File: wrap.py

package info (click to toggle)
lfortran 0.45.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 46,332 kB
  • sloc: cpp: 137,068; f90: 51,260; python: 6,444; ansic: 4,277; yacc: 2,285; fortran: 806; sh: 524; makefile: 30; javascript: 15
file content (273 lines) | stat: -rw-r--r-- 9,077 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
# Design

This file converts from a GFortran module file representation (documented in
the `gfort_mod_parser.py` module) to an Abstract Semantic Representation (ASR).
"""

# TODO: move this into the lfortran package itself
import sys
sys.path.append("../..")
from lfortran.ast import ast
from lfortran.ast.ast_to_src import ast_to_src
import lfortran.adapters.gfortran.mod as gp

class Type(object):
    pass

class Intrinsic(Type):
    __slots__ = ["kind"]

    def __init__(self, kind=None):
        #super(Intrinsic, self).__init__()
        self.kind = kind

class Integer(Intrinsic):
    def __str__(self):
        return "integer"
class Real(Intrinsic):
    def __str__(self):
        return "real"
class Complex(Intrinsic):
    def __repr__(self):
        return "Complex()"
class String(Intrinsic):
    def __repr__(self):
        return "String()"
class Logical(Intrinsic):
    def __repr__(self):
        return "Logical()"

class Derived(Type):
    def __repr__(self):
        return "Derived()"

class Array(Type):
    __slots__ = ["type", "ndim", "atype", "bounds"]

class Arg:
    __slots__ = ["name", "intent", "type", "symtab", "symidx"]

    def get_decl(self):
        s = "%s, intent(%s) :: %s" % (self.type, self.intent, self.name)
        return s

    def tofortran_arg(self):
        return ast.arg(self.name)

    def tofortran_bound(self, b):
        if isinstance(b, gp.Integer):
            if b.i == 1:
                return ""
            else:
                return str(b.i)
        elif isinstance(b, gp.VarIdx):
            return self.symtab[b.idx].name
        print(b)
        raise NotImplementedError("Unsupported bound type")

# TODO: generate ASR in these functions. The ASR will then get converted
# to AST and to Fortran code. This will simplify all the declaration code
# below, which is implicit in the ASR's symbol table.

    def tofortran_decl(self):
        attrs = [
            ast.Attribute(name="intent",
                    args=[ast.attribute_arg(arg=self.intent)]),
        ]
        if isinstance(self.type, Array):
            stype = str(self.type.type)
            args = []
            for i in range(self.type.ndim):
                if self.type.atype == "explicit_shape":
                    s = self.tofortran_bound(self.type.bounds[i][0])
                    if s != "":
                        s += ":"
                    s += self.tofortran_bound(self.type.bounds[i][1])
                    args.append(s)
                elif self.type.atype == "assumed_shape":
                    s = self.tofortran_bound(self.type.bounds[i][0])
                    s += ":"
                    args.append(s)
                else:
                    assert False
            args = [ast.attribute_arg(arg=x) for x in args]
            attrs.append(ast.Attribute(name="dimension", args=args))
        else:
            stype = str(self.type)
        decl = ast.decl(sym=self.name, sym_type=stype,
            dims=[], attrs=attrs)
        return ast.Declaration(vars=[decl], lineno=1, col_offset=1)

    def tofortran_cdecl(self):
        attrs = [
            ast.Attribute(name="intent",
                    args=[ast.attribute_arg(arg=self.intent)]),
        ]
        if isinstance(self.type, Array):
            args = []
            if self.type.atype == "assumed_shape":
                if self.type.ndim == 1:
                    stype = "type(c_desc1_t)"
                elif self.type.ndim == 2:
                    stype = "type(c_desc2_t)"
                else:
                    raise NotImplementedError("Assumed shape dim")
            else:
                stype = str(self.type.type)
                for i in range(self.type.ndim):
                    if self.type.atype == "explicit_shape":
                        s = self.tofortran_bound(self.type.bounds[i][0])
                        if s != "":
                            s += ":"
                        s += self.tofortran_bound(self.type.bounds[i][1])
                        args.append(s)
                    else:
                        assert False
                args = [ast.attribute_arg(arg=x) for x in args]
                attrs.append(ast.Attribute(name="dimension", args=args))
        else:
            stype = str(self.type)
        decl = ast.decl(sym=self.name, sym_type=stype,
            dims=[], attrs=attrs)
        return ast.Declaration(vars=[decl], lineno=1, col_offset=1)

class Function:
    __slots__ = ["name", "args", "return_type", "mangled_name"]

