1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
! Compile and run in Release mode with:
! gfortran -O3 -march=native -ffast-math -funroll-loops matmul_01.f90 && ./a.out
! To develop, compile and run with:
! gfortran -Wall -Wextra -Wimplicit-interface -g -fcheck=all -fbacktrace matmul_01.f90 && ./a.out
module matmul_01_cpu
implicit none
contains
subroutine matmul1(A, B, C)
real, intent(in) :: A(:,:), B(:,:)
real, intent(out) :: C(:,:)
integer :: n
integer :: i, j, k
n = size(A, 1)
C = 0
do j = 1, n
do k = 1, n
do i = 1, n
C(i,j) = C(i,j) + A(i,k)*B(k,j)
end do
end do
end do
end subroutine
! The arguments A, B are swapped,
! and all accesses to A, B, C are tranposed
subroutine kernel2(B, A, C, x, y, i1, s1)
real, intent(in) :: A(:,:), B(:,:)
real, intent(out) :: C(:,:)
integer, intent(in) :: x, y, i1, s1
integer :: k
!LF$ attributes simd :: A0, A1, A2, A3, A4, A5
real, dimension(8) :: A0, A1, A2, A3, A4, A5
!LF$ attributes simd :: u00, u01, u10, u11, u20, u21
!LF$ attributes simd :: u30, u31, u40, u41, u50, u51
real, dimension(8) :: u00, u01, u10, u11, u20, u21, u30, u31, &
u40, u41, u50, u51
! This function computes:
!C(x:x+6-1, y:y+16-1) = C(x:x+6-1, y:y+16-1) + matmul( &
! A(x:x+6-1, i1:i1+s1-1), &
! B(i1:i1+s1-1, y:y+16-1) )
u00 = C(y :y+ 7,x+0)
u01 = C(y+8:y+15,x+0)
u10 = C(y :y+ 7,x+1)
u11 = C(y+8:y+15,x+1)
u20 = C(y :y+ 7,x+2)
u21 = C(y+8:y+15,x+2)
u30 = C(y :y+ 7,x+3)
u31 = C(y+8:y+15,x+3)
u40 = C(y :y+ 7,x+4)
u41 = C(y+8:y+15,x+4)
u50 = C(y :y+ 7,x+5)
u51 = C(y+8:y+15,x+5)
do k = i1, i1+s1-1
A0 = A(k,x+0)
u00 = u00 + A0 * B(y :y+ 7,k)
u01 = u01 + A0 * B(y+8:y+15,k)
A1 = A(k,x+1)
u10 = u10 + A1 * B(y :y+ 7,k)
u11 = u11 + A1 * B(y+8:y+15,k)
A2 = A(k,x+2)
u20 = u20 + A2 * B(y :y+ 7,k)
u21 = u21 + A2 * B(y+8:y+15,k)
A3 = A(k,x+3)
u30 = u30 + A3 * B(y :y+ 7,k)
u31 = u31 + A3 * B(y+8:y+15,k)
A4 = A(k,x+4)
u40 = u40 + A4 * B(y :y+ 7,k)
u41 = u41 + A4 * B(y+8:y+15,k)
A5 = A(k,x+5)
u50 = u50 + A5 * B(y :y+ 7,k)
u51 = u51 + A5 * B(y+8:y+15,k)
end do
C(y :y+ 7,x+0) = u00
C(y+8:y+15,x+0) = u01
C(y :y+ 7,x+1) = u10
C(y+8:y+15,x+1) = u11
C(y :y+ 7,x+2) = u20
C(y+8:y+15,x+2) = u21
C(y :y+ 7,x+3) = u30
C(y+8:y+15,x+3) = u31
C(y :y+ 7,x+4) = u40
C(y+8:y+15,x+4) = u41
C(y :y+ 7,x+5) = u50
C(y+8:y+15,x+5) = u51
end subroutine
subroutine matmul2(A, B, C)
real, intent(in) :: A(:,:), B(:,:)
real, intent(out) :: C(:,:)
integer :: s1, s2, s3, n
integer :: i1, i2, i3, x, y
n = size(A, 1)
! Use the commented out numbers for a good benchmark
s3 = 48 ! 64
s2 = 12 ! 120
s1 = 24 ! 240
C = 0
do i3 = 1, n, s3
do i2 = 1, n, s2
do i1 = 1, n, s1
do x = i2, i2+s2-1, 6
do y = i3, i3+s3-1, 16
call kernel2(A, B, C, x, y, i1, s1)
end do
end do
end do
end do
end do
end subroutine
end module
program matmul_01
use matmul_01_cpu, only: matmul1, matmul2
implicit none
integer, parameter :: dp = kind(0.d0)
integer :: n, iter, i
real(dp) :: t1, t2, t, GHz, fma_clock, freq, measured, percent_peak
real, allocatable :: A(:,:), B(:,:), C(:,:), C2(:,:)
real :: err
! Use n = 960 for a good benchmark
n = 96
! Increase `iter` so that the total time for a given benchmark is about 1s
! in order to get accurate timings
iter = 1
print *, "Size (n x n): n =", n
print *, "Iter =", iter
print *, "Size MB:", 4._dp*n*n/1024**2
allocate(A(n,n), B(n,n), C(n,n), C2(n,n))
call random_number(A)
call random_number(B)
print *, "Fortran intrinsic matmul:"
call cpu_time(t1)
do i = 1, iter
C = matmul(A, B)
end do
call cpu_time(t2)
t = (t2-t1)/iter
GHz = 1e9_dp
fma_clock = 0.0625_dp ! This is CPU specific (Apple M1 number here)
freq = 3.2_dp*GHz
measured = t * freq / n**3
percent_peak = fma_clock / measured * 100
print *, "Time: ", t
print *, "Clock cycles per element:"
print *, "Theoretical performance peak:", fma_clock, "cycles"
print *, "Measured: ", measured, "cycles"
print *, "Percent peak: ", percent_peak, "%"
print *
print *, "matmul2:"
call cpu_time(t1)
do i = 1, iter
call matmul2(A, B, C2)
end do
call cpu_time(t2)
err = maxval(abs(C-C2))
print *, "Error:", err
t = (t2-t1)/iter
GHz = 1e9_dp
fma_clock = 0.0625_dp
freq = 3.2_dp*GHz
measured = t * freq / n**3
percent_peak = fma_clock / measured * 100
print *, "Time: ", t
print *, "Clock cycles per element:"
print *, "Theoretical performance peak:", fma_clock, "cycles"
print *, "Measured: ", measured, "cycles"
print *, "Percent peak: ", percent_peak, "%"
if (err > 1e-3) error stop
print *
print *, "matmul1:"
call cpu_time(t1)
do i = 1, iter
call matmul1(A, B, C2)
end do
call cpu_time(t2)
err = maxval(abs(C-C2))
print *, "Error:", err
t = (t2-t1)/iter
GHz = 1e9_dp
fma_clock = 0.0625_dp
freq = 3.2_dp*GHz
measured = t * freq / n**3
percent_peak = fma_clock / measured * 100
print *, "Time: ", t
print *, "Clock cycles per element:"
print *, "Theoretical performance peak:", fma_clock, "cycles"
print *, "Measured: ", measured, "cycles"
print *, "Percent peak: ", percent_peak, "%"
if (err > 1e-3) error stop
end program
|