1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
|
/* Copyright 2017 The OpenXLA Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
// SPDX-License-Identifier: Apache-2.0
// Copyright (C) 2024 Intel Corporation
==============================================================================*/
// GraphCycles provides incremental cycle detection on a dynamic
// graph using the following algorithm:
//
// A dynamic topological sort algorithm for directed acyclic graphs
// David J. Pearce, Paul H. J. Kelly
// Journal of Experimental Algorithmics (JEA) JEA Homepage archive
// Volume 11, 2006, Article No. 1.7
//
// Brief summary of the algorithm:
//
// (1) Maintain a rank for each node that is consistent
// with the topological sort of the graph. I.e., path from x to y
// implies rank[x] < rank[y].
// (2) When a new edge (x->y) is inserted, do nothing if rank[x] < rank[y].
// (3) Otherwise: adjust ranks in the neighborhood of x and y.
//#include "xla/service/graphcycles/graphcycles.h"
#include "graphcycles.h"
#include <algorithm>
#include <cstddef>
#include <utility>
#include <vector>
// #include "absl/algorithm/container.h"
// #include "absl/container/flat_hash_set.h"
// #include "absl/strings/str_cat.h"
// #include "absl/types/span.h"
//#include "xla/service/graphcycles/ordered_set.h"
#include "ordered_set.h"
#include <unordered_set>
#include <iostream>
//#include "tsl/platform/logging.h"
namespace xla {
namespace {
using NodeSet = std::unordered_set<int32_t>;
using OrderedNodeSet = OrderedSet<int32_t>;
constexpr int32_t max_path_len_20 = 20;
struct Node {
int32_t rank; // rank number assigned by Pearce-Kelly algorithm
// Note (ecg@): the padding between these two fields bothered me, so I tried
// the following alternatives:
// - Separate bitmap to track visited[].
// - Separate std::vector<bool> visited.
// - Tagged top or bottom bit of "rank" to keep track of "visited".
// However, keeping the bool here (despite the padding) achieves the best
// performance for the IsReachableNonConst microbenchmark.
bool visited; // Temporary marker used by depth-first-search
};
struct NodeIO {
OrderedNodeSet in; // List of immediate predecessor nodes in graph
OrderedNodeSet out; // List of immediate successor nodes in graph
};
} // namespace
struct GraphCycles::Rep {
std::vector<Node> nodes_;
std::vector<NodeIO> node_io_;
std::vector<int32_t> free_nodes_; // Indices for unused entries in nodes_
// Temporary state.
std::vector<int32_t> deltaf_; // Results of forward DFS
std::vector<int32_t> deltab_; // Results of backward DFS
std::vector<int32_t> list_; // All nodes to reprocess
std::vector<int32_t> merged_; // Rank values to assign to list_ entries
std::vector<int32_t>
stack_; // Emulates recursion stack when doing depth first search
// User-supplied data. Stored outside of Node since it is rarely accessed.
std::vector<void*> node_data_;
};
GraphCycles::GraphCycles() : rep_(new Rep) {}
// Define the destructor here because Rep is also defined in this file.
GraphCycles::~GraphCycles() {
delete rep_;
}
bool GraphCycles::CheckInvariants() const {
Rep* r = rep_;
NodeSet ranks; // Set of ranks seen so far.
for (size_t x = 0; x < r->nodes_.size(); x++) {
Node* nx = &r->nodes_[x];
if (nx->visited) {
// LOG(FATAL) << "Did not clear visited marker on node " << x;
std::cerr << "Did not clear visited marker on node " << x;
std::exit(EXIT_FAILURE);
}
if (!ranks.insert(nx->rank).second) {
// LOG(FATAL) << "Duplicate occurrence of rank " << nx->rank;
std::cerr << "Duplicate occurrence of rank " << nx->rank;
std::exit(EXIT_FAILURE);
}
NodeIO* nx_io = &r->node_io_[x];
for (int32_t y : nx_io->out.GetSequence()) {
Node* ny = &r->nodes_[y];
if (nx->rank >= ny->rank) {
/* LOG(FATAL) << "Edge " << x << "->" << y << " has bad rank assignment "
<< nx->rank << "->" << ny->rank; */
std::cerr << "Edge " << x << "->" << y << " has bad rank assignment "
<< nx->rank << "->" << ny->rank;
std::exit(EXIT_FAILURE);
}
}
}
return true;
}
int32_t GraphCycles::NewNode() {
if (rep_->free_nodes_.empty()) {
Node n;
n.visited = false;
n.rank = static_cast<int32_t>(rep_->nodes_.size());
rep_->nodes_.emplace_back(n);
rep_->node_io_.emplace_back();
rep_->node_data_.push_back(nullptr);
return n.rank;
} else {
// Preserve preceding rank since the set of ranks in use must be
// a permutation of [0,rep_->nodes_.size()-1].