    def tofortran_impl(self):
        args = [x.tofortran_arg() for x in self.args]
        args_decl = [x.tofortran_decl() for x in self.args]
        iface_decl = [
            ast.Interface2(name="x", procs=[self.tofortran_iface()], lineno=1, col_offset=1)
        ]
        return_var = ast.Name(id="r", lineno=1, col_offset=1)
        cname = self.name + "_c_wrapper"
        cargs = []
        for x in self.args:
            a = ast.Name(id=x.name, lineno=1, col_offset=1)
            if isinstance(x.type, Array) and x.type.atype == "assumed_shape":
                cargs.append(
                    ast.FuncCallOrArray(
                        func="c_desc", args=[a], keywords=[],
                        lineno=1, col_offset=1
                    )
                )
            else:
                cargs.append(a)
        body = [
            ast.Assignment(
                target=return_var,
                value=ast.FuncCallOrArray(
                    func=cname, args=cargs, keywords=[],
                    lineno=1, col_offset=1
                ),
                lineno=1, col_offset=1
            )
        ]
        return ast.Function(name=self.name, args=args,
            return_type=str(self.return_type), return_var=return_var, bind=None,
            use=[],
            decl=args_decl+iface_decl, body=body, contains=[], lineno=1,
            col_offset=1)

    def tofortran_iface(self):
        args = [x.tofortran_arg() for x in self.args]
        args_decl = [x.tofortran_cdecl() for x in self.args]
        use = [
            ast.Use(module="gfort_interop",
                symbols=[
                    ast.UseSymbol(sym="c_desc1_t", rename=None),
                    ast.UseSymbol(sym="c_desc2_t", rename=None),
                ], lineno=1, col_offset=1)
        ]
        cname = self.name + "_c_wrapper"
        bind_args = [ast.keyword(arg=None, value=ast.Name(id="c", lineno=1, col_offset=1)),
            ast.keyword(arg="name", value=ast.Str(s=self.mangled_name, lineno=1, col_offset=1))]
        bind = ast.Bind(args=bind_args)
        return ast.Function(name=cname, args=args,
            return_type=str(self.return_type), return_var=None,
            bind=bind, use=use,
            decl=args_decl, body=[], contains=[], lineno=1, col_offset=1)

class Module:
    __slots__ = ["name", "contains"]

    def tofortran(self):
        contains = [x.tofortran_impl() for x in self.contains]
        use = [
            ast.Use(module="gfort_interop",
                symbols=[
                    ast.UseSymbol(sym="c_desc", rename=None),
                ], lineno=1, col_offset=1)
        ]
        return ast.Module(name=self.name, use=use, decl=[], contains=contains)


def convert_arg(table, idx):
    arg = table[idx]
    a = Arg()
    assert isinstance(arg.name, str)
    a.name = arg.name
    assert isinstance(arg.intent, str)
    a.intent = arg.intent
    assert isinstance(table, dict)
    a.symtab = table
    assert isinstance(idx, int)
    a.symidx = idx
    assert isinstance(arg.type, str)
    type_ = arg.type
    if arg.bounds:
        ar = Array()
        ar.type = type_
        ar.ndim = len(arg.bounds)
        if arg.bounds[0][1] is None:
            ar.atype = "assumed_shape"
        else:
            ar.atype = "explicit_shape"
        ar.bounds = arg.bounds
        a.type = ar
    else:
        a.type = type_
    return a

def convert_function(table, f):
    assert isinstance(f, gp.Procedure)
    fn = Function()
    assert isinstance(f.name, str)
    fn.name = f.name
    assert isinstance(f.type, str)
    fn.return_type = f.type
    fn.mangled_name = '__' + f.mod + '_MOD_' + f.name.lower()
    args = []
    for arg in f.args:
        assert isinstance(arg, gp.VarIdx)
        args.append(convert_arg(table, arg.idx))
    fn.args = args
    return fn

def convert_module(table, public_symbols):
    m = Module()
    contains = []
    module_name = None
    for sym in public_symbols:
        s = table[sym.idx.idx]
        if isinstance(s, gp.Module):
            # Skip modules if they are listed in public symbols
            continue
        assert isinstance(s, gp.Procedure)
        if module_name:
            assert module_name == s.mod
        else:
            module_name = s.mod
        contains.append(convert_function(table, s))
    m.name = module_name
    m.contains = contains
    return m

version, orig_file, table, public_symbols = gp.load_module("mod1.mod")
m = convert_module(table, public_symbols)
a = m.tofortran()
a.name = "mod2"
s = ast_to_src(a)
print(s)