1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
module field_m
!! field is a unit_ring that also has a division or inverse operation
use unit_ring_m, only: unit_ring
implicit none
private
public :: &
field_only_division, &
field_only_inverse, &
field, &
derive_field_from_division, &
derive_field_from_inverse
requirement field_only_division(T, plus, zero, mult, one, minus, negate, divide)
require :: unit_ring(T, plus, zero, mult, one, minus, negate)
elemental function divide(x, y) result(quotient)
type(T), intent(in) :: x, y
type(T) :: quotient
end function
end requirement
requirement field_only_inverse(T, plus, zero, mult, one, minus, negate, invert)
require :: unit_ring(T, plus, zero, mult, one, minus, negate)
elemental function invert(x) result(inverse)
type(T), intent(in) :: x
type(T) :: inverse
end function
end requirement
requirement field(T, plus, zero, mult, one, minus, negate, divide, invert)
require :: field_only_division(T, plus, zero, mult, one, minus, negate, divide)
require :: field_only_inverse(T, plus, zero, mult, one, minus, negate, invert)
end requirement
template derive_field_from_division(T, plus, zero, mult, one, minus, negate, divide)
require :: field_only_division(T, plus, zero, mult, one, minus, negate, divide)
private
public :: invert
contains
elemental function invert(x) result(inverse)
type(T), intent(in) :: x
type(T) :: inverse
inverse = divide(one(), x)
end function
end template
template derive_field_from_inverse(T, plus, zero, mult, one, minus, negate, invert)
require :: field_only_inverse(T, plus, zero, mult, one, minus, negate, invert)
private
public :: divide
contains
elemental function divide(x, y) result(quotient)
type(T), intent(in) :: x, y
type(T) :: quotient
quotient = mult(x, invert(y))
end function
end template
end module
|