Python packages not installed")
        print(f"Install with: pip install pandas matplotlib")
        sys.exit(1)
    
    plot_resource_tracker(csv_file)