File: template_field.f90

package info (click to toggle)
lfortran 0.45.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 46,332 kB
  • sloc: cpp: 137,068; f90: 51,260; python: 6,444; ansic: 4,277; yacc: 2,285; fortran: 806; sh: 524; makefile: 30; javascript: 15
file content (64 lines) | stat: -rw-r--r-- 2,147 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
module field_m
    !! field is a unit_ring that also has a division or inverse operation
    use unit_ring_m, only: unit_ring

    implicit none
    private
    public :: &
            field_only_division, &
            field_only_inverse, &
            field, &
            derive_field_from_division, &
            derive_field_from_inverse

    requirement field_only_division(T, plus, zero, mult, one, minus, negate, divide)
        require :: unit_ring(T, plus, zero, mult, one, minus, negate)
        elemental function divide(x, y) result(quotient)
            type(T), intent(in) :: x, y
            type(T) :: quotient
        end function
    end requirement

    requirement field_only_inverse(T, plus, zero, mult, one, minus, negate, invert)
        require :: unit_ring(T, plus, zero, mult, one, minus, negate)
        elemental function invert(x) result(inverse)
            type(T), intent(in) :: x
            type(T) :: inverse
        end function
    end requirement

    requirement field(T, plus, zero, mult, one, minus, negate, divide, invert)
        require :: field_only_division(T, plus, zero, mult, one, minus, negate, divide)
        require :: field_only_inverse(T, plus, zero, mult, one, minus, negate, invert)
    end requirement

    template derive_field_from_division(T, plus, zero, mult, one, minus, negate, divide)
        require :: field_only_division(T, plus, zero, mult, one, minus, negate, divide)

        private
        public :: invert

    contains
        elemental function invert(x) result(inverse)
            type(T), intent(in) :: x
            type(T) :: inverse

            inverse = divide(one(), x)
        end function
    end template

    template derive_field_from_inverse(T, plus, zero, mult, one, minus, negate, invert)
        require :: field_only_inverse(T, plus, zero, mult, one, minus, negate, invert)

        private
        public :: divide

    contains
        elemental function divide(x, y) result(quotient)
            type(T), intent(in) :: x, y
            type(T) :: quotient

            quotient = mult(x, invert(y))
        end function
    end template
end module