int32_t r = rep_->free_nodes_.back();
rep_->free_nodes_.pop_back();
rep_->node_data_[r] = nullptr;
return r;
}
}
void GraphCycles::RemoveNode(int32_t node) {
NodeIO* x = &rep_->node_io_[node];
for (int32_t y : x->out.GetSequence()) {
rep_->node_io_[y].in.Erase(node);
}
for (int32_t y : x->in.GetSequence()) {
rep_->node_io_[y].out.Erase(node);
}
x->in.Clear();
x->out.Clear();
rep_->free_nodes_.push_back(node);
}
void* GraphCycles::GetNodeData(int32_t node) const {
return rep_->node_data_[node];
}
void GraphCycles::SetNodeData(int32_t node, void* data) {
rep_->node_data_[node] = data;
}
bool GraphCycles::HasEdge(int32_t x, int32_t y) const {
return rep_->node_io_[x].out.Contains(y);
}
void GraphCycles::RemoveEdge(int32_t x, int32_t y) {
rep_->node_io_[x].out.Erase(y);
rep_->node_io_[y].in.Erase(x);
// No need to update the rank assignment since a previous valid
// rank assignment remains valid after an edge deletion.
}
static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound);
static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound);
static void Reorder(GraphCycles::Rep* r);
static void Sort(const std::vector<Node>& nodes, std::vector<int32_t>* delta);
static void MoveToList(GraphCycles::Rep* r, std::vector<int32_t>* src,
std::vector<int32_t>* dst);
static void ClearVisitedBits(GraphCycles::Rep* r,
const std::vector<int32_t>& visited_indices);
bool GraphCycles::InsertEdge(int32_t x, int32_t y) {
if (x == y) return false;
Rep* r = rep_;
NodeIO* nx_io = &r->node_io_[x];
if (!nx_io->out.Insert(y)) {
// Edge already exists.
return true;
}
NodeIO* ny_io = &r->node_io_[y];
ny_io->in.Insert(x);
Node* nx = &r->nodes_[x];
Node* ny = &r->nodes_[y];
if (nx->rank <= ny->rank) {
// New edge is consistent with existing rank assignment.
return true;
}
// Current rank assignments are incompatible with the new edge. Recompute.
// We only need to consider nodes that fall in the range [ny->rank,nx->rank].
if (!ForwardDFS(r, y, nx->rank)) {
// Found a cycle. Undo the insertion and tell caller.
nx_io->out.Erase(y);
ny_io->in.Erase(x);
// Since we do not call Reorder() on this path, clear any visited
// markers left by ForwardDFS.
ClearVisitedBits(r, r->deltaf_);
return false;
}
BackwardDFS(r, x, ny->rank);
Reorder(r);
return true;
}
static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound) {
// Avoid recursion since stack space might be limited.
// We instead keep a stack of nodes to visit.
r->deltaf_.clear();
r->stack_.clear();
r->stack_.push_back(n);
while (!r->stack_.empty()) {
n = r->stack_.back();
r->stack_.pop_back();
Node* nn = &r->nodes_[n];
if (nn->visited) continue;
nn->visited = true;
r->deltaf_.push_back(n);
NodeIO* nn_io = &r->node_io_[n];
for (auto w : nn_io->out.GetSequence()) {
Node* nw = &r->nodes_[w];
if (nw->rank == upper_bound) {
return false; // Cycle
}
if (!nw->visited && nw->rank < upper_bound) {
r->stack_.push_back(w);
}
}
}
return true;
}
static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound) {
r->deltab_.clear();
r->stack_.clear();
r->stack_.push_back(n);
while (!r->stack_.empty()) {
n = r->stack_.back();
r->stack_.pop_back();
Node* nn = &r->nodes_[n];
if (nn->visited) continue;
nn->visited = true;
r->deltab_.push_back(n);
NodeIO* nn_io = &r->node_io_[n];
for (auto w : nn_io->in.GetSequence()) {
Node* nw = &r->nodes_[w];
if (!nw->visited && lower_bound < nw->rank) {
r->stack_.push_back(w);
}
}
}
}
static void Reorder(GraphCycles::Rep* r) {
Sort(r->nodes_, &r->deltab_);
Sort(r->nodes_, &r->deltaf_);
// Adds contents of delta lists to list_ (backwards deltas first).
r->list_.clear();
MoveToList(r, &r->deltab_, &r->list_);
MoveToList(r, &r->deltaf_, &r->list_);
// Produce sorted list of all ranks that will be reassigned.
r->merged_.resize(r->deltab_.size() + r->deltaf_.size());
std::merge(r->deltab_.begin(), r->deltab_.end(), r->deltaf_.begin(),
r->deltaf_.end(), r->merged_.begin());
// Assign the ranks in order to the collected list.
for (size_t i = 0; i < r->list_.size(); i++) {
r->nodes_[r->list_[i]].rank = r->merged_[i];
}
}
static void Sort(const std::vector<Node>& nodes, std::vector<int32_t>* delta) {
std::sort(delta->begin(), delta->end(), [&](int32_t a, int32_t b) {
return nodes[a].rank < nodes[b].rank;
});
}
static void MoveToList(GraphCycles::Rep* r, std::vector<int32_t>* src,
std::vector<int32_t>* dst) {
for (size_t i = 0; i < src->size(); i++) {
int32_t w = (*src)[i];
(*src)[i] = r->nodes_[w].rank; // Replace src entry with its rank
r->nodes_[w].visited = false; // Prepare for future DFS calls
dst->push_back(w);
}
}
static void ClearVisitedBits(GraphCycles::Rep* r,
const std::vector<int32_t>& visited_indices) {
for (auto index : visited_indices) {
r->nodes_[index].visited = false;
}
}
int GraphCycles::FindPath(int32_t x, int32_t y, int max_path_len,
int32_t path[]) const {
// Forward depth first search starting at x until we hit y.
// As we descend into a node, we push it onto the path.
// As we leave a node, we remove it from the path.
int path_len = 0;
Rep* r = rep_;
NodeSet seen;
r->stack_.clear();
r->stack_.push_back(x);
while (!r->stack_.empty()) {
int32_t n = r->stack_.back();
r->stack_.pop_back();
if (n < 0) {
// Marker to indicate that we are leaving a node
path_len--;
continue;
}
if (path_len < max_path_len) {
path[path_len] = n;
}
path_len++;
r->stack_.push_back(-1); // Will remove tentative path entry
if (n == y) {
return path_len;
}
for (auto w : r->node_io_[n].out.GetSequence()) {
if (seen.insert(w).second) {
r->stack_.push_back(w);
}
}
}
return 0;
}
std::string GraphCycles::Path(int x, int y, const int max_path_len) {
static const int kPathSize = max_path_len;
int32_t path[max_path_len_20];
int np = FindPath(x, y, kPathSize, path);
std::string result;
for (int i = 0; i < np; i++) {
if (i >= kPathSize) {
result += " ...";
break;
}
if (!result.empty())
result.push_back(' ');
char buf[20];
snprintf(buf, sizeof(buf), "%d", path[i]);
result += buf;
}
return result;
}
std::pair<std::vector<int32_t>, bool> GraphCycles::PathDagIDs(int x, int y, const int max_path_len) {
static const int kPathSize = max_path_len;
std::vector<int32_t> path;
path.reserve(kPathSize);
int np = FindPath(x, y, kPathSize, path.data());
bool overflow = np > max_path_len;
for (int i = 0; i < np; i++) {
if (i >= kPathSize) {
break;
}
path.push_back(path[i]);
}
return std::pair<std::vector<int32_t>, bool>(path, overflow);
}
bool GraphCycles::IsReachable(int32_t x, int32_t y) const {
return FindPath(x, y, 0, nullptr) > 0;
}
bool GraphCycles::IsReachableNonConst(int32_t x, int32_t y) {
if (x == y) return true;
Rep* r = rep_;
Node* nx = &r->nodes_[x];
Node* ny = &r->nodes_[y];
if (nx->rank >= ny->rank) {
// x cannot reach y since it is after it in the topological ordering
return false;
}
// See if x can reach y using a DFS search that is limited to y's rank
bool reachable = !ForwardDFS(r, x, ny->rank);
// Clear any visited markers left by ForwardDFS.
ClearVisitedBits(r, r->deltaf_);
return reachable;
}
bool GraphCycles::CanContractEdge(int32_t a, int32_t b) {
assert(HasEdge(a, b) && "No edge exists from a to b");
RemoveEdge(a, b);
bool reachable = IsReachableNonConst(a, b);
// Restore the graph to its original state.
InsertEdge(a, b);
// If reachable, then contracting edge will cause cycle.
return !reachable;
}
int32_t GraphCycles::ContractEdge(int32_t a, int32_t b, bool &success) {
assert(HasEdge(a, b) && "No edge exists from a to b");
RemoveEdge(a, b);
if (IsReachableNonConst(a, b)) {
// Restore the graph to its original state.
InsertEdge(a, b);
success = false;
return -1;
}
if (rep_->node_io_[b].in.Size() + rep_->node_io_[b].out.Size() >
rep_->node_io_[a].in.Size() + rep_->node_io_[a].out.Size()) {
// Swap "a" and "b" to minimize copying.
std::swap(a, b);
}
NodeIO* nb_io = &rep_->node_io_[b];
OrderedNodeSet out = std::move(nb_io->out);
OrderedNodeSet in = std::move(nb_io->in);
for (int32_t y : out.GetSequence()) {
rep_->node_io_[y].in.Erase(b);
}
for (int32_t y : in.GetSequence()) {
rep_->node_io_[y].out.Erase(b);
}
rep_->free_nodes_.push_back(b);
rep_->node_io_[a].out.Reserve(rep_->node_io_[a].out.Size() + out.Size());
for (int32_t y : out.GetSequence()) {
InsertEdge(a, y);
}
rep_->node_io_[a].in.Reserve(rep_->node_io_[a].in.Size() + in.Size());
for (int32_t y : in.GetSequence()) {
InsertEdge(y, a);
}
// Note, if the swap happened it might be what originally was called "b".
success = true;
return a;
}
std::vector<int32_t> GraphCycles::Successors(int32_t node) const {
return rep_->node_io_[node].out.GetSequence();
}
std::vector<int32_t> GraphCycles::Predecessors(int32_t node) const {
return rep_->node_io_[node].in.GetSequence();
}
std::vector<int32_t> GraphCycles::SuccessorsCopy(int32_t node) const {
return Successors(node);
}
std::vector<int32_t> GraphCycles::PredecessorsCopy(int32_t node) const {
return Predecessors(node);
}
namespace {
void SortInPostOrder(const std::vector<Node>& nodes,
std::vector<int32_t>* to_sort) {
std::sort(to_sort->begin(), to_sort->end(), [&](int32_t a, int32_t b) {
assert(a == b || nodes[a].rank != nodes[b].rank);
return nodes[a].rank > nodes[b].rank;
});
}
} // namespace
auto contains = [](const std::unordered_set<int32_t>& set, int32_t key) {
return set.find(key) != set.end();
};
std::vector<int32_t> GraphCycles::AllNodesInPostOrder() const {
std::unordered_set<int32_t> free_nodes_set;
std::copy(rep_->free_nodes_.begin(), rep_->free_nodes_.end(),
std::inserter(free_nodes_set, free_nodes_set.begin()));
std::vector<int32_t> all_nodes;
all_nodes.reserve(rep_->nodes_.size() - free_nodes_set.size());
for (int64_t i = 0, e = rep_->nodes_.size(); i < e; i++) {
int32_t index = static_cast<int32_t>(i);
if (!contains(free_nodes_set, index)) {
all_nodes.push_back(index);
}
}
SortInPostOrder(rep_->nodes_, &all_nodes);
return all_nodes;
}
std::string GraphCycles::DebugString() const {
std::unordered_set<int32_t> free_nodes_set(rep_->free_nodes_.begin(),
rep_->free_nodes_.end());
std::string result = "digraph {\n";
for (int64_t i = 0, end = rep_->nodes_.size(); i < end; i++) {
int32_t index = static_cast<int32_t>(i);
if (!contains(free_nodes_set, index)) {
continue;
}
for (int32_t succ : rep_->node_io_[i].out.GetSequence()) {
result += " \"" + std::to_string(i) + "\" -> \"" + std::to_string(succ) + "\"\n";
}
}
result += "}\n";
return result;
}
} // namespace xla
